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0. Introduction

Suppose X = (Xt)0�t�T is an IR
d-valued adapted RCLL process. An important notion

in �nancial mathematics is the concept of an equivalent martingale measure for X, i.e., a

probability measure P � equivalent to the original measure P such that X is a martingale
under P �. If such a P

� exists, then its density process Z� with respect to P is a strict

martingale density for X: Z� is strictly positive, and both Z� and Z�X are local martingales

under P . Under some very weak integrability assumptions, one can show in turn that the

existence of such a strict martingale density already implies a certain structure for X. In

fact, X must be a semimartingale under P of the form (we take here d = 1 for notational
simplicity)

X = X0 +M +

Z
� dhMi

for some predictable process �. Moreover, every locally square-integrable martingale density

Z can then be obtained as solution of a stochastic di�erential equation,

(0:1) Zt = 1�
tZ

0

Zs��s dMs +Rt ; 0 � t � T;

for some R 2 M2
0;loc(P ) strongly orthogonal to M . The multidimensional versions of these

results are formulated and proved in section 1; they generalize previous work by Ansel/Stricker
[1,2] and Schweizer [15].

In section 2, we provide three characterizations of the minimal martingale measure. This
is the (possibly signed) measure bP associated to the minimal martingale densitybZ := E

�
�
R
� dM

�
corresponding to R � 0 in (0.1). If X is continuous, we �rst charac-

terize bP among all local martingale measures for X as the unique solution of a minimization
problem involving the relative entropy with respect to P ; this slightly extends a previous
result of F�ollmer/Schweizer [10]. Next we show that bP also minimizes

D(Q;P ) :=





dQdP � 1






L2(P )

=

s
Var

�
dQ

dP

�

over all equivalent local martingale measures Q for X if, in addition, the random variable
TR
0

�
2
s
dhMis is deterministic. By a completely di�erent argument, we then prove that this

characterization still holds if X is possibly discontinuous, provided that we minimize over all
signed local martingale measures forX and that the entire process

R
�
2
dhMi is deterministic.

These results give further support for the terminology \minimal martingale measure" used

for bP ; they are of course stated and proved for d � 1.

In section 3, we study the F�ollmer-Schweizer decomposition in the multidimensional

case. Extending a result of Ansel/Stricker [1] to the case d � 1, we obtain a necessary and
su�cient condition for the existence of such a decomposition if X is continuous. Furthermore,

we also show how to deduce more speci�c integrability properties for the various terms in

this decomposition from assumptions on � and the random variable H to be decomposed.
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1. Martingale densities and the structure of X

Let (
;F ; P ) be a probability space with a �ltration IF = (Ft)0�t�T satisfying the usual
conditions of right-continuity and completeness, where T > 0 is a �xed and �nite time

horizon. All stochastic processes will be de�ned for t 2 [0; T ]. Let X be an IF -adapted

IR
d-valued process such that Xi is right-continuous with left limits (RCLL for short) for

i = 1; : : : ; d. We recall from Schweizer [15] the following

De�nition. A real-valued process Z is called a martingale density for X if Z is a local

P -martingale with Z0 = 1 P -a.s. and such that the product XZ is a local P -martingale. We

can and shall always choose an RCLL version of Z. If Z is in addition strictly positive, Z is

called a strict martingale density for X.

As explained in Schweizer [15], the concept of a strict martingale density forX generalizes

the notion of an equivalent martingale measure for X. The existence of one or the other is

closely related to a condition of absence of arbitrage for X and has therefore a very appealing
economic interpretation; see for instance Delbaen/Schachermayer [6] for recent results and

a comprehensive list of references. Note that any IF -adapted process X admitting a strict

martingale density Z is necessarily a P -semimartingale. In fact, 1
Z
is a P -semimartingale by

Itô's formula, since Z is strictly positive, andX is the product of 1
Z
and the local P -martingale

XZ.
Our �rst result clari�es the structure of processes admitting a strict martingale density.

For unexplained notations and terminology from martingale theory, we refer to Jacod [12]
and Dellacherie/Meyer [7]. In order to abbreviate future statements, we say that X satis�es
the structure condition (SC) if X is a special P -semimartingale with canonical decomposition

X = X0 +M +A

which satis�es

(1:1) M 2 M2
0;loc(P )

and

(1:2) A
i � hM ii with predictable density �i

for i = 1; : : : ; d, and if there exists a predictable process b� 2 L2
loc(M) with

(1:3) �t
b�t = 
t P -a.s. for t 2 [0; T ]:

The predictable processes � and 
 in (1.3) are de�ned by



i

t
:= �

i

t
�
ii

t
for i = 1; : : : ; d

and

�
ij

t
:=

dhM i
;M

jit
dBt

for i; j = 1; : : : ; d,

where B is a �xed increasing predictable RCLL process null at 0 such that hM ii � B for each

i. Such a process always exists, and it is easy to check that the stochastic integral
R b�dM

does not depend on the choice of b� satisfying (1.3); see Jacod [12].
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Theorem 1. Suppose that X admits a strict martingale density Z� and that either

(1:4) X is continuous

or

(1:5a) X is a special semimartingale satisfying (1.1)

and

(1:5b) Z
� 2 M2

loc(P ):

Then X satis�es the structure condition (SC), and

(1:6) �
i 2 L2

loc(M
i) for i = 1; : : : ; d.

Furthermore, Z� can be written as

(1:7) Z
� = E

�
�
Z b�dM + L

�
;

where L 2 M0;loc(P ) is strongly orthogonal to M i for each i. If (1.5) holds, then we have

L 2 M2
0;loc(P ); if (1.4) holds, (1.7) can be simpli�ed to

(1:8) Z
� = E

�
�
Z b� dM� E(L):

Proof. 1) Choose N1
; : : : ;N

d 2 M2
0;loc(P ) pairwise strongly orthogonal such that each M i

is in the stable subspace of M2
0(P ) generated by N1

; : : : ;N
d. Each M i can then be written

as

M
i =

dX
j=1

Z
%
ij
dN

j

for some predictable d�d matrix-valued process % with %ij 2 L2
loc(N

j) for all i; j. If X (hence
also M) is continuous, N can also be taken continuous. Choose an increasing predictable

RCLL process B null at 0 with hN ii � B for each i and set

�
i

t
:=

dhN iit
dBt

for i = 1; : : : ; d.

By replacing N i with
R
If�i 6=0g

1p
�i
dN

i, we may and shall assume without loss of generality

that �i
t
2 f0; 1g for all i; t. Since

(1:9)

Z
If�j=0g dhNji =

Z
�
j
If�j=0g dB = 0;

we may and shall also assume that %ij
t
= 0 on the set f�j

t
= 0g for all i; j; t. This implies that

(1:10) %
ij

t
�
j

t
= %

ij

t
for all i; j; t
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and therefore

hM i
;M

ji =
dX

k=1

Z
%
ik
%
jk
dhNki =

dX
k=1

Z
%
ik
%
jk
�
k
dB =

Z
(%%tr)ijdB

by the pairwise strong orthogonality of the components of N and (1.10). Hence we conclude
that

(1:11) �t = %t%
tr
t

P -a.s. for t 2 [0; T ]:

2) De�ne U 2 M0;loc(P ) by U :=
R

1
Z
�

�

dZ
�; this is well-de�ned since Z� is strictly

positive. Decompose U as U = U
1+U

2 with U1 2 M2
0;loc(P ) and U

2 2 M0;loc(P ) such that

U
2 is strongly orthogonal to each N

i. In fact, we can choose U2 � 0 if (1.5b) holds, and

under (1.4), we can take U1 = U
c and U

2 = U
d as the continuous and purely discontinu-

ous martingale parts of U , respectively. By the Galtchouk-Kunita-Watanabe decomposition
theorem, U1 can be written as

(1:12) U
1 = �

dX
j=1

Z
 
j
dN

j +R;

where  j 2 L
2
loc(N

j) and R 2 M2
0;loc(P ) is strongly orthogonal to Nj for each j. Further-

more, (1.9) implies that we can choose  such that

(1:13)  
j

t
= 0 on the set f�j

t
= 0g

for all j; t. Applying the product rule to Xi and Z� now yields

(1:14) d(Z�Xi) =
�
X

i

� dZ
� + Z

�
� dM

i + d[Z�; Ai]
�
+ Z

�
� dA

i + d[Z�;M i]:

Since Z� is a strict martingale density for X, the left-hand side is (the di�erential of) a local
P -martingale, and by Yoeurp's lemma, so is the term in brackets on the right-hand side.
Furthermore, Z� = E(U) implies that

[Z�;M i] =

Z
Z
�
� d[U;M

i];

and

[U;M i] =

2
4� dX

j=1

Z
 
j
dN

j +R+ U
2
;

dX
k=1

Z
%
ik
dN

k

3
5

= �
dX

j=1

Z
 
j
%
ij
dhNji+

"
R+ U

2
;

dX
k=1

Z
%
ik
dN

k

#

= �
dX

j=1

Z
%
ij
 
j
dB +

"
R+ U

2
;

dX
k=1

Z
%
ik
dN

k

#

by the pairwise strong orthogonality of the components of N and (1.10). Since the last term

on the right-hand side is also a local P -martingale by the strong orthogonality of R and U2

to each Nk, we conclude from (1.14) that

(1:15) A
i =

Z
(% )i dB for i = 1; : : : ; d;
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since A is predictable and Z�� is strictly positive.

3) Now denote by b the projection of  on (Ker %)? = Im %
tr so that

(1:16)  = b + � = %
trb�+ �

for some predictable processes b�, � with %� = 0. From (1.15) and (1.11), we then obtain

(1:17) A
i =

Z
(�b�)i dB for i = 1; : : : ; d,

and since �
ij

t
= 0 on the set f�ii

t
= 0g by the Kunita-Watanabe inequality, we conclude that

A
i � hM ii with density

�
i =

(�b�)i
�ii

and that b� satis�es (1.3). Furthermore, we have

Z
(�i)2dhM ii =

Z
1

�ii

�
(% )i

�2
dB

�
Z

1

�ii

dX
j=1

(%ij)2
dX

j=1

( j)2 dB

=

dX
j=1

Z
( j)2 dB

=

dX
j=1

Z
( j)2 dhNji

by (1.15) and (1.17), the Cauchy-Schwarz inequality, (1.11) and (1.13). Because each  j is
in L

2
loc(N

j), this yields �i 2 L
2
loc(M

i) for each i, hence (1.6). Similarly, (1.11), (1.16) and
(1.13) imply that

Z b�tr�b� dB =

Z 

%trb�

2 dB �
Z
k k2 dB =

dX
j=1

Z
( j)2 dhNji

and therefore b� 2 L
2
loc(M) by (4.34) of Jacod [12]. In particular, the processR b�dM 2 M2

0;loc(P ) is well-de�ned, and

�
Y;

Z b�dM� =

dX
i=1

Z b�i dhY;M ii =
dX
i=1

dX
j=1

Z b�i%ij dhY;Nji =
*
Y;

dX
j=1

Z
(%trb�)j dNj

+

for every Y 2 M2
0;loc(P ) shows that

Z b�dM =

dX
j=1

Z
(%trb�)j dNj

:
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Hence Z� = E(U) with

U = �
Z b�dM +R+ U

2 �
dX

j=1

Z
�
j
dN

j

by (1.12) and (1.16), and since %� = 0, L := R+U
2 �

dP
j=1

R
�
j
dN

j is strongly orthogonal to

N
k, hence also to Mk, for each k. By (1.16), �j 2 L2

loc(N
j) for each j, and so L 2 M2

0;loc(P )

under (1.5b). Finally, (1.4) implies that�
L;

Z b�dM� = �L;Z b� dM� = 0;

since M is continuous and L is strongly orthogonal to each Mk; thus (1.7) implies (1.8) by
Proposition (6.4) of Jacod [12].

q.e.d.

Remark. Theorem 1 is at the same time a uni�cation and a slight generalization of previous

results. For the case where X is continuous and admits an equivalent martingale measure,
the theorem was proved by Ansel/Stricker [1,2]; the scheme of the preceding proof is essen-
tially due to them. The extension to general X admitting a locally square-integrable strict
martingale density was obtained in Schweizer [15] under an invertibility assumption on the
process �. For related results with d = 1, see also Christopeit/Musiela [5].

The next result is a sort of converse to Theorem 1; it provides in addition a characteriza-
tion of all martingale densities Z inM2

loc(P ) if X satis�es the structure condition (SC). Note
that (1.20) below is more general than (1.7) since Z may vanish or even become negative.

Proposition 2. Suppose that X satis�es the structure condition (SC). Then

(1:18) bZ := E
�
�
Z b�dM�

is a martingale density for X; bZ is a strict martingale density for X if and only if

(1:19) b�tr
t
�Mt < 1 P -a.s. for t 2 [0; T ]:

More generally, Z 2 M2
loc(P ) is a martingale density for X if and only if Z satis�es the

stochastic di�erential equation

(1:20) Zt = 1�
tZ

0

Zs�
b�s dMs +Rt ; 0 � t � T

for some R 2 M2
0;loc(P ) strongly orthogonal to M i for each i.

Proof. For d = 1, the second assertion is due to Yoeurp/Yor [17], Th�eor�eme 2.1; for d � 1,

the \only if" part can be proved exactly as in Proposition 5 of Schweizer [15] since b� exists

and satis�es (1.3). Conversely, if Z 2 M2
loc(P ) satis�es (1.20), the product rule yields

d(ZXi) =
�
X

i

� dZ + Z� dM
i + d[Z;Ai] + d[Z;M i]� dhZ;M ii

�
+ Z� dA

i + dhZ;M ii:
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By Yoeurp's lemma, the term in brackets is (the di�erential of) a local P -martingale, and by

(1.2), (1.20) and (1.3), we have

Z� dA
i + dhZ;M ii = Z�


i
dB � Z�(�b�)i dB = 0:

Thus Z is a martingale density which proves the \if" part. Finally, (1.18) follows from (1.20)

for R � 0.
q.e.d.

Corollary 3. A continuous IF -adapted process X admits a strict martingale density if and

only if it satis�es the structure condition (SC).

Proof. Since continuity of X implies (1.19), this follows immediately from Theorem 1 and

Proposition 2.

q.e.d.

2. Characterizations of the minimal martingale measure

Let X be an IF -adapted IRd-valued RCLL process. If Z is any martingale density for X, we
can de�ne a signed measure Q� P on (
;F) by setting

dQ

dP
:= ZT :

If Z is not only a local P -martingale, but a P -martingale, then E[ZT ] = 1 and Q is a signed
local martingale measure for X in the sense of the following

De�nition. A signed measure Q on (
;F) is called a signed local martingale measure for
X if Q[
] = 1, Q� P on FT , Q = P on F0 and X is a local Q-martingale in the sense that

(an RCLL version of) the density process
�
dQ

dP

��
Ft

�
0�t�T

is a martingale density for X. Q is

called a local martingale measure for X if in addition, Q is a measure, i.e., nonnegative, and
an equivalent local martingale measure for X if in addition, Q � P on FT .

De�nition. Suppose that X satis�es the structure condition (SC). The increasing pre-

dictable process bK de�ned by

(2:1) bKt :=

tZ
0

b�tr
s
dAs =

tZ
0

b�tr
s
�s
b�s dBs =

�Z b� dM�
t

is called the mean-variance tradeo� process of X; we always choose an RCLL version. IfbZ = E
�
�
R b� dM� is a martingale, the signed local martingale measure bP with density bZT

with respect to P is called the minimal signed local martingale measure for X.

It is clear from (1.20) that bZ is in a sense the simplest martingale density for X. Orig-

inally, however, the expression \minimal" was motivated in a di�erent way when bP was

�rst introduced in F�ollmer/Schweizer [10]. They studied the case where X is continuous
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and bZ is square-integrable; for more general situations and various properties of bP , see also
Ansel/Stricker [1,2], El Karoui/Quenez [8], Hofmann/Platen/Schweizer [11] and the refer-

ences contained in these papers. Our goal in this section is to give three characterizations ofbP by proving certain minimality properties within a suitable class of signed local martingale

measures for X.

A �rst characterization in terms of a relative entropy can be obtained if X is continuous;

Theorem 5 below is a slight re�nement of the basic result due to F�ollmer/Schweizer [10]. If

Q and P are probability measures on (
;F) and G � F is a �-algebra, the relative entropy

on G is de�ned by

HG(QjP ) :=

8><
>:
EQ

�
log

dQ

dP

����
G

�
, if Q� P on G

+1 , otherwise.

Recall that HG(QjP ) is always nonnegative, increasing in G, and that H(QjP ) := HF (QjP )
is 0 if and only if Q = P .

Lemma 4. Suppose that X is a continuous IF -adapted process admitting a strict martingale

density and that E[bZT ] = 1. If Q is any local martingale measure for X with

(2:2) H(QjP ) <1;

then

(2:3) EQ[log bZT ] = 1

2
EQ[ bKT ] <1

and

(2:4) H(Qj bP ) = H(QjP ) � 1

2
EQ[ bKT ]:

Proof. Since X is continuous, bZ is a strictly positive local martingale and therefore a
martingale because of E[ bZT ] = 1. Thus bP � P and so (2.2) implies that Q� bP and

(2:5)
dQ

dP
= bZT dQ

d bP :
Moreover, the stochastic integral

R b�dX is well-de�ned under Q, the same as under P and a

local Q-martingale; see Propri�et�e f) of Chou/Meyer/Stricker [4] and Proposition 1 of Emery

[9], respectively. If (Tn)n2IN is a localizing sequence for
R b� dX under Q, (2.2) yields

sup
n2IN

HFTn
(QjP ) � H(QjP ) <1

and therefore

(2:6) sup
n2IN

�����log dQdP
����
FTn

����� 2 L1(Q)

8



by Lemma 2 of Barron [3]. Furthermore, (2.1) implies that

log bZTn = �
TnZ
0

b�s dMs �
1

2
bKTn

= �
TnZ
0

b�s dXs +
1

2
bKTn

and therefore

(2:7) EQ

h
log bZTni = 1

2
EQ

h bKTn

i
� 0;

hence

sup
n2IN

HFTn
(Qj bP ) � sup

n2IN

HFTn
(QjP ) � H(QjP ) <1

by (2.5) and (2.2) and thus

sup
n2IN

�����log dQd bP
����
FTn

����� 2 L1(Q)

again by Lemma 2 of Barron [3]. Combining this with (2.6) and (2.5) shows that

sup
n2IN

���log bZTn��� 2 L1(Q);

and passing to the limit in (2.7) yields by continuity of bZ and bK the equality in (2.3). Since

1

2
EQ

h bKTn

i
= HFTn

(QjP ) �HFTn
(Qj bP ) � H(QjP )

for all n by (2.7) and (2.5), we obtain (2.3) by monotone integration. Finally, (2.4) follows
from (2.5) and (2.3).

q.e.d.

Theorem 5. Suppose that X is a continuous IF -adapted process admitting a strict martin-

gale density and that E[ bZT ] = 1. If H( bP jP ) <1, then bP is the unique solution of

Minimize H(QjP ) � 1

2
EQ[ bKT ] over all local martingale measures(2:8)

Q for X satisfying the \�nite energy condition" EQ[ bKT ] <1.

Proof. Due to Lemma 4, bP satis�es the condition in (2.8). If H(QjP ) =1, there is nothing

to prove; otherwise, Lemma 4 implies that

H(QjP ) � 1

2
EQ[ bKT ] = H(Qj bP ) � 0

by (2.4), with equality if and only if Q = bP .
q.e.d.

Corollary 6. Suppose that X is a continuous IF -adapted process admitting a strict martin-

gale density. If bKT is bounded, then bP is the unique solution of

Minimize H(QjP ) � 1

2
EQ[ bKT ] over all local martingale measures Q for X.
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In particular, if bKT is deterministic, then bP minimizes the relative entropy H(QjP ) over all
local martingale measures Q for X.

Proof. If bK is bounded, (2.1) implies by the continuity of M that bZT is in Lp(P ) for every
p <1 and in particular H( bP jP ) <1. Hence the assertion follows from Theorem 5.

q.e.d.

If we measure the distance from a given probability measure by the relative entropy,
Corollary 6 shows that within the class of all local martingale measures for X, bP is closest

to the original measure P if X is continuous and bKT is deterministic. Our second character-

ization of bP gives a similar result if we replace the relative entropy by the �2-distance

D(Q;P ) :=





dQ
dP

� 1






L2(P )

=

s
Var

�
dQ

dP

�
:

In the following, all expectations without subscript are with respect to P .

Theorem 7. Suppose that X is a continuous IF -adapted process admitting a strict martin-

gale density. If bKT is deterministic, then bP is the unique solution of

Minimize D(Q;P ) over all equivalent local martingale measures(2:9)

Q for X with
dQ

dP
2 L2(P ):

Proof. Since X is continuous, (2.1) implies that

(2:10) bZ = exp

�
�
Z b�dX +

1

2
bK� = E

�
�
Z b�dX� ebK

and

(2:11)
1bZ = E

�Z b� dX� :
Since bKT is deterministic, hence bounded, we deduce �rst that

(2:12) bZ 2 Mr(P ) for every r � 1;

hence bP is well-de�ned and satis�es the condition in (2.9). As in the proof of Lemma 4,R b�dX is a continuous local bP -martingale, and the boundedness of bK =
DR b� dXE implies

that

(2:13) E
�
�
Z b�dX� 2 Mr( bP ) for every r � 1

and

(2:14)
1bZ 2 Mr( bP ) for every r � 1.

10



If Q is any signed local martingale measure for X satisfying the integrability condition in

(2.9), so is R := 2Q� bP , and Q = bP + 1
2 (R� bP ) yields

D
2(Q;P ) = D

2( bP ;P ) + 1

4
E

2
4 dR

dP
� d bP
dP

!2
3
5+E

" 
dR

dP
� d bP
dP

! 
d bP
dP

� 1

!#
:

But the last term equals ER[ bZT ] � EbP [ bZT ], and thus it only remains to show that ER[ bZT ]
is constant over all signed local martingale measures R for X satisfying the integrability

condition in (2.9). If Z is the density process of any such R, then ZX is a local P -martingale,

hence so is the product of Z and
R b�dX, and we conclude that

ZE
�
�
Z b�dX� 2 Mloc(P ):

But Z 2 M2(P ) by (2.9) and

E

"
sup

0�t�T

����E
�
�
Z b� dX�

t

����
2
#
= bE

"
1bZT sup

0�t�T

����E
�
�
Z b�dX�

t

����
2
#
<1

by (2.14) and (2.13) and so ZE
�
�
R b� dX� is a true P -martingale. Since bKT is deterministic,

we conclude from (2.10) that

ER[ bZT ] = e
bKT

for every signed local martingale measure R satisfying the integrability condition in (2.9),
and this completes the proof.

q.e.d.

For a general, not necessarily continuous processX, we have a third characterization of bP
under the stronger assumption that the entire process bK is deterministic. Although Theorem
8 looks quite similar to Theorem 7, we believe it is worth stating separately, because its proof
is entirely di�erent from the preceding one.

Theorem 8. Suppose that X satis�es the structure condition (SC). If the mean-variance

tradeo� process bK of X is deterministic, then bP is the unique solution of

Minimize D(Q;P ) over all signed local martingale measures(2:15)

Q for X with
dQ

dP
2 L2(P ):

Proof. Since bK is deterministic, hence bounded, bZ 2 M2(P ) by Th�eor�eme II.2 of Lepin-

gle/M�emin [14], and so bP satis�es the conditions in (2.15). Now �x any Q as in (2.15) and
denote by Z its density process with respect to P . Then Z 2 M2(P ) is a martingale density

for X and therefore

hZit =
tZ

0

Z
2
s� d

bKs + hRit ; 0 � t � T

11



for some R 2 M2
0;loc(P ) by (1.20) and (2.1). Since Z2 � hZi is a P -martingale whose initial

value is Z2
0 = 1 because of Q = P on F0, we thus have

(2:16) E[Z2
t
]� 1 = E[hZit] =

tZ
0

E[Z2
s�] d

bKs +E [hRit]

for all t 2 [0; T ], where the last step uses Fubini's theorem and the fact that bK is deterministic.

If we now de�ne the functions h and g on [0; T ] by

h(t) := E[Z2
t
] ; 0 � t � T

and

g(t) := 1 +E [hRit] ; 0 � t � T;

then Z 2 M2(P ) implies that

h(s�) = E[Z2
s�]:

Thus (2.16) shows that h satis�es the equation

h(t) = g(t) +

tZ
0

h(s�) d bKs ; 0 � t � T;

and by Th�eor�eme (6.8) of Jacod [12], h is therefore given by

(2:17) h(t) = E( bK)t +

tZ
0

E( bK)t

E( bK)s
dg(s) ; 0 � t � T;

since bK is increasing, hence � bK > �1. But since bK and g are both increasing and nonneg-
ative, we obtain

E

2
4
 
dQ

dP

����
Ft

� 1

!2
3
5 = E[Z2

t
]� 1 � E( bK)t � 1 = E

2
4
 
d bP
dP

����
Ft

� 1

!2
3
5 ;

where the last equality follows from (2.17) with g � 1 which corresponds toR � 0, i.e., Q = bP ;
the inequality is strict unless R � 0 P -a.s., i.e., Q = bP , and this proves the assertion.

q.e.d.

Remark. Actually, the preceding argument shows that bP even minimizes D
�
Q

��
Ft

; P

��
Ft

�
for each t 2 [0; T ] over all signed local martingale measures Q for X such that dQ

dP
2 L2(P );

the assumption that bK is deterministic seems therefore stronger than really necessary to

obtain Theorem 8.
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3. On the F�ollmer-Schweizer decomposition

Let X be a continuous IF -adapted IRd-valued process admitting a strict martingale density

and denote by bZ = E
�
�
R b�dM� the minimal martingale density for X. We recall from

Ansel/Stricker [1] the following

De�nition. An FT -measurable random variable H is said to admit a generalized F�ollmer-

Schweizer decomposition if there exist a constant H0, a predictable X-integrable process �H

and a local P -martingale LH strongly orthogonal toM i for each i such that H can be written

as

(3:1) H = H0 +

TZ
0

�
H

s
dXs + L

H

T
P -a.s.

and such that the process bZ bV is a P -martingale, where

(3:2) bV := H0 +

Z
�
H
dX + L

H
:

Recall from Jacod [13] and Chou/Meyer/Stricker [4] that a (possibly not locally bounded)
predictable process � is called X-integrable with respect to the semimartingale X if the se-
quence Y n =

R
�Ifj�j�ng dX converges to a semimartingale Y in the semimartingale topology;

the limit Y is then denoted by
R
� dX and called the stochastic integral of � with respect

to X. We do not explain here how the semimartingale topology is de�ned; we only remark
that those results of Chou/Meyer/Stricker [4] that we use below extend in a straightforward
fashion from their situation of a real-valued X to the case where X takes values in IRd. As
a matter of fact, the de�nition of a generalized F�ollmer-Schweizer decomposition given in
Ansel/Stricker [1] is slightly di�erent. They assume F0 to be trivial and allow X to be pos-
sibly discontinuous. However, the proof of Theorem 9 below shows that LH is null at 0 if F0

is trivial, and thus it follows from their Remarque (ii) that the two de�nitions agree for X
continuous and F0 trivial.

The main result of this section is a necessary and su�cient condition for H to admit a
generalized F�ollmer-Schweizer decomposition. For the case d = 1, i.e., if X is real-valued, this
is due to Ansel/Stricker [1]; we shall comment below on the di�culty in the multidimensional
case. Before we state our theorem, we introduce some notation. For any stochastic process

Y and any stopping time S, we denote by

Y
S = (Y S

t
)0�t�T := (Yt^S)0�t�T

the process Y stopped at S. Furthermore, hM iiqv denotes the pathwise quadratic variation of
M

i along a �xed sequence (�n)n2IN of partitions of [0; T ] whose mesh size

j�nj := max
t`;t`+12�n

jt`+1 � t`j tends to 0 as n!1. Then

(3:3) hM iiqv = hM iiP = [M i] P -a.s. for i = 1; : : : ; d.

Recall that hM iiP is the sharp bracket process associated to M
i with respect to P ; the

notational distinction between hM iiqv and hM iiP is made to clarify which de�nition of hM ii
is used.
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Theorem 9. Suppose that X is a continuous IF -adapted process admitting a strict martin-

gale density. An FT -measurable random variable H admits a generalized F�ollmer-Schweizer

decomposition if and only if H satis�es

(3:4) H bZT 2 L1(P ):

Proof. 1) De�ne the process N by

(3:5) Nt :=
1bZtE[H bZT jFt]

so that N bZ is a P -martingale by (3.4). Choose a localizing sequence (Tm)m2IN for the local

P -martingales bZ and X bZ, and de�ne for each m 2 IN the probability measure bPm on (
;F)
by

d bPm := bZTm

T
dP = bZTm dP:

Since bZ is strictly positive, bPm is equivalent to P , and

N
Tm bZTm = (N bZ)Tm

is a P -martingale by the stopping theorem; hence NTm is a bPm-martingale for each m, and
so is XTm by the same argument. Now �x m 2 IN and write

(3:6) N
Tm = N0 + (NTm )c + (NTm )d

for the decomposition ofNTm with respect to bPm into a continuous and a purely discontinuous
local bPm-martingale. Since both (NTm )c and XTm are continuous local bPm-martingales, the
Galtchouk-Kunita-Watanabe decomposition theorem implies that

(3:7) (NTm)c =

Z
�
m
dX

Tm + L
m

for a unique predictable process �m 2 L
2
loc(X

Tm ; bPm) and a unique continuous Lm in

M2
0;loc(

bPm) strongly bPm-orthogonal to each (XTm )i. In particular, �m isXTm-integrable with

respect to bPm by Propri�et�e c) of Chou/Meyer/Stricker [4]; hence Propri�et�e f) of Chou/Meyer/

Stricker [4] implies that �m is also XTm -integrable with respect to P � bPm. Furthermore,
(3.3) yields by polarization�

(XTm )i; Lm + (NTm )d
�
=


(XTm )i; Lm + (NTm )d

�qv
(3:8)

=


(XTm )i; Lm + (NTm )d

�bPm

= 0 P -a.s. for i = 1; : : : ; d,

since Lm and (NTm )d are strongly bPm-orthogonal to (XTm )i, and P � bPm.
2) Now de�ne processes �H and LH by setting

(3:9) �
H := �

m on [[0; Tm]]

and

(3:10) L
H := N0 �E[N0] + L

m + (NTm )d on [[0; Tm]]:

14



The �rst problem is then to show that these de�nitions make sense: since �m, Lm and (NTm)d

are obtained by decomposing with respect to di�erent measures bPm for di�erent m, it is not

clear a priori that they are consistent in the sense that �m+1 = �
m on [[0; Tm]] and so on.

Consider �rst (3.6). We want to show that

(3:11)
�
(NTm+1 )x;bPm+1

�Tm
= (NTm )x;bPm

for x 2 fc; dg;

where the superscripts indicate the measures with respect to which the decomposition (3.6) is

taken. Now �rst of all, (NTm+1 )c;bPm+1 2 Mc

loc(
bPm+1), so (NTm+1 )c;bPm+1 bZTm+1 2 Mc

loc(P ),

hence by stopping
�
(NTm+1 )c;bPm+1

�Tm
is inMc

loc(
bPm). An analogous argument shows that�

(NTm+1 )d;bPm+1
�Tm

is in Mloc( bPm). By the uniqueness of (3.6) with respect to bPm, (3.11)

will be proved once we show that R :=
�
(NTm+1 )d;bPm+1

�Tm
is strongly orthogonal to ev-

ery Y 2 Mc

loc(
bPm). But since bPm+1 and bPm are equivalent, Y is a continuous bPm+1-

semimartingale and can therefore be written as

Y = U
m+1 +B

m+1

with Um+1 2 Mc

loc(
bPm+1) and Bm+1 continuous and of �nite variation. Thus we obtain

hY;RibPm

= [Y;R] =
h
U
m+1

; (NTm+1 )d;bPm+1
iTm

=

 D
U
m+1

; (NTm+1 )d;bPm+1
EbPm+1

!Tm

= 0

from (3.3) and the fact that Um+1 is continuous and (NTm+1 )d;bPm+1

purely discontinuous

with respect to bPm+1. This proves (3.11). Now consider (3.7). By (3.11),

(NTm )c;bPm

=
�
(NTm+1 )c;bPm+1

�Tm
=

�Z
�
m+1

dX
Tm+1

�Tm
+ (Lm+1)Tm

=

Z
�
m+1

I[[0;Tm]] dX
Tm + (Lm+1)Tm ;

where the second equality uses (3.7) with m+1 instead of m. By the uniqueness of (3.7) with

respect to bPm, it is therefore enough to show that (Lm+1)Tm is strongly bPm-orthogonal to

(XTm )i for each i, since this implies both that Lm =
�
L
m+1

�Tm
and that �m = �

m+1
I[[0;Tm]].

But Lm+1 2 Mc

loc(
bPm+1), so (Lm+1)Tm 2 Mc

loc(
bPm) and therefore



(Lm+1)Tm ; (XTm)i

�bPm

=


(Lm+1)Tm ; (XTm )i

�qv
=
�

L
m+1

;X
i
�qv�Tm

=
�

L
m+1

; (XTm+1 )i
�qv�Tm

=

�

L
m+1

; (XTm+1 )i
�bPm+1

�Tm
= 0
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by (3.3) and the strong bPm+1-orthogonality of Lm+1 to (XTm+1 )i for each i. Thus �H and

L
H are indeed well-de�ned by (3.9) and (3.10), respectively.

3) Since each �
m is predictable and X

Tm-integrable, �H is also predictable and X-

integrable by Th�eor�eme 4 of Chou/Meyer/Stricker [4]. If we set

(3:12) H0 := E[N0];

then (3.6), (3.7), (3.9) and (3.10) show that

N = H0 +

Z
�
H
dX + L

H = bV
by (3.2), so (3.1) holds by the de�nition of N , and bZ bV = bZN is a P -martingale. Since

(3:13) [LH ;M i]Tm = [LH ;Xi]Tm =
�

L
H
;X

i
�qv�Tm

=


L
m + (NTm )d; (XTm )i

�qv
= 0

for all m; i by the continuity of A, (3.3), (3.10) and (3.8), it only remains to show that LH is

a local P -martingale. To that end, it is enough to show that

(LH )Tm = L
m + (NTm )d +N0 �E[N0]

is a local P -martingale for each m, and since bPm � P with density process bZTm, this is
equivalent to showing that Lm + (NTm )d is strongly bPm-orthogonal to 1bZTm

for each m. But

(2.11) implies that

1bZTm

= E
�Z b� dX�Tm = E

�Z b�dXTm

�
;

hence the required strong orthogonality follows from (3.8), and this completes the proof.
q.e.d.

Remarks. 1) As mentioned above, Theorem 9 was already obtained by Ansel/Stricker [1]
for the case d = 1. Their proof is considerably shorter since for d = 1, �H can be de�ned
directly by setting

�
H =

dhX;Niqv
dhXiqv

:

The properties of �H and LH are then derived by showing that on [[0; Tm]], �
H coincides with

the integrand �m in the Kunita-Watanabe decomposition (3.7). For d > 1, no such explicit

formula for �H is available and thus �H and LH must be pasted together as in the preceding
proof.

2) If E[ bZT ] = 1 so that bZ is not only a local martingale, but a true martingale under P ,

the proof of Theorem 9 also simpli�es considerably. In fact, we can then argue directly with

the minimal equivalent local martingale measure bP instead of using bPm. Thus �H and LH

can immediately be constructed globally, and part 2) of the above proof can be dispensed

with. In addition, the constant H0 is then given by H0 = bE[H], due to (3.12) and (3.5).

In some situations, it is desirable to have more integrability for �H and LH in the decom-
position (3.1) of H; see for instance F�ollmer/Schweizer [10] or Schweizer [16] for applications
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to hedging problems in �nancial mathematics. The next result shows how this can be deduced

from assumptions on bK and H.

Corollary 10. Suppose that X is a continuous IF -adapted process admitting a strict mar-

tingale density. If the mean-variance tradeo� process bK ofX is bounded and ifH 2 Lp(P;FT )
for some p > 1, then H admits a generalized F�ollmer-Schweizer decomposition with

�
H 2 Lr(M) and LH 2 Mr(P ) for every r < p.

Proof. Since bK is bounded, (2.12) holds; thus bZ is a martingale and the minimal equivalent

local martingale measure bP exists. Now �x p > 1 and H 2 Lp(P;FT ). Then (2.12) implies

by H�older's inequality that H bZT is in L1(P ), so H admits a decomposition (3.1) by Theorem

9, and it only remains to prove the integrability assertions concerning �H and LH . But (3.2),

(3.3), continuity of A and (3.13) imply that

TZ
0

(�H
s
)tr�s�

H

s
dBs =

�Z
�
H
dM

�P

T

=

�Z
�
H
dM

�
T

=

�Z
�
H
dX

�
T

�
�bV �

T

and �
L
H
�
T
�
�bV �

T
;

and since LH is a local P -martingale we have

E

��
sup

0�t�T

��LH
t

���r� � const. E
h�
L
H
� r
2

T

i

for r > 1 by the Burkholder-Davis-Gundy inequality. Hence �H 2 Lr(M) and LH 2 Mr(P )
will both follow for every r < p once we have proved that

(3:14)
�bV �

T
2 L r

2 (P ) for every r < p.

But bV bZ is a P -martingale by Theorem 9, so bV is a bP -martingale and thus

bE h��bV �
T

�si
� const. bE

"�
sup

0�t�T

��bVt��
�2s

#
� const. bE h��bVT ��2si

for 2s > 1 by the Burkholder-Davis-Gundy inequality and Doob's inequality. Since p > 1 andbVT = H 2 Lp(P ) by (3.1), (2.12) implies that bVT 2 L2s( bP ) for 2s < p, hence
�bV �

T
2 Ls( bP )

for every s < p

2 , so (3.14) follows by (2.14), and this completes the proof.
q.e.d.
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