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Abstract

The forward measure in the discrete time Ho/Lee model is derived and passages to
the continuous time limit are carried out under this measure. In particular the con-
tinuous time valuation formula for call options on zero coupon bonds is obtained as a
limit of its discrete time equivalent as well as the continuous time distribution of the
continuously compounded short rate.

Finally it is shown that the trinomial and quattronomial generalizations of the Ho/Lee
model by Biihler and Schulze are essentially equivalent to the Ho/Lee model as con-
cernes their discrete time properties and their continuous time limits.

Key words: Ho/Lee model, forward measure, continuous time limit, trinomial and
quattronomial models.
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2 2. THE STRUCTURE OF THE HO/LEE MODEL

1 Introduction

The prominence of the Ho/Lee-model [HL86] stems from the fact that it represented
the first purely arbitrage—based approach to pricing interest rate derivative securities.

While Ho and Lee have not considered continuous time limits of their model Heath,
Jarrow and Morton (HJM)[HJM90] provide limit results for the distribution of in-
stantaneous forward rates under the risk-neutral probability measure.

In this paper we derive the continuous time limit of the discrete time call-option
formula for zero coupon bonds. It turns out that this limit is naturally calculated
under the forward measure. Due to the fact that interest rates are stochastic this
measure differs from the risk neutral measure thus causing considerable differences
between the limit arguments presented in this paper and the one by HJM or Cox—
Rubinstein [CR85] in the Black—Scholes case. We also derive the continuous time
distribution of the short rate under the forward measure.

Finally we consider generalizations of the Ho/Lee model proposed by Biihler/Schulze
[BS92],[BS93],[BS95] and show that in every interesting respect these alleged gener-
alizations do not go beyond the original Ho/Lee model. In particular all the models
proposed by Biihler/Schulze are one-factor models driven by the stochastic process
of the short rate. Moreover, all the limit results obtained in the Ho/Lee framework
carry over to the Biihler/Schulze models.

In the second section of the paper, we review the Ho/Lee model and establish necessary
notation. The third section contains our limit results for the Ho/Lee model, the fourth
contains our analysis of the Biihler/Schulze models while the fifth concludes.

2 The Structure of the Ho/Lee Model

Consider a fixed time interval [ := [0,7]. Assume that this time interval is divided
into M — 1 sub-intervals of length A :=T'/M and that trading in zero coupon bonds
takes place at times {0, A, 2A,...,mA,....T — A}. At time 0 one observes the
prices of a given set of zero coupon bonds maturing at {A,...,mA,...,T}. The
central assumption in the Ho/Lee model [HL86] is that the prices of these securities
can undergo upward and downward shocks such that the stochastic processes of zero
coupon bond prices can be represented on a binomial lattice with step size A. For
a lattice with this step size we denote by Da(m,n,j) the price in vertex (m,j) of
a zero coupon bond with time to maturity nA where n € {0,1,..., M —m}. Here
7 €{0,1,...,m} denotes the number of upward shocks that have occured up to time
mA. Now take a family (Zi)ie]N of independent random variables that are 1 with
probability p and 0 with probability 1 — p and define random variables .J,,, := 3", z;.
With this notation we can denote the family of processes of prices of zero coupon
bonds with times to maturity nA, n € {0,1,..., M} on a binomial lattice with step
size A by:

(DA(m,n,Jm)) m e {0,1,..., M —n}

n €{0,1,..., M}



In order to model upward and downward shocks to zero coupon bond prices Ho and
Lee introduce functions ha(-) and AL(:) of time to maturity. For m > 0 they then
specify the evolution of these prices recursively by

upward shock:

. , DA(m—l,n—l—l,j)
Da(m,n,j+1) = DA(m—l )

hA(n)

downward shock:

N D —1 1,5
Damonj) = 2alm=betbi)y.
DA(m - 17 17])

For A =1 and T" € IN Ho and Lee show that under the assumption of absence of
arbitrage opportunities and given the requirement that it must be possible to represent
the price processes of zero coupon bonds on a binomial lattice the functions h; and
hi are uniquely determined and given by

1

pt(1—p)6
P (5f p) &Eef{0,1,....T}, (2)

p+(1—p)é

h(§) =
hi) =

where 6; € (0,1) is an exogenous constant that expresses the variability of interest
rates and bond prices.

To obtain a generalization of these perturbation functions for an arbitrary step size A
replace 61 by éa € (0,1) in equation (2). The way in which 6o depends on A can be
determined as follows. Denote by 0?A the variance of the continuously compounded
yield of a zero coupon bond with time to maturity A conditional on J,, over a time
interval of length A . Then using equation (1) and the modified equation (2) we have

1 . 1
oiA\ = VP —Kln Da(m+ 1,1, J0 + 2im41) Jm] = Pp(l —p)(In éa)%.

Remembering that 64 € (0, 1) this yields

oA = eXpy ——— .
p(1 —p)

This generalization of the Ho/Lee perturbation functions has previously been obtained
in a different way by Heath, Jarrow and Morton [HJM90].

Given these specifications we obtain the following closed form solution for the family
of processes of prices of zero coupon bonds Da.
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(DA(m,n,Jm)) me{o,1,..., M—n} —

n € {0,1,..., M}
(DA(O, m 4+ n,0) (ﬁ ha(m +n — @')) 5n(m_Jm)) (3)
DA(Ovmvo) i=1 hA(m_i) 2 me{o,1,..., M —n}
n €{0,1,..., M}

This formula can easily be proved by induction. It almost immediately gives rise to

Proposition 2.1 In the Ho/Lee model processes of logarithms of prices of zero coupon
bonds for all times to maturity are affine transformations of the short rate process.

PRrOOF:
The proof is contained in the proof of Proposition 4.2. a

Finally it is important to notice that the way we have presented the Ho/Lee model
the probability measure p is the martingale measure in the sense that for every m €

{1,...,M} and n € {0,..., M —m} we have
Da(m =10+ 1, Jp1) = B [Da(m — 1,1, Jp_y) Da(m,n, Jp) | T -

More generally, given a binomial lattice with step size A on which the price processes
of zero coupon bonds are as specified above, denoting by Va(I'(J4), m, J,) the price
on this lattice in vertex (m,.J,,,) of a contingent claim with a single payoff I'(.J;) at
time mA := [t/A]A, one necessarily has by absence of arbitrage opportunities

Va(D(Jn)om = 1, Jyea) = E” [Da(m = 1,1, ) VAU (i) Ju) | Jua ] (4)

for m € {1,...,m}, as shown for this particular case in [HL86].

3 Limit Results for Continuous Trading in the
Ho/Lee Model

3.1 The Derivation of the Call Option Formula in the Ho/Lee
Model

3.1.1 The Formula in Discrete Time

Let Ca(m,n, K) be a European call option with exercise price K and expiration date
mA on the zero coupon bond that at time mA has time to maturity nA, where
nA = [x/A]A for @ € [0,T — t]. Its payoff is given by [DA(ﬁl,ﬁ,Jm) — [&’]+. To
determine the price of this option we first consider Arrow—Debreu securities whose
payoff in some vertex (m, j) in the binomial lattice is defined by:

1 ifp=mAct=
0 else

AD,s(00) = { 8

Using equation (4) we can determine the value of such a derivative security in the
binomial model of zero coupon bond prices. We have



3.1 The Derivation of the Call Option Formula 5

Proposition 3.1 Define:

. 0 ifm<gVy<O0
ZA(mvj) = 52-] else
1 ifm=75=0
wa(m,j) = 0 ifm<jiVy<O0

A(m - 17])ZA(m - 17])
Then the time zero value of the Arrow—Debreu security AD,, ; withm € {1,..., M—1}
and 3 € {0,...,m}in the binomial lattice with step size A is given by

w
else
w

Va(AD,, ;,0,0) = DA(O m O) (H ha(i—1 ) wa(m,j). (6)

PRrOOF:

The proof is given by induction.

First consider AD; ;. From equation (4) its value at time 0 is given by DA(O, 1,0)p.
This result is also obtained from equation (6) for m = j = 1. Similarly it is easy to
see that for m = 1 and j = 0 equation (6) yields a value DA (0,1,0) (1 — p) for ADy,
which is also the value obtained from equation (4).

Now assume that equation (6) holds for all the Arrow—Debreu securities up to some
period m and consider ADy 41+ with m + 1 > j* > 0. Again by equation (4) the
values of this security in vertices (m, j*) and (m,j* — 1) are

Va(ADy joom.g") = Da(m,1.57) (1 = p)
VA(ADﬁH_L]‘*,m,j* — 1) == DA(m, 1,j* — 1)p
In every vertex (m,j), j # g orj® — 1 the value of ADg+ is zero. Now consider
a portfolio consisting of Da(m,1,7%) (1 — p) units of ADy j» and Da(m, 1,7 = 1)p
units of ADg j«_1. As this portfolio is worth the same as ADg 44 ;+ in every vertex

(m,j), 7 €{0,...,m} by absence of arbitrage opportunities it must also be worth
the same as ADy, ;1 in vertex (0,0). Therefore, we have

VA(ADTﬁ-I-lJ*vaO)
= DA(m7 17]*) (1 _p) VA(ADm,j*vovo) + DA(mv 17]* - 1)pVA(ADT7L,j*—17070)

» . m+1
= Da(0,m 4+ 1,0)p"" (1 — p)y™+i=7° (H hM—1)

(1a(, ) walm, j°) + 1a(m,j* = 1 wa(m, j* = 1))
m+1

= Da(0,m 4 1,0)p"" (1 — p)m+i=7 (H hAz—l)wA(m—l—l,j*)

As it is easy to see that a similar argument can be made if 7* = m + 1 or 7* = 0 this
completes the proof. a
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REMARKS:
a) The basic idea behind this proof is, of course, the well known concept of forward

induction (see [Jam91], [SS96]).

b) It is interesting to compare equation (6) to the pricing formula for Arrow—
Debreu securities as we have defined them in equation (5) that would obtain in the
Cox/Rubinstein model for stock options [CR85]. Cox/Rubinstein assume short term
interest rates to be constant and equal to some value rp. Hence, DA(O,m,O) =

e~"a™mA  More importantly the coefficient wa(m, j) would simply be the binomial

coefficient ( ) in Cox/Rubinstein, a feature which facilitates the explicit valuation of
path dependent securities in their model and which is destroyed through stochastic
interest rates.

¢) By absence of arbitrage opportunities, the term multiplying DA(O, m,0) in (6) can
be interpreted as a probability measure different from but equivalent to the original
probability measure. We shall refer to this measure as the Arrow—Debreu— or (as the
term is more common in the literature) the forward-measure. In continuous time this
measure was first introduced by El/Karoui/Rochet [EKR89] and Jamshidian [Jam87].
The example of the discrete time model Ho/Lee model brings out clearly the link
between the forward measure and Arrow-Debreu prices.

Given the Arrow—Debreu prices it is easy to state a closed formula for zero coupon
bond options in discrete time.

Corollary 3.2 The time zero value of Ca(mn,n, K) is given by

Da(0, 100+ 72,0) i (f[ hA(ﬁ“rn—@)) 87 pl (1 = p)™ 7 wa(mm, j) -

where
Da(0,7 +7,0) 17 ha( + 7 — 1)
| 20 2 _
n( Da(0, 1, 0) K 1;[1 ha(m —1) N
ap = — + m
nln da
ProOF:

Follows immediately by the requirement of absence of arbitrage opportunities, the
definition of a European call option, equation (3), and Proposition 3.1. O
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3.1.2 The Continuous—Time Limit of the Discrete Time Formula

We determine the limit of the value of the call option in equation (7) in two steps.
First we show how the central limit theorem can be invoked, second we calculate the
arguments at which the standard normal distribution must be evaluated.

Proposition 3.3 (a) Let

L~ pha(k)
1) _ YZELYN Le N
" {o~<1—p>m<k>6’f o
be independent random variables and set Y1) .= Sl yk ) then

Py =) = (ﬁ i~ 1>) P (L= p) wa(m. ).

(b) Let

(2):{ L~pha(m+n—(k+1))

o Eed0,....m+n—1
U 0~ (1—p)ha(m+n— (k+1))s{r=G1) { J

be independent random variables and for 0 < m* < m set YTS*) =) y,(f) then

privid=j] = (H ha(m+n @'>) SN =) i (1 i g (1)
=1

PRrOOF:

See Appendix A. O

Note that if m* = m = m and n = n in part (b) of the proposition we obtain exactly
the type of expression multiplying Da (0,7 4 1,0) in equation (7). This means that
by Proposition 3.3 we can now interpret the sums in equation (7) as complementary
distribution functions of the random variables Y(?) and Y.(V) respectively, which in turn
are both sums of independent but no longer identically distributed random variables.
Using Proposition 3.3 we have

Corollary 3.4

PP = ¥ phath)

m—1

PYP] = Y pha(m 40— (k+1))

k=0

m—1

Ve = S (phalk) — p? RA(K))

k=0

m—1

VY P = S (pha(m+n—(k+1)) — p*ha(m+n—(k+1)))

k=0

where VP is the variance operator under p.
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PRrOOF:
Immediate from Proposition 3.3. O

This result enables us to state

Proposition 3.5 As A — 0

PRrOOF:
See Appendix B. a

Now we can return to the call option formula in discrete time as given in equation
(7). We can restate this formula in the following way:
) (8)

Having obtained this version of the discrete time valuation formula we are now in a
position to give its continuous time limit.

Theorem 3.6

A—0 /1o

In (RQH20)) | 12 2,
lim Va (C(m, 7, K),0,0) = D(0,t+2)N ( (IxD(o,t,o)) 2

rNto

In (2Q420)Y 12,2y

where N is the standard normal distribution function and D(0,p) is the price at time
0 of a zero coupon bond which at time 0 has time to maturity ¢ € IRy .

PRrOOF:
See Appendix C. O

This formula is a special case of the well known general zero bond option formula for
Gaussian interest rate models (see e.g.[Jam87], [EKR89], [HIM92]). It should be clear
that similar limit arguments as the above can also be made for European options on
other underlyings that can be considered in the Ho/Lee framework.
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3.2 Limit Distributions of the Short Rate in the Ho/Lee
Model

It follows from Heath, Jarrow and Morton [HJM90] that under the transition proba-
bilities p the continuously compounded short rate at some time ¢ in the Ho/Lee model
converges in distribution to a normally distributed random variable with expectation
r(0,t) + %tzaz and variance to?. Under the forward measure we have

Proposition 3.7 Under the forward measure as A — 0
ra(m, 1, Jz) N (r((),t); O'Qt) .

PRrOOF:
See Appendix D. a

This agrees with a result obtained by El Karoui/Rochet [EKR89] in a continuous time
setting.

4 Why the Buhler/Schulze Models are essentilly
equal to the Ho/Lee Model

4.1 The Structure of the Biihler/Schulze Models

Biihler and Schulze propose modifying the Ho/Lee model by assuming that processes
of prices of zero coupon bonds can be represented on a trinomial [BS92], [BS95] or
quattronomial [BS93] lattice. Since the quattronomial model is the more general we
consider this first. As we have done in the case of the Ho/Lee model we shall also
present this model in the framework of a lattice with arbitrary step size A. Similar
to Section 2 we introduce two independent stochastic processes (J(k))

m ) mefo,.. .M} =
m (k) . (k) 2/2\5/1 1~ p(F) .

(Zizl z; )mE{O ..... 2 with z; {0 k € {1,2} which count the number of

upward shocks of type (k) to zero coupon bond prices that have occurred up to time

Nl—p(k) ?
mA. The processes of prices of zero coupon bonds on a quattronomial lattice with

step size A can now be denoted by:

(DA(m, n,J1 j2)

?Ym m)) m € {0,1,..., M —n}
n € {0,1,..., M}

In order to model upward and downward shocks of the two kinds Biihler and Schulze
introduce two pairs of perturbation functions:

1

) =
(k) _p(k)) gk €
P+ (1= p®) o, £e{0,1,..., M}
NOL ke {1,2}
k)*
h(A) (f) = £ (k) €
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From every vertex (m,jM. j®), m € {1,...,M — n} of the quattronomial lattice
prices of zero coupon bonds can move in four directions according to

" . . Da(m —1,n+1,0 ;@) 2
Da(m,n, iV +1,7@ +1) = — - o Oy BP (n
A( J J ) DA(m— 1717]-(1)7]-(2)) A ( ) A ( )

- _ Dalm—=1,n+1,50 ;@)

Da(m,n,jM, ;@ — RO P (n)
A( J J ) DA(m—l,l,j(l),j@)) A ( ) A ( )

From these recursive formulae we can again obtain a recursion for the continuously
compounded yield of a zero coupon bond with time to maturity A:

ks
A
(In A (2) + (1 = 2?) In 6%

ra(m, 1,30 + 200,70 +20) = ra(m, 1,50, 5%)
1
A

N ing (o®) A = V7 [L () 1,6 in simi
ow setting (0‘ ) A:=VP [Z za? Inéx ] we obtain similar to the Ho/Lee model

(MAS
5X€) =exp{ — 7 .
pO = )

Given these specifications we obtain the following closed form solution for the family

(In A% (1) + (1 = =) 65

of processes of prices of zero coupon bonds Da, which is a generalization of equation

(3).

(DA(m7n7J’r()’L1)7JT()’L2))) m € {0,1,..., M —n} =
n €40,1,..., M}
DA(O, m +n,0) 2 m hgk)(m +n—1) (k) n(m—J)
D II {II ") ; oA (10)
A(O,m,()) k=1 \:i=1 hA (m - l) me§0,1 ..... M}—n}
n € {0,1,..., M

This completes our exposition of the quattronomial model by Biihler and Schulze.

To introduce briefly the trinomial model by Biihler and Schulze assume we are given
0 ~ 1-p%_—p®
g 1 2
3) wd

random variables z(2) < { 1 ~ p(23) . Then the recursive formula for the

development of prices of zero coupon bonds proposed by Biihler and Schulze in their
trinomial model can be denoted by

N Da(m —1 1,j
DA(m,n,]—FZS)) — A(m 7n‘|’ 7]) hf)(n

)5(3)2—2573{)
DA(m - 17 17])

A

where | (11)

" A () e
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We almost immediately have

Proposition 4.1 The trinomial model by Biihler and Schulze is a special case of their
quattronomial model.

Proor: B ,
Define 22(3“) w OlNle(p(?a) and 22(36) w OlNle(p(g)b) and set 22(3) = 22(3&) + 22(36). Hence
p? = ptp,
p(23) = pBI(1 — pB) 4 (1 — pByp(H)
L=pi =pi? = (1= pP) (1= p™).
Further set 52)5 = 5(;)5 = 5?5 and put
W = 1L = 1 g
P 4 (1= p) (88))
e = 1 = 1

g .
P+ (1= p) (6)

It is easy to see that with these definitions equations (9) and (11) are equal. O

Consequently we shall from now on confine our interest to the quattronomial model.

We have

Proposition 4.2 [n the quattronomial model by Bihler and Schulze processes of log-
arithms of prices of zero coupon bonds for all times to maturity are affine transfor-
mations of the short rate process.

PRrOOF:
The result immediately follows from equation (10). For the process of the short rate
we have

(TA(m 1,JWM g2

P Tm o m ))me{o,...,M—l} o

1 ( Da(0,m,0) 2 (k) ! (k)
— [ In = 2 ~ N Inh + (m—JP)In s 12
(A DA(()? m —I_ 17 0) k=1 8 s mE{O M—l} ( )

.....

Using this we can replace the stochastic process

2
(Z(m — JT(f)) In 5X€))
meq0,....M—1}

k=1

which drives the processes of the logarithms of prices of zero coupon bonds by an
affine transformation of the short rate process to obtain
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P m Y m

(lnDA(m n, JW J(Q))) me{01,. .. M—n} —

n €40,1,..., M}
D
(n (—ATA(m717Jm > “'m Zlnh 1 A(07m70) )
DA(O,m +1,0)
. (13)
Da(0 0) | &, [ ad :
—|—1H AN(7m+n7 )_I_Zln H A((k:n—l_nl)
DA(O,m,O) k=1 =1 hA (m - l) me{0,1,..., M —n}
n €{0,1,..., M}
This proves the claim. a

REMARK:

a) This result shows that contrary to what has been claimed by Biihler and Schulze
their quattronomial model is not a two-factor but in fact a one-factor model the
driving factor being as in the Ho/Lee model the continuously compounded short rate.

4.2 Limit
Results for Continuous Trading in the Biihler/Schulze
Models

As may be suspected all the limit results that hold in the simple Ho/Lee model also
hold in the versions of this model proposed by Biihler and Schulze. It is actually
sufficient to give a generalized version of Proposition 3.1 to see that all the arguments
in Section 3 can be applied analogously in the Biihler/Schulze framework:

Proposition 4.3 Define l%)(m,j(k)) and ng)(m,j(k)), k € {1,2} analogously to the
definitions in Proposition 3.1. Then the time zero value of the Arrow—Debreu secu-
rity AD i withm € {1,...,M —1} and j® € {0,....,m}, k € {1,2} in the

quattronomial lattice with step size A is given by

m7](1)7

VA(AD,, ;0 ;2,0,0) =

PROOF:

The proof is parallel to the proof of Proposition 3.1 the only difference being that in
general the verteces in the Biihler/Schulze lattice have four predecessors instead of
two in the Ho/Lee model. Therefore, in the induction step of the proof we need to
consider the following portfolio of Arrow— Debreu securities:

DA(m, 1,j(1),j(2)) (1 - p(l)) (1 - p(2)) units of AD,, ) ;2
DA(m, 1,;M— 1,j(2))p(1) (1 - p(2)) units of AD,, ;1) ;0
Da(m, 1,70 5@ — 1)1 —pM) p®  units of AD,, ) 2y

DA(m, 1,7 —1,;®_ 1)p(1) p?  units of AD,, i)y j2q
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The claim then immediately follows. a

From this proposition it is immediately clear that all the arguments from Section 3 can
be applied analogously if one keeps in mind that for every sum of independent random
variables in the Ho/Lee model one now has two independent sums of independent

random variables. Defining o? := (0(1))2 + (0(2))2 one obtains the same continuous

time call option formula in the Biihler/Schulze models as in the Ho/Lee model.

It is also totally obvious that the limiting distributions of the continuously com-
pounded short rate in the Biihler/Schulze models are the same as in the Ho/Lee
model.

In sum the results in this section show that the Biihler/Schulze models are but minor
generalizations of the Ho/Lee model which in discrete and continuous time preserve
all the essential characteristics and features of this model.

5 Conclusion

In this paper we have generalized the limit argument by HJM concerning the Ho/Lee
model in two respects.

First, we have shown how to construct limit arguments under the forward measure. In
particular we have derived the continuous time distribution of the short rate and the
continuous time limit of formula for a European call on a zero coupon bond. Clearly,
the ideas developed in this context would carry over to the analysis of a number of
other derivatives that can be considered in the Ho/Lee framework.

Second, we have analyzed multinomial generalizations of the Ho/Lee model that have
been proposed by Bihler and Schulze. We have shown that they are essentially
equivalent to the Ho/Lee model.
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A Proof of Proposition 3.3

In order to prove part (a) of Proposition 3.3 we need the following lemma, which we
shall prove later.

Lemma A.1
wa(m, j)Ox +wa(m,j—1) = wa(m +1,7),

where (m,j) is a vertex of the binomial lattice.

Given this Lemma we can prove part (a) of Proposition 3.3. The proof is given by
induction.

It is easy to see that the probability distribution for Y(!) given in the proposition is
correct for m = 1. Now assume that part (a) of Proposition 3.3 holds for all m < m
and consider

Yfg1-|21 = Z ‘HJ;&I)
k=0
then for 0 < j < m + 1 we have
Py =g = Py =i Ayl =04 Py = -1yl = 1)

= (1= (TLati = 1)) waton,d) (1= ph st 53

b1 — )yl (f[ ha(i — 1)) wa(m, j — 1) pha(m)

= 0= (T AaG = 1)) lastm = 1) + wa(m.) 5]

and by the above lemma
Al

= p/(l—p)t (l;[l hA(i—l)) wa(m +1,7).

As the problem is trivial for j = 0 or 5 = m + 1 we only have to prove the lemma to
complete the proof of part (a) of Proposition 3.3.

ProoFr or LEMMA A.1:
The problem being trivial if j — 1 > m or if j = 0 we shall concentrate on the case
where 0 < 5 < m. By definition we have

U= 4o (m, )68

wa(m +1,7) =wa(m,j —1)65~
So it is sufficient to show that

U oa (m, )68 = wa(m,j — 1) + wa(m, )65 .

wA(mvj - 1)52
The proof is given by induction. It is easy to see that for m = 0 we have

wa(1,0) = wa(0,0)62 40 = 0+ wa(0,0) = wa(l,1) = 1.



15

Now assume the lemma to hold for wa(m,j), m < m. Then for m + 1 we have

wa(m. j — 1) + wa(m, j) 6%

wa(m,j—1) + (walm— 1,5 = 1) 6870 4ws(m —1,5) 60 V) o2
by the definition of wa(m, j)

wa(m,j—1) + (walm—1,j = 1) 637 — wa(m —1,j — 1) 63’
twalm—1,j = 1) 857 + wa(m—1,7) 88" ™) 63

wa(m,j— 1) + (walm — 1,5 = 1) 637 — wa(m —1,j — 1) 63

t+ [walm =1, = 1) + wa(m —1,7) 88" 637) &%

wa(m,j—1) + walm—1,j —1) 63" — wa(m—1,j —1)67~
+wa(m, j) 68~

by the induction assumption

walm —1,7 —2) 607072 Ly (m—1,5 — 1) =01
+wa(m—1,7 = 1) 63" — wa(m —1,j = 1) 837 + wa(m, )83~

by the definition of wa(m,j — 1)
(wa(m = 1,5 = 2) + walm — 1,5 = 1)637") 827 4 wa(m, j) 637

(-1

wal(m, j —1)88 9™ 4 wa(m, j)s3 7

by the induction assumption.

Together with the definition of wa(m + 1, 7) this proves the lemma and hence part
(a) of Proposition 3.3.

The proof of part (b) of Proposition 3.3 is similar to the above. However, the induction
is made over m*. Notice also that nothing like the above lemma is needed because
the definition of wa can now be immediately applied. This completes the proof of
Proposition 3.3.
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B Proof of Proposition 3.5

It is sufficient to check the Liapunoff-Condition for 6 = 1 (see Bauer [Bau74], p.268).

PROOF OF PART (a) OF PROPOSITION 3.5:
The Liapunoff-Condition takes the following form:

m-l pp pha(k N(A)
(z;? Vel )2
m—1 3
N(A) = > ha(k)[p(1 = pha(k))® + (1 —p) 612" p* hix (k)]
k=0
1 2

using that 1 < ha(k) < ]; and 0 < 5fA2 <1
m— 11 B m

< X o=+ -pp? < —
k=0 p p

3
2

D(A) = (T:Z::_:phA(k) —pzhi(k))

using Taylor expansions of ha and A% around & = 0

m—1 1 - a m—1 1
= (p—1°) + 4 Polp—2p") AT Yk + o(A3)
k=0 p k=0
( " )

Hence

1
lim L(A) < lim [p =0

2 320 ()% ((p = 97) + o(1)

PROOF OF PART (b) OF PROPOSITION 3.5:
The Liapunoff-Condition takes the following form:

NI

Sise By = phalin + = (k+ 1)) I

lim L(A) = lim - T
o pha(i + 7 — (k+1)) — phAG0 + 7 — (k+1)))°

A—0 A—0 (

By the same procedures as employed in the proof of part (a) of Proposition 3.5 it can
be shown that this expression also converges to zero as A goes to zero.

This completes the proof of Proposition 3.5.



C Proof of Theorem 3.6

In view of equation (8) and Proposition 3.5 we need to calculate

as — B» [V

AL,
~ Ve [Yﬁgk)]
Let us first consider the case &k = 1.

(a) We first deal with (—1) times the numerator of the above expression:

(i) ~
Qi e
= Lﬁ; (r %(m—k)a—lﬁ(m—k)%?)] -
Lﬁ; (r A¥ (i + it — K)o — %N(m%—k)?a?)] +o(1)
= AR () + (42— () ) p(1 - p) (061 4 of1)
(i)
A gpm
= Al [7:2; (1 + A%k @a + %A?’ ;2 p2p 02) 0(1)]
a2l —p)2t2(1n51) )
(i)

(i) — A%ni Inéy + (id) - (72 In ;)

((t—l—:z;)2t — (t—l—:z;)t2) p(l —p)(Inéy)* — %:L’p(l —p)t* (In&;)* + o(1)
(In6)*p(L—p) [(t+2)*t — (t+2)1* — 21*] + o(1)

(In6)’p(L—p) [(* + 2w + 2®)t — £ — P2 — 2’| + o(1)
(Iné)’p(L—p) [(2672 — 222 + ta?] + o(1)

(1n51)2p(1 —p)t:z;2 + o(1)

NN =N N =N

= 50215:1;2 + o(1)

17
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Thus for (—1) times the complete numerator we have

K D(0,7,0) 1
1 - 9 9 _I__ 2t 2_|_ 1
H{Dm +~,o>} 37 el

(b) The denominator:

AZiIn 6, (mf(p ha(k) — thi(k))) 2

= Anlné; (Aﬁil(p_pz) + 0(1)) 2 = Amnfsl(tp(l —p) + 0(1))%

(c) Hence we have for the case k = 1:

as — v [V

Am
- ve [y
. In {3572_&% } + = 0' 2ta? + 0(1) g?t(j_; } + —02t:1;2
= lim — ;
A0 2 :1;t2a

Anln é, (tp(l —-p) + 0(1))

Let us now consider the case k = 2.
(a) Again we deal with (—1) times the numerator:

(i)

AZalnd Y pha(m+n—(k+1))

k=0

= Anlné (pﬁlA% — p(1 —p) ((t—l—:z;)t — %tz) Iné; + 0(1))

= Alpmnlné — p(1—p)An ((t—l—:z;)t — %tz) (Iné1)* + o(1)

((t+2)t — (t+2)82) — a(t+a)t + %m?) + o(1)

1 1
2+ §x2t —xt? —t2? + §xt2) + o(1)



19

(b) The denominator:
Similar to the considerations for £ = 1 we obtain:

[T

A%ii In 6, (ﬁf(phA(m +n—(k+1)) — p*hi(m+n—(k+ 1))))

k=0

(I

= An(lnéy) (tp(L —p) + o(1))

(c¢) Hence we have for the case k = 2

ATy -
v Y]
K D(0,7,0) 1 9, 9 —_—
= lim _n{fapasn) = 5t + o) _ i) - gotta?
A—0 Aﬁ(h’l&l tp(l _p) _ 0(1))5 rlzo

The theorem then follows from equation (8) and Proposition 3.5.

D Proof of Proposition 3.7

The continously compounded short rate of interest at time mA and state j is given

|

|
| =
—

A
) i S — v
n{ a(0,m + 1’0)} + Inha(m) + ln{exp{—gA ( Vi)

i +1,0) i o A3 (i — EP[Y))
00 } + Inha(m) —I—IH{eXp{— =) }H

|
|
| —
| — |
—
=
i
L
S
o

Da(0,741,0) .
{5 oA (i — E?[Y V)
= - 2(0,/,0) + —In{pexpq— m
A A
(1
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Da(0,m+1,0)
R PNCE) } — r(0,1)

Am = A
(i)
For A2 (Yfg) — Ep[Yfgl)]) the Liapunoff-condition takes the form
La) = I B AR = pha(B)P] S BRIyl — pha(k)P]
(Cis ave[y))? (i velnn)?

which is equal to the Liapunoff-condition in Appendix B. So we can conclude that
for A =0 )
Ax (g - prp)

veAsyY)

will have a standard normal distribution.

However,

N[

ve[aby) = a (m@ )+ aat 2D 0<A%>) |

which yields
lim AV =1p(1 = p).

A—0

So we can conclude that as A — 0

AR (v = EPyY]) s N0, tp (1 = p))

In<ex -7 =Iné
{p{ p(l—p)}}

lim V?[ra(m, 1,.)] = t(In§)*p(1 = p) = to™

Since

we can conclude that

(iii)

Finally we have to show that

oA (m — EP[yV AL iy )
im%ln{pexp{ ( [m])}—l—(l—p)exp{—AE—[Ym]}}zo

Ay p(1—p) p(1—p)

To do this we define

N(k) = p+(1 +p)eXp{—ﬂ}
p(1 = p)
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L P
S ]

exp{A} = exp

exp{B} := exp {—LAE Z}

In{C} = In{pexp{A} + (1 —p)exp{B}}
Obviously we have
N(k)]s=0
> lo=o
exp{A}|,=0
expl Bl =
{Clomo =
Clo=o =

Il
3 T
<

_ O = =

With these definitions our problem can be expressed more succinctly as follows
.1 !
il{n@ KlH{C} = 0.

As we shall attack this problem by using a Taylor expansion of In{C'} around ¢ = 0
we need a number of derivatives.
First order derivatives:

IN (k) (1—p)AZk A ko
Iz T - {_ p(l—p)}
az B m—1 palgc(rk)
do — (N(k))?

dexp{A} MmAT — AT Y YN LM

— 9 exp{A} = —— -exp{4
o (1l —p) =g eetd)
LAY oA
0exap{B} _ L 08 exp{B}:g—B exp{B}
o p(1—p) 7
oin{C}y _ pTRA 4 (1-p)repE 2
do C ¢
We obtain:
ON(h) (1 —p)Azk
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0 ] 2
a—z|5:0 = p(l —p)Azk
g k=0
aexp{A}| B mAz(1 — p)
do " (i p)
aexp{B}| _ —mAZp
2 p(l =p)
dIn{C} B aC B
80' |cr:0 — 07 a—o_|cr:0 — 0

Second order derivatives:

92N (k) N { A%ak}
expy ———————

Jdo?

Py N (8

Jdo? = N4
DY EEDY)
0? A - [2A2 3 T oAz 802] oA\
76;]@2{ } = exp{A} + (a—) exp{A}
o p(1 —p) o
9*A 9A\’
= wexp{A} + (8_0) exp{A}
DY EEDY)
0? exp{B - [2&% +oAT5S ] 0B\
76;1)2{ } = exp{B} + (a—) exp{B}
o p(1 —p) o
9*B OB\’
= 3.2 exp{B} + (8—0) exp{B}
2 2 2 ex 2 ex 2
Pim(c) 20— (%) [pruEhl g - pZenBl] o (%)
Jdo? - or; - (2
We have:
aZN(k) A3k2 82 Z m—1
lo=0 = ; lo=o = (=3 +2p) > A%?
60-2 p 60-2 k=0
o explA) e A )
—————— =g = —2A k4 ————
Jdo? lo=o0 kz_% p(1 —p)
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0% exp{B} ml m2A3p?
TP = A3 S k4
do? o= ,;) p(1—p)
9% 1n{C} ( S mAAY( —p)z)
T = pf—2A Al Sl
oz =0 ,;) p(1 = p)

m—1 m2A3p2
+(1 —p) (—2A3 k+ )
,;) p(1—p)

= mA®

Now we can transform our problem to give

o1 o1 JdlnC 19%InC ,

Amx e = k:%z[“nm'””(—aa )'ﬂ““ﬁTﬂ om0 *"Wl
RTINS ]_

= lim A [QmA o+ o(A) =0

A—0

Thus we have proved that as A goes to zero ra(m, 1,.) converges in distribution to a
normally distributed random variable with mean r(0,¢) and variance to.
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