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Abstract

The forward measure in the discrete time Ho/Lee model is derived and passages to

the continuous time limit are carried out under this measure. In particular the con-

tinuous time valuation formula for call options on zero coupon bonds is obtained as a

limit of its discrete time equivalent as well as the continuous time distribution of the

continuously compounded short rate.

Finally it is shown that the trinomial and quattronomial generalizations of the Ho/Lee

model by B�uhler and Schulze are essentially equivalent to the Ho/Lee model as con-

cernes their discrete time properties and their continuous time limits.

Key words: Ho/Lee model, forward measure, continuous time limit, trinomial and

quattronomial models.
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2 2. THE STRUCTURE OF THE HO/LEE MODEL

1 Introduction

The prominence of the Ho/Lee{model [HL86] stems from the fact that it represented

the �rst purely arbitrage{based approach to pricing interest rate derivative securities.

While Ho and Lee have not considered continuous time limits of their model Heath,

Jarrow and Morton (HJM)[HJM90] provide limit results for the distribution of in-

stantaneous forward rates under the risk{neutral probability measure.

In this paper we derive the continuous time limit of the discrete time call{option

formula for zero coupon bonds. It turns out that this limit is naturally calculated

under the forward measure. Due to the fact that interest rates are stochastic this

measure di�ers from the risk neutral measure thus causing considerable di�erences

between the limit arguments presented in this paper and the one by HJM or Cox{

Rubinstein [CR85] in the Black{Scholes case. We also derive the continuous time

distribution of the short rate under the forward measure.

Finally we consider generalizations of the Ho/Lee model proposed by B�uhler/Schulze

[BS92],[BS93],[BS95] and show that in every interesting respect these alleged gener-

alizations do not go beyond the original Ho/Lee model. In particular all the models

proposed by B�uhler/Schulze are one{factor models driven by the stochastic process

of the short rate. Moreover, all the limit results obtained in the Ho/Lee framework

carry over to the B�uhler/Schulze models.

In the second section of the paper, we review the Ho/Lee model and establish necessary

notation. The third section contains our limit results for the Ho/Lee model, the fourth

contains our analysis of the B�uhler/Schulze models while the �fth concludes.

2 The Structure of the Ho/Lee Model

Consider a �xed time interval I := [0; T ]. Assume that this time interval is divided

into M � 1 sub{intervals of length � := T=M and that trading in zero coupon bonds

takes place at times f0;�; 2�; : : : ;m�; : : : ; T � �g. At time 0 one observes the

prices of a given set of zero coupon bonds maturing at f�; : : : ;m�; : : : ; Tg. The

central assumption in the Ho/Lee model [HL86] is that the prices of these securities

can undergo upward and downward shocks such that the stochastic processes of zero

coupon bond prices can be represented on a binomial lattice with step size �. For

a lattice with this step size we denote by ~D�(m;n; j) the price in vertex (m; j) of

a zero coupon bond with time to maturity n� where n 2 f0; 1; : : : ;M �mg. Here

j 2 f0; 1; : : : ;mg denotes the number of upward shocks that have occured up to time

m�. Now take a family (zi)i2IIN of independent random variables that are 1 with

probability p and 0 with probability 1� p and de�ne random variables Jm :=
Pm

i=1 zi.

With this notation we can denote the family of processes of prices of zero coupon

bonds with times to maturity n�; n 2 f0; 1; : : : ;Mg on a binomial lattice with step

size � by: �
~D�(m;n; Jm)

�
m 2 f0; 1; : : : ; M � ng
n 2 f0; 1; : : : ; Mg
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In order to model upward and downward shocks to zero coupon bond prices Ho and

Lee introduce functions h�(�) and h��(�) of time to maturity. For m > 0 they then

specify the evolution of these prices recursively by

upward shock:

~D�(m;n; j + 1) :=
~D�(m� 1; n+ 1; j)

~D�(m� 1; 1; j)
h�(n)

downward shock:

~D�(m;n; j) :=
~D�(m� 1; n+ 1; j)

~D�(m� 1; 1; j)
h��(n)

(1)

For � = 1 and T 2 IIN Ho and Lee show that under the assumption of absence of

arbitrage opportunities and given the requirement that it must be possible to represent

the price processes of zero coupon bonds on a binomial lattice the functions h1 and

h�1 are uniquely determined and given by

h1(�) =
1

p + (1� p) �
�
1

h�1(�) =
�
�
1

p + (1� p) �
�
1

� 2 f0; 1; : : : ; Tg ; (2)

where �1 2 (0; 1) is an exogenous constant that expresses the variability of interest

rates and bond prices.

To obtain a generalization of these perturbation functions for an arbitrary step size �

replace �1 by �� 2 (0; 1) in equation (2). The way in which �� depends on � can be

determined as follows. Denote by �2� the variance of the continuously compounded

yield of a zero coupon bond with time to maturity � conditional on Jm over a time

interval of length � . Then using equation (1) and the modi�ed equation (2) we have

�2� := V p

�
� 1

�
ln ~D�(m+ 1; 1; Jm + zm+1)

���� Jm
�
=

1

�2
p(1 � p) (ln ��)

2:

Remembering that �� 2 (0; 1) this yields

�� = exp

8<
:� ��

3
2q

p(1 � p)

9=
; :

This generalization of the Ho/Lee perturbation functions has previously been obtained

in a di�erent way by Heath, Jarrow and Morton [HJM90].

Given these speci�cations we obtain the following closed form solution for the family

of processes of prices of zero coupon bonds ~D�.
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�
~D�(m;n; Jm)

�
m 2 f0; 1; : : : ;M � ng
n 2 f0; 1; : : : ;Mg

=

 
~D�(0;m+ n; 0)

~D�(0;m; 0)

 
mY
i=1

h�(m+ n � i)

h�(m� i)

!
�
n(m�Jm)

�

!
m 2 f0; 1; : : : ; M � ng
n 2 f0; 1; : : : ;Mg

(3)

This formula can easily be proved by induction. It almost immediately gives rise to

Proposition 2.1 In the Ho/Lee model processes of logarithms of prices of zero coupon

bonds for all times to maturity are a�ne transformations of the short rate process.

Proof:

The proof is contained in the proof of Proposition 4.2. 2

Finally it is important to notice that the way we have presented the Ho/Lee model

the probability measure p is the martingale measure in the sense that for every m 2
f1; : : : ;Mg and n 2 f0; : : : ;M �mg we have

~D�(m� 1; n + 1; Jm�1) = Ep
h
~D�(m� 1; 1; Jm�1) ~D�(m;n; Jm) jJm�1

i
:

More generally, given a binomial lattice with step size � on which the price processes

of zero coupon bonds are as speci�ed above, denoting by V�(�(J ~m);m; Jm) the price

on this lattice in vertex (m;Jm) of a contingent claim with a single payo� �(J ~m) at

time ~m� := [t=�]�, one necessarily has by absence of arbitrage opportunities

V�(�(J ~m);m� 1; Jm�1) = Ep
h
~D�(m� 1; 1; Jm�1)V�(�(J ~m);m; Jm) jJm�1

i
(4)

for m 2 f1; : : : ; ~mg, as shown for this particular case in [HL86].

3 Limit Results for Continuous Trading in the

Ho/Lee Model

3.1 The Derivation of the Call Option Formula in the Ho/Lee

Model

3.1.1 The Formula in Discrete Time

Let C�( ~m; ~n;K) be a European call option with exercise price K and expiration date

~m� on the zero coupon bond that at time ~m� has time to maturity ~n�, where

~n� := [x=�]� for x 2 [0; T � t]. Its payo� is given by
h
~D�( ~m; ~n; J ~m) �K

i+
. To

determine the price of this option we �rst consider Arrow{Debreu securities whose

payo� in some vertex (m; j) in the binomial lattice is de�ned by:

ADm;j(�; �) =

(
1 if � = m ^ � = j

0 else
(5)

Using equation (4) we can determine the value of such a derivative security in the

binomial model of zero coupon bond prices. We have
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Proposition 3.1 De�ne:

l�(m; j) :=

(
0 if m < j _ j < 0

�
m�j
� else

w�(m; j) :=

8>>>>><
>>>>>:

1 if m = j = 0

0 if m < j _ j < 0

w�(m� 1; j � 1)l�(m� 1; j � 1) +

w�(m� 1; j)l�(m� 1; j)
else

Then the time zero value of the Arrow{Debreu security ADm;j with m 2 f1; : : : ;M�1g
and j 2 f0; : : : ;mgin the binomial lattice with step size � is given by

V�(ADm;j; 0; 0) = ~D�(0;m; 0) pj (1� p)m�j
 

mY
i=1

h�(i� 1)

!
w�(m; j) : (6)

Proof:

The proof is given by induction.

First consider AD1;1. From equation (4) its value at time 0 is given by ~D�(0; 1; 0) p.

This result is also obtained from equation (6) for m = j = 1. Similarly it is easy to

see that for m = 1 and j = 0 equation (6) yields a value ~D�(0; 1; 0) (1� p) for AD1;0,

which is also the value obtained from equation (4).

Now assume that equation (6) holds for all the Arrow{Debreu securities up to some

period �m and consider AD �m+1;j� with �m + 1 > j� > 0. Again by equation (4) the

values of this security in vertices ( �m; j�) and ( �m; j� � 1) are

V�(AD �m+1;j�; �m; j�) = ~D�( �m; 1; j�) (1 � p)

V�(AD �m+1;j�; �m; j� � 1) = ~D�( �m; 1; j� � 1) p :

In every vertex ( �m; j); j 6= j� or j� � 1 the value of AD �m+1;j� is zero. Now consider

a portfolio consisting of ~D�( �m; 1; j�) (1 � p) units of AD �m;j� and ~D�( �m; 1; j� � 1) p

units of AD �m;j��1. As this portfolio is worth the same as AD �m+1;j� in every vertex

( �m; j) ; j 2 f0; : : : ; �mg by absence of arbitrage opportunities it must also be worth

the same as AD �m;j��1 in vertex (0; 0). Therefore, we have

V�(AD �m+1;j�; 0; 0)

= ~D�( �m; 1; j�) (1 � p)V�(AD �m;j�; 0; 0) + ~D�( �m; 1; j
� � 1) p V�(AD �m;j��1; 0; 0)

= ~D�(0; �m+ 1; 0) pj
�

(1� p) �m+1�j�
 

�m+1Y
i=1

h�(i� 1)

!

�
l�( �m; j

�)w�( �m; j�) + l�( �m; j� � 1)w�( �m; j� � 1)
�

= ~D�(0; �m+ 1; 0) pj
�

(1� p) �m+1�j�
 

�m+1Y
i=1

h�(i� 1)

!
w�( �m+ 1; j�)

As it is easy to see that a similar argument can be made if j� = �m+ 1 or j� = 0 this

completes the proof. 2
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Remarks:

a) The basic idea behind this proof is, of course, the well known concept of forward

induction (see [Jam91], [SS96]).

b) It is interesting to compare equation (6) to the pricing formula for Arrow{

Debreu securities as we have de�ned them in equation (5) that would obtain in the

Cox/Rubinstein model for stock options [CR85]. Cox/Rubinstein assume short term

interest rates to be constant and equal to some value r�. Hence, ~D�(0;m; 0) =

e�r�m�. More importantly the coe�cient w�(m; j) would simply be the binomial

coe�cient
�
m

j

�
in Cox/Rubinstein, a feature which facilitates the explicit valuation of

path dependent securities in their model and which is destroyed through stochastic

interest rates.

c) By absence of arbitrage opportunities, the term multiplying ~D�(0;m; 0) in (6) can

be interpreted as a probability measure di�erent from but equivalent to the original

probability measure. We shall refer to this measure as the Arrow{Debreu{ or (as the

term is more common in the literature) the forward{measure. In continuous time this

measure was �rst introduced by El/Karoui/Rochet [EKR89] and Jamshidian [Jam87].

The example of the discrete time model Ho/Lee model brings out clearly the link

between the forward measure and Arrow{Debreu prices.

Given the Arrow{Debreu prices it is easy to state a closed formula for zero coupon

bond options in discrete time.

Corollary 3.2 The time zero value of C�( ~m; ~n;K) is given by

V� (C�( ~m; ~n;K); 0; 0) =

~D�(0; ~m+ ~n; 0)
~mX

j>a�

 
~mY
i=1

h�( ~m+ ~n� i)

!
�~n( ~m�j) pj (1 � p) ~m�j w�( ~m; j)

�K ~D�(0; ~m; 0)
~mX

j>a�

 
~mY
i=1

h�(i� 1)

!
pj (1� p) ~m�j w�( ~m; j)

(7)

where

a� =

ln

 
~D�(0; ~m+ ~n; 0)
~D�(0; ~m; 0)K

~mY
i=1

h�( ~m+ ~n� i)
h�( ~m� i)

!

~n ln ��
+ ~m

Proof:

Follows immediately by the requirement of absence of arbitrage opportunities, the

de�nition of a European call option, equation (3), and Proposition 3.1. 2
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3.1.2 The Continuous{Time Limit of the Discrete Time Formula

We determine the limit of the value of the call option in equation (7) in two steps.

First we show how the central limit theorem can be invoked, second we calculate the

arguments at which the standard normal distribution must be evaluated.

Proposition 3.3 (a) Let

y
(1)

k =

(
1 � p h�(k)

0 � (1� p)h�(k) �
k
�

k 2 N0

be independent random variables and set Y (1)
m :=

Pm�1
k=0 y

(1)

k then

P p
h
Y (1)
m = j

i
=

 
mY
i=1

h�(i� 1)

!
pj (1� p)m�j w�(m; j) :

(b) Let

y
(2)

k =

(
1 � p h�(m+ n� (k + 1))

0 � (1� p)h�(m+ n� (k + 1)) �
(m+n�(k+1))
�

k 2 f0; : : : ;m+ n� 1g

be independent random variables and for 0 < m� � m set Y
(2)
m� :=

Pm��1
k=0 y

(2)

k then

P p
h
Y

(2)
m� = j

i
=

 
m�Y
i=1

h�(m+ n � i)

!
�
(m+n�m�)(m��j)
� pj (1� p)m

��j w�(m
�; j) :

Proof:

See Appendix A. 2

Note that if m� = m = ~m and n = ~n in part (b) of the proposition we obtain exactly

the type of expression multiplying D�(0; ~m+ ~n; 0) in equation (7). This means that

by Proposition 3.3 we can now interpret the sums in equation (7) as complementary

distribution functions of the random variables Y (2)
m and Y (1)

m respectively, which in turn

are both sums of independent but no longer identically distributed random variables.

Using Proposition 3.3 we have

Corollary 3.4

Ep[Y (1)
m ] =

m�1X
k=0

p h�(k)

Ep[Y (2)
m ] =

m�1X
k=0

p h�(m+ n� (k + 1))

V p[Y (1)
m ] =

m�1X
k=0

(p h�(k) � p2 h2�(k))

V p[Y (2)
m ] =

m�1X
k=0

(p h�(m+ n� (k + 1)) � p2 h2�(m+ n � (k + 1)))

where V p is the variance operator under p.
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Proof:

Immediate from Proposition 3.3. 2

This result enables us to state

Proposition 3.5 As �! 0

Y
(i)

~m � Ep[Y
(i)

~m ]q
V p[Y

(i)

~m ]

D�! N (0; 1) i = 1; 2:

Proof:

See Appendix B. 2

Now we can return to the call option formula in discrete time as given in equation

(7). We can restate this formula in the following way:

V� (C( ~m; ~n;K); 0; 0) =

~D�(0; ~m+ ~n; 0)

0
@1 �Ep

2
4Y (2)

~m �Ep[Y
(2)

~m ]q
V p[Y

(2)

~m ]
� a� � Ep[Y

(2)

~m ]q
V p[Y

(2)

~m ]

3
5
1
A

�K ~D�(0; ~m; 0)

0
@1� Ep

2
4Y (1)

~m � Ep[Y
(1)

~m ]q
V p[Y

(1)

~m ]
� a� � Ep[Y

(1)

~m ]q
V p[Y

(1)

~m ]

3
5
1
A

(8)

Having obtained this version of the discrete time valuation formula we are now in a

position to give its continuous time limit.

Theorem 3.6

lim
�!0

V� (C( ~m; ~n;K); 0; 0) = D(0; t + x)N
0
@ ln

�
D(0;t+x;0)

KD(0;t;0)

�
+ 1

2
x2�2t

x
p
t �

1
A

�D(0; t)KN
0
@ ln

�
D(0;t+x;0)

KD(0;t;0)

�
� 1

2
x2�2t

x
p
t �

1
A

where N is the standard normal distribution function and D(0; ') is the price at time

0 of a zero coupon bond which at time 0 has time to maturity ' 2 IR+.

Proof:

See Appendix C. 2

This formula is a special case of the well known general zero bond option formula for

Gaussian interest rate models (see e.g.[Jam87], [EKR89], [HJM92]). It should be clear

that similar limit arguments as the above can also be made for European options on

other underlyings that can be considered in the Ho/Lee framework.
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3.2 Limit Distributions of the Short Rate in the Ho/Lee

Model

It follows from Heath, Jarrow and Morton [HJM90] that under the transition proba-

bilities p the continuously compounded short rate at some time t in the Ho/Lee model

converges in distribution to a normally distributed random variable with expectation

r(0; t) + 1

2
t2�2 and variance t�2. Under the forward measure we have

Proposition 3.7 Under the forward measure as �! 0

r�( ~m; 1; J ~m)
D�! N

�
r(0; t); �2t

�
:

Proof:

See Appendix D. 2

This agrees with a result obtained by El Karoui/Rochet [EKR89] in a continuous time

setting.

4 Why the B�uhler/Schulze Models are essentilly

equal to the Ho/Lee Model

4.1 The Structure of the B�uhler/Schulze Models

B�uhler and Schulze propose modifying the Ho/Lee model by assuming that processes

of prices of zero coupon bonds can be represented on a trinomial [BS92], [BS95] or

quattronomial [BS93] lattice. Since the quattronomial model is the more general we

consider this �rst. As we have done in the case of the Ho/Lee model we shall also

present this model in the framework of a lattice with arbitrary step size �. Similar

to Section 2 we introduce two independent stochastic processes
�
J (k)
m

�
m2f0;:::;Mg

:=�Pm
i=1 z

(k)

i

�
m2f0;:::;Mg

with z
(k)

i

iid�
n

1� p(k)

0� 1�p(k)
; k 2 f1; 2g which count the number of

upward shocks of type (k) to zero coupon bond prices that have occurred up to time

m�. The processes of prices of zero coupon bonds on a quattronomial lattice with

step size � can now be denoted by:�
~D�(m;n; J (1)

m ; J (2)
m )

�
m 2 f0; 1; : : : ; M � ng
n 2 f0; 1; : : : ; Mg

In order to model upward and downward shocks of the two kinds B�uhler and Schulze

introduce two pairs of perturbation functions:

h
(k)

� (�) =
1

p(k) + (1� p(k)) �
(k) �

�

h
(k)�
� (�) =

�
(k) �

�

p(k) + (1� p(k)) �
(k) �

�

� 2 f0; 1; : : : ;Mg
k 2 f1; 2g
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From every vertex (m; j(1); j(2)), m 2 f1; : : : ;M � ng of the quattronomial lattice

prices of zero coupon bonds can move in four directions according to

~D�(m;n; j(1) + 1; j(2) + 1) :=
~D�(m� 1; n+ 1; j(1); j(2))

~D�(m� 1; 1; j(1); j(2))
h
(1)

� (n)h
(2)

� (n)

...

~D�(m;n; j(1); j(2)) :=
~D�(m� 1; n+ 1; j(1); j(2))

~D�(m� 1; 1; j(1); j(2))
h
� (1)
� (n)h

� (2)
� (n) :

(9)

From these recursive formulae we can again obtain a recursion for the continuously

compounded yield of a zero coupon bond with time to maturity �:

r�(m; 1; j(1) + z(1)m ; j(2) + z(2)m ) = r�(m; 1; j(1); j(2)) � 1

�

�
lnh

(1)

� (1) + (1 � z(1)m ) ln �
(1)

�

�

� 1

�

�
lnh

(2)

� (2) + (1 � z(2)m ) ln �
(2)

�

�

Now setting
�
�(k)

�2
� := V p(k)

h
1

�
z(k)m ln �

(k)

�

i
we obtain similar to the Ho/Lee model

�
(k)

� = exp

8<
:� �(k)�

3
2q

p(k)(1 � p(k))

9=
; :

Given these speci�cations we obtain the following closed form solution for the family

of processes of prices of zero coupon bonds ~D�, which is a generalization of equation

(3).

�
~D�(m;n; J (1)

m ; J (2)
m )

�
m 2 f0; 1; : : : ; M � ng
n 2 f0; 1; : : : ; Mg

=

0
@ ~D�(0;m+ n; 0)

~D�(0;m; 0)

2Y
k=1

0
@ mY
i=1

h
(k)

� (m+ n� i)

h
(k)

� (m� i)

1
A �

(k)n(m�J
(k)
m )

�

1
A

m 2 f0; 1; : : : ; M � ng
n 2 f0; 1; : : : ; Mg

(10)

This completes our exposition of the quattronomial model by B�uhler and Schulze.

To introduce briey the trinomial model by B�uhler and Schulze assume we are given

random variables z(3)m

iid�

8>><
>>:

0 � 1� p
(3)

1 � p
(3)

2

1 � p
(3)

2

2 � p
(3)
1

. Then the recursive formula for the

development of prices of zero coupon bonds proposed by B�uhler and Schulze in their

trinomial model can be denoted by

~D�(m;n; j + z(3)m ) :=
~D�(m� 1; n + 1; j)

~D�(m� 1; 1; j)
h
(3)

� (n) �
(3)2�z

(3)
m

�

where

h
(3)

� (n) =
1

p
(3)
1 + p

(3)
2 �

(3)n

� + (1� p
(3)
1 � p

(3)
2 ) �

(3) 2n

�

:
(11)
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We almost immediately have

Proposition 4.1 The trinomial model by B�uhler and Schulze is a special case of their

quattronomial model.

Proof:

De�ne z
(3a)

i

iid�
n

1� p(3a)

0� 1�p(3a)
and z

(3b)

i

iid�
n

1� p(3b)

0� 1�p(3b)
and set z

(3)

i := z
(3a)

i + z
(3b)

i . Hence

p
(3)
1 = p(3a)p(3b) ;

p
(3)
2 = p(3a)(1� p(3b)) + (1 � p(3a))p(3b) ;

1� p
(3)

1 � p
(3)

2 = (1 � p(3a))(1� p(3b)) :

Further set �
(1)�

� = �
(2) �

� = �
(3)�

� and put

h
(1)

� (�) = h
(3a)

� (�) := 1

p(3a) + (1 � p(3a))
�
�
(3)

�

��
h
(2)

� (�) = h
(3b)

� (�) := 1

p(3b) + (1� p(3b))
�
�
(3)

�

�� :

It is easy to see that with these de�nitions equations (9) and (11) are equal. 2

Consequently we shall from now on con�ne our interest to the quattronomial model.

We have

Proposition 4.2 In the quattronomial model by B�uhler and Schulze processes of log-

arithms of prices of zero coupon bonds for all times to maturity are a�ne transfor-

mations of the short rate process.

Proof:

The result immediately follows from equation (10). For the process of the short rate

we have

�
r�(m; 1; J (1)

m ; J (2)
m )

�
m2f0;:::;M�1g

=

 
1

�

 
ln

~D�(0;m; 0)

~D�(0;m+ 1; 0)
�

2X
k=1

lnh
(k)

� + (m� J (k)
m ) ln �

(k)

�

!!
m2f0;:::;M�1g

(12)

Using this we can replace the stochastic process

 
2X

k=1

(m� J (k)
m ) ln �

(k)

�

!
m2f0;:::;M�1g

which drives the processes of the logarithms of prices of zero coupon bonds by an

a�ne transformation of the short rate process to obtain
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�
ln ~D�(m;n; J (1)

m ; J (2)
m )

�
m 2 f0; 1; : : : ; M � ng
n 2 f0; 1; : : : ; Mg

=

 
n

 
��r�(m; 1; J (1)

m ; J (2)
m )�

2X
k=1

lnh
(k)

� (m) + ln
~D�(0;m; 0)

~D�(0;m+ 1; 0)

!

+ ln
~D�(0;m+ n; 0)

~D�(0;m; 0)
+

2X
k=1

ln

0
@ mY
i=1

h
(k)

� (m+ n � i)

h
(k)

� (m� i)

1
A
1
A

m 2 f0; 1; : : : ; M � ng
n 2 f0; 1; : : : ; Mg

(13)

This proves the claim. 2

Remark:

a) This result shows that contrary to what has been claimed by B�uhler and Schulze

their quattronomial model is not a two{factor but in fact a one{factor model the

driving factor being as in the Ho/Lee model the continuously compounded short rate.

4.2 Limit

Results for Continuous Trading in the B�uhler/Schulze

Models

As may be suspected all the limit results that hold in the simple Ho/Lee model also

hold in the versions of this model proposed by B�uhler and Schulze. It is actually

su�cient to give a generalized version of Proposition 3.1 to see that all the arguments

in Section 3 can be applied analogously in the B�uhler/Schulze framework:

Proposition 4.3 De�ne l
(k)

� (m; j(k)) and w
(k)

� (m; j(k)), k 2 f1; 2g analogously to the

de�nitions in Proposition 3.1. Then the time zero value of the Arrow{Debreu secu-

rity ADm;j(1);j(2) with m 2 f1; : : : ;M � 1g and j(k) 2 f0; : : : ;mg, k 2 f1; 2g in the

quattronomial lattice with step size � is given by

V�(ADm;j(1);j(2); 0; 0) =

~D�(0;m; 0; 0)
2Y

k=1

p(k) j(1 � p(k))m�j
(k)

 
mY
i=1

h
(k)

� (i� 1)

!
w
(k)

� (m; j(k)) (14)

Proof:

The proof is parallel to the proof of Proposition 3.1 the only di�erence being that in

general the verteces in the B�uhler/Schulze lattice have four predecessors instead of

two in the Ho/Lee model. Therefore, in the induction step of the proof we need to

consider the following portfolio of Arrow{ Debreu securities:

~D�(m; 1; j(1); j(2)) (1 � p(1)) (1 � p(2)) units of ADm;j(1);j(2)

~D�(m; 1; j(1) � 1; j(2)) p(1) (1 � p(2)) units of ADm;j(1)�1;j(2)

~D�(m; 1; j(1); j(2) � 1) (1 � p(1)) p(2) units of ADm;j(1);j(2)�1

~D�(m; 1; j(1) � 1; j(2) � 1) p(1) p(2) units of ADm;j(1)�1;j(2)�1
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The claim then immediately follows. 2

From this proposition it is immediately clear that all the arguments from Section 3 can

be applied analogously if one keeps in mind that for every sum of independent random

variables in the Ho/Lee model one now has two independent sums of independent

random variables. De�ning �2 :=
�
�(1)

�2
+
�
�(2)

�2
one obtains the same continuous

time call option formula in the B�uhler/Schulze models as in the Ho/Lee model.

It is also totally obvious that the limiting distributions of the continuously com-

pounded short rate in the B�uhler/Schulze models are the same as in the Ho/Lee

model.

In sum the results in this section show that the B�uhler/Schulze models are but minor

generalizations of the Ho/Lee model which in discrete and continuous time preserve

all the essential characteristics and features of this model.

5 Conclusion

In this paper we have generalized the limit argument by HJM concerning the Ho/Lee

model in two respects.

First, we have shown how to construct limit arguments under the forward measure. In

particular we have derived the continuous time distribution of the short rate and the

continuous time limit of formula for a European call on a zero coupon bond. Clearly,

the ideas developed in this context would carry over to the analysis of a number of

other derivatives that can be considered in the Ho/Lee framework.

Second, we have analyzed multinomial generalizations of the Ho/Lee model that have

been proposed by B�uhler and Schulze. We have shown that they are essentially

equivalent to the Ho/Lee model.
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A Proof of Proposition 3.3

In order to prove part (a) of Proposition 3.3 we need the following lemma, which we

shall prove later.

Lemma A.1

w�(m; j)�m� + w�(m; j � 1) = w�(m+ 1; j) ;

where (m; j) is a vertex of the binomial lattice.

Given this Lemma we can prove part (a) of Proposition 3.3. The proof is given by

induction.

It is easy to see that the probability distribution for Y (1)
m given in the proposition is

correct for m = 1. Now assume that part (a) of Proposition 3.3 holds for all m � �m

and consider

Y
(1)
�m+1 =

�mX
k=0

+y
(1)

k

then for 0 < j < �m+ 1 we have

P p[Y
(1)

�m+1 = j] = P p[Y
(1)
�m = j ^ y

(1)
�m = 0] + P p[Y

(1)
�m = j � 1 ^ y

(1)
�m = 1]

= pj(1� p) �m�j
 

�mY
i=1

h�(i� 1)

!
w�( �m; j) (1� p)h�( �m) � �m�

+ pj�1(1� p) �m�(j�1)
 

�mY
i=1

h�(i� 1)

!
w�( �m; j � 1) p h�( �m)

= pj(1� p) �m+1�j

 
�m+1Y
i=1

h�(i� 1)

!
[w�( �m; j � 1) + w�( �m; j) � �m� ]

and by the above lemma

= pj(1� p) �m+1�j

 
�m+1Y
i=1

h�(i� 1)

!
w�( �m+ 1; j) :

As the problem is trivial for j = 0 or j = �m+ 1 we only have to prove the lemma to

complete the proof of part (a) of Proposition 3.3.

Proof of Lemma A.1:

The problem being trivial if j � 1 � m or if j = 0 we shall concentrate on the case

where 0 < j � m. By de�nition we have

w�(m+ 1; j) = w�(m; j � 1)�
m�(j�1)
� + w�(m; j)�

m�j
� :

So it is su�cient to show that

w�(m; j � 1)�
m�(j�1)
� + w�(m; j)�

m�j
� = w�(m; j � 1) + w�(m; j)�m� :

The proof is given by induction. It is easy to see that for m = 0 we have

w�(1; 0) = w�(0; 0)�
0
� + 0 = 0 + w�(0; 0) = w�(1; 1) = 1 :
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Now assume the lemma to hold for w�(m; j), m � �m. Then for �m+ 1 we have

w�( �m; j � 1) + w�( �m; j) �
�m
�

= w�( �m; j � 1) +
�
w�( �m� 1; j � 1) �

( �m�1)�(j�1)
� + w�( �m� 1; j) �

( �m�1)�j
�

�
� �m
�

by the de�nition of w�( �m; j)

= w�( �m; j � 1) +
�
w�( �m� 1; j � 1) �

�m�j
� � w�( �m� 1; j � 1) �

�j
�

+w�( �m� 1; j � 1) ��j� + w�( �m� 1; j) �
( �m�1)�j
�

�
� �m�

= w�( �m; j � 1) +
�
w�( �m� 1; j � 1) �

�m�j
� � w�( �m� 1; j � 1) �

�j
�

+
h
w�( �m� 1; j � 1) + w�( �m� 1; j) �

( �m�1)
�

i
�
�j
�

�
� �m�

= w�( �m; j � 1) + w�( �m� 1; j � 1) �
2 �m�j
� � w�( �m� 1; j � 1) �

�m�j
�

+w�( �m; j) �
�m�j
�

by the induction assumption

= w�( �m� 1; j � 2) �
( �m�1)�(j�2)
� + w�( �m� 1; j � 1) �

( �m�1)�(j�1)
�

+w�( �m� 1; j � 1) �
2 �m�j
� � w�( �m� 1; j � 1) �

�m�j
� + w�( �m; j) �

�m�j
�

by the de�nition of w�( �m; j � 1)

=
�
w�( �m� 1; j � 2) + w�( �m� 1; j � 1) � �m�1

�

�
�
�m�(j�1)
� + w�( �m; j) �

�m�j
�

= w�( �m; j � 1) �
�m�(j�1)
� + w�( �m; j) �

�m�j
�

by the induction assumption.

Together with the de�nition of w�( �m + 1; j) this proves the lemma and hence part

(a) of Proposition 3.3.

The proof of part (b) of Proposition 3.3 is similar to the above. However, the induction

is made over m�. Notice also that nothing like the above lemma is needed because

the de�nition of w� can now be immediately applied. This completes the proof of

Proposition 3.3.
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B Proof of Proposition 3.5

It is su�cient to check the Liapuno�{Condition for � = 1 (see Bauer [Bau74], p.268).

Proof of part (a) of Proposition 3.5:

The Liapuno�{Condition takes the following form:

lim
�!0

L(�) = lim
�!0

P ~m�1
k=0 Ep[ jy(1)k � p h�(k)j3 ]�P ~m�1

k=0 V p[ y
(1)

k ]
�3
2

= lim
�!0

N(�)

D(�)

!
= 0

N(�) =
~m�1X
k=0

h�(k) [p (1 � p h�(k))
3 + (1� p) �k�

3
2

1 p3 h3�(k)]

using that 1 � h�(k) �
1

p
and 0 � �k�

3
2

1 � 1

�
~m�1X
k=0

1

p

h
p (1 � p)3 + (1 � p) p3 p�3

i
� ~m

p

D(�) =

 
~m�1X
k=0

p h�(k) � p2h2�(k)

! 3
2

using Taylor expansions of h� and h2� around �� = 0

=

0
BBB@

~m�1X
k=0

(p � p2) +

s
1 � p

p
�(p� 2p2)

| {z }
=: a

�
3
2

~m�1X
k=0

k + o(�� 1
2 )

1
CCCA

3
2

=

 
~m(p � p2) + a�

3
2
~m( ~m� 1)

2
+ o(�� 1

2 )

! 3
2

= ~m
3
2

�
(p� p2) + o(1)

� 3
2

Hence

lim
�!0

L(�) � lim
�!0

1=p

( ~m)
1
2 ((p� p2) + o(1))

3
2

= 0

Proof of part (b) of Proposition 3.5:

The Liapuno�{Condition takes the following form:

lim
�!0

L(�) = lim
�!0

P ~m�1
k=0 Ep[ j y(2)k � p h�( ~m + ~n� (k + 1)) j3 ]�P ~m�1

k=0 p h�( ~m + ~n � (k + 1)) � p2h2�( ~m + ~n � (k + 1))
� 3
2

!
= 0

By the same procedures as employed in the proof of part (a) of Proposition 3.5 it can

be shown that this expression also converges to zero as � goes to zero.

This completes the proof of Proposition 3.5.
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C Proof of Theorem 3.6

In view of equation (8) and Proposition 3.5 we need to calculate

lim
�!0

a� � Ep
h
Y

(k)

~m

i
r
V p

h
Y

(k)

~m

i :

Let us �rst consider the case k = 1.

(a) We �rst deal with (�1) times the numerator of the above expression:

(i)

ln

(
~mY

k=1

h�( ~m� k)

h�( ~m+ ~n� k)

)

=

"
~mX

k=1

 s
1 � p

p
�

3
2 ( ~m� k)� � 1

2
�3 ( ~m� k)

2
�2
!#

�
"

~mX
k=1

 s
1 � p

p
�

3
2 ( ~m+ ~n� k)� � 1

2
�3( ~m+ ~n� k)2�2

!#
+ o(1)

= �
3
2 (1 � p) ~m ~n (ln �1) +

1

2
((t+ x)2t� (t+ x) t2) p (1 � p) (ln �1)

2 + o(1)

(ii)

�
1
2

~m�1X
k=0

p h�(k)

= �
1
2p

"
~m�1X
k=0

 
1 + �

3
2 k

s
1� p

p
� +

1

2
�3 k2

1� 2p

p
�2
!
+ o(1)

#

= �
3
2p ~m � p (1 � p) t2(ln �1)

2
+ o(1)

(iii)

(i) � �
3
2 ~m ~n ln �1 + (ii) � (~n ln �1)

=
1

2

�
(t+ x)2t� (t+ x)t2

�
p(1 � p)(ln �1)

2 � 1

2
x p (1 � p) t2 (ln �1)

2 + o(1)

=
1

2
(ln �1)

2p (1 � p)
h
(t+ x)2 t � (t+ x) t2 � x t2

i
+ o(1)

=
1

2
(ln �1)

2p (1 � p)
h
(t2 + 2t x + x2) t � t3 � t2x � x t2

i
+ o(1)

=
1

2
(ln �1)

2p (1 � p)
h
(2t2 x � 2t2 x + t x2

i
+ o(1)

=
1

2
(ln �1)

2p (1 � p) t x2 + o(1)

=
1

2
�2t x2 + o(1)
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Thus for (�1) times the complete numerator we have

ln

(
K ~D(0; ~m; 0)

~D(0; ~m+ ~n; 0)

)
+

1

2
�2 t x2 + o(1) :

(b) The denominator:

�
3
2 ~n ln �1

 
~m�1X
k=0

(p h�(k) � p2h2�(k))

! 1
2

= �~n ln �1

 
�

~m�1X
k=0

(p � p2) + o(1)

! 1
2

= �~n ln �1
�
t p (1 � p) + o(1)

� 1
2

(c) Hence we have for the case k = 1:

lim
�!0

a� � Ep
h
Y

(k)

~m

i
r
V p

h
Y

(k)

~m

i

= lim
�!0

�
ln
n

K ~D(0; ~m;0)
~D(0; ~m+~n;0)

o
+ 1

2
�2 t x2 + o(1)

�~n ln �1
�
t p (1 � p) + o(1)

� 1
2

=
ln
n

KD(0;t)

D(0;t+x)

o
+ 1

2
�2t x2

x t
1
2�

Let us now consider the case k = 2.

(a) Again we deal with (�1) times the numerator:

(i)

�
3
2 ~n ln �1

~m�1X
k=0

p h�( ~m+ ~n� (k + 1))

= �~n ln �1

�
p ~m�

1
2 � p(1 � p)

�
(t+ x) t � 1

2
t2
�
ln �1 + o(1)

�

= �
3
2p ~m ~n ln �1 � p (1 � p)�~n

�
(t+ x) t � 1

2
t2
�
(ln �1)

2 + o(1)

(ii)

ln

(
~mY

k=1

h�( ~m� k)

h�( ~m+ ~n � k)

)
� �

3
2 ~m ~n ln �1 + (i)

= p (1 � p) (ln �1)
2

�
1

2

�
(t+ x)2 t � (t+ x) t2

�
� x (t+ x) t +

1

2
x t2

�
+ o(1)

= p (1 � p) (ln �1)
2

�
1

2
x t2 +

1

2
x2 t � x t2 � t x2 +

1

2
x t2

�
+ o(1)

= p (1 � p) (ln �1)
2

�
�1

2
t x2

�
+ o(1)

= �1

2
�2t x2 + o(1)
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(b) The denominator:

Similar to the considerations for k = 1 we obtain:

�
3
2 ~n ln �1

 
~m�1X
k=0

(p h�( ~m+ ~n� (k + 1)) � p2 h2�( ~m+ ~n� (k + 1)))

! 1
2

= �~n(ln �1) (t p (1 � p) + o(1))
1
2

(c) Hence we have for the case k = 2

lim
�!0

a� � Ep
h
Y

(k)

~m

i
r
V p

h
Y

(k)

~m

i

= lim
�!0

�
ln
n

K ~D(0; ~m;0)
~D(0; ~m+~n;0)

o
� 1

2
�2 t x2 + o(1)

�~n
�
ln �1

��
t p (1 � p) � o(1)

� 1
2

=
ln
n
KD(0;t)

D(0;t+x)

o
� 1

2
�2t x2

x t
1
2�

The theorem then follows from equation (8) and Proposition 3.5.

D Proof of Proposition 3.7

The continously compounded short rate of interest at time ~m� and state j is given
by

r�( ~m; 1; j)

= �

ln ~D�( ~m; 1; j)

�

= �

1

�

"
ln

(
~D�(0; ~m+ 1; 0)

~D�(0; ~m; 0)

)
+ ln h�( ~m) + ln

(
exp

(
�

��
3
2 ( ~m� Y

(1)

~m )p
p(1� p)

))#

= �

1

�

"
ln

(
~D�(0; ~m+ 1; 0)

~D�(0; ~m; 0)

)
+ ln h�( ~m) + ln

(
exp

(
�

��
3
2 ( ~m� Ep[Y

(1)

~m ])p
p(1� p)

))#

� ln

(
exp

(
�

��
3
2

p(1� p)

))�
Y
(1)

~m � Ep
[Y

(1)

~m ]

�

= �

ln

n
~D�(0; ~m+1;0)
~D�(0; ~m;0)

o
�

+
1

�
ln

(
p exp

(
�

��
3
2 ( ~m� Ep[Y

(1)

~m ])p
p(1� p)

)

+ (1� p) exp

(
�

��
3
2Ep

[Y
(1)

~m ]p
p(1� p)

))

+ ln

(
exp

(
�

�p
p(1� p)

))
�

1
2 (Y

(1)

~m � Ep
[Y

(1)

~m ])
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(i)

lim
�!0

�
ln
n
D�(0; ~m+1;0)

D�(0; ~m;0)

o
�

= r(0; t)

(ii)

For �
1
2

�
Y

(1)

~m � Ep[Y
(1)

~m ]
�
the Liapuno�{condition takes the form

L(�) =

P ~m�1
k=0 Ep

h
j� 1

2 (y
(1)

k � p h�(k)j3
i

�P ~m�1
k=0 �V p[y

(1)

k ]
�3
2

=

P ~m�1
k=0 Ep

h
jy(1)k � p h�(k)j3

i
�P ~m�1

k=0 V p[y
(1)

k ]
�3
2

which is equal to the Liapuno�{condition in Appendix B. So we can conclude that

for �! 0
�

1
2 (Y

(1)

� � Ep[Y
(1)

� ])

V p[�
1
2Y

(1)

� ]

will have a standard normal distribution.

However,

V p
h
�

1
2Y

(1)

~m

i
= �

 
~m(p� p2) + a�

3
2
~m( ~m� 1)

2
+ o(�

1
2 )

!
;

which yields

lim
�!0

�V p[Y
(1)

~m ] = t p (1 � p):

So we can conclude that as �! 0

�
1
2

�
Y

(1)

~m � Ep[Y
(1)

~m ]
�

D�! N (0; t p (1 � p))

Since

ln

8<
:exp

8<
:� �q

p(1 � p)

9=
;
9=
; = ln �

we can conclude that

lim
�!0

V p[r�( ~m; 1; :)] = t(ln �)2p(1 � p) = t�2:

(iii)
Finally we have to show that

lim
�!0

1

�
ln

8<
:p exp

8<
:
��

3
2

�
~m � Ep

[Y
(1)

~m ]

�
p
p(1� p)

9=
; + (1� p) exp

(
�

��
3
2Ep

[Y
(1)

~m ]p
p(1� p)

)9=
; = 0

To do this we de�ne

N(k) := p+ (1 + p) exp

8<
:� �

3
2k�q

p(1 � p)

9=
;
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X
:=

~m�1X
k=0

p

N(k)

expfAg := exp

8<
:� ~m�

3
2 � ��

3
2
P

q
p(1� p)

9=
;

expfBg := exp

8<
:� ��

3
2q

p(1 � p)

X9=
;

lnfCg := ln fp expfAg+ (1 � p) expfBgg
Obviously we have

N(k)j�=0 = 1X
j�=0 = ~mp

expfAgj�=0 = 1

expfBgj�=0 = 1

lnfCgj�=0 = 0

Cj�=0 = 1

With these de�nitions our problem can be expressed more succinctly as follows

lim
�!0

1

�
lnfCg !

= 0:

As we shall attack this problem by using a Taylor expansion of lnfCg around �� = 0

we need a number of derivatives.

First order derivatives:

@N(k)

@�
= �(1� p)�

3
2kq

p(1 � p)
exp

8<
:� �

3
2 k�q

p(1� p)

9=
;

@
P
@�

=
~m�1X
k=0

� p@N(k)

@�

(N(k))2

@ expfAg
@�

=
~m�

3
2 ��

3
2
P��� 3

2
@
P
@�q

p(1 � p)
expfAg =

@A

@�
� expfAg

@ expfBg
@�

=
�� 3

2
P��� 3

2
@
P
@�q

p(1 � p)
expfBg = @B

@�
� expfBg

@ lnfCg
@�

=
p
@ expfAg

@�
+ (1� p)

@ expfBg
@�

C
=

@C

@�

C

We obtain:

@N(~h)

@�
j�=0 = �(1� p)�

3
2 kq

p(1 � p)
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@
P
@�

j�=0 =
~m�1X
k=0

q
p(1 � p)�

3
2k

@ expfAg
@�

j�=0 =
~m�

3
2 (1 � p)q
p(1 � p)

@ expfBg
@�

j�=0 =
� ~m�

3
2pq

p(1 � p)

@ lnfCg
@�

j�=0 = 0 ;
@C

@�
j�=0 = 0

Second order derivatives:

@2N(k)

@�2
=

�3k2

p
exp

8<
:� �

3
2�kq

p(1 � p)

9=
;

@2
P

@�2
=

~m�1X
k=0

�p@2N
@�2

N2 + 2p
�
@N

@�

�2
N4

@2 expfAg
@�2

=
�
�
2�

3
2
@
P
@�

+ ��
3
2
@2
P

@�2

�
q
p(1 � p)

expfAg+
 
@A

@�

!2

expfAg

=
@2A

@�2
expfAg+

 
@A

@�

!2

expfAg

@2 expfBg
@�2

=
�
�
2�

3
2
@
P
@�

+ ��
3
2
@2
P

@�2

�
q
p(1 � p)

expfBg+
 
@B

@�

!2

expfBg

=
@2B

@�2
expfBg+

 
@B

@�

!2

expfBg

@2 ln(C)

@�2
=

@2C

@�2
C �

�
@C

@�

�2
C2

=

h
p
@2 expfAg

@�2
+ (1 � p)

@2 expfBg
@�2

i
� C �

�
@C

@�

�2
C2

We have:

@2N(k)

@�2
j�=0 =

�3k2

p
;

@2
P

@�2
j�=0 = (�3 + 2p)

~m�1X
k=0

�3k2

@2 expfAg
@�2

j�=0 = �2�3
~m�1X
k=0

k +
~m2�3(1 � p)2

p(1 � p)
;
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@2 expfBg
@�2

j�=0 = �2�3
~m�1X
k=0

k +
~m2�3p2

p(1 � p)

@2 lnfCg
@�2

j�=0 = p

 
�2�3

~m�1X
k=0

k +
~m2�3(1 � p)2

p(1 � p)

!

+(1 � p)

 
�2�3

~m�1X
k=0

k +
~m2�3p2

p(1 � p)

!

= ~m�3

Now we can transform our problem to give

lim
�!0

1

�
lnfCg = lim

�!0

1

�

"
(lnC)j�=0 +

 
@ lnC

@�

!
j�=0 � � +

1

2

@2 lnC

@�2
j�=0 � �2 + o(�)

#

= lim
�!0

1

�

�
1

2
~m�3�2 + o(�)

�
= 0

Thus we have proved that as � goes to zero r�( ~m; 1; :) converges in distribution to a

normally distributed random variable with mean r(0; t) and variance t�2.
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