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Closed Form Term Structure Derivatives

in a Heath-Jarrow-Morton Model

with Log-Normal

Annually Compounded Interest Rates

Abstract

Starting with observable annually compounded forward rates we derive a term

structure model of interest rates. The model relies upon the assumption that a

speci�c set of annually compounded forward rates is log-normally distributed. We

derive solutions for interest rate caps and oors as well as puts and calls written

on zero-coupon bonds. In particular, for caplets with payment periods of same

length as the compounding period (in our paper we have chosen one year, but

it could be as well three or six months with quarterly or biannual compounding)

we obtain the same Black formula as often used by market practioners, however,

without making the unrealistic assumption that forward rates are independent of

the accummulation process. Moreover, the log-normal assumption is shown to be

consistent with the Heath-Jarrow-Morton model for a speci�c choice of volatility.

Jel Classi�cation: G13
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1 Introduction

Closed-form solutions for interest rate derivatives, in particular caplets, bond op-

tions and swaptions, have been obtained by a number of authors for Markovian

term structure models with normally distributed interest rates resp. log-normal

bond prices, see e.g. El Karoui{Rochet (1989), Jamshidian (1990), Heath{Jarrow{

Morton (1992) and Brace{Musiela (1993). These models support Black{Scholes

type formulae most frequently used by practioners for pricing caplets, bond op-

tions and swaptions. Unfortunately these models imply negative interest rates

with positive probability, and hence are not arbitrage free in an economy where

money exists. Log-normal volatility structures avoid these problem of negative

interest rates. However as shown by Morton (1988) and Hogan{Weintraub (1993)

these rates explode with positive probability implying zero prices for bonds and

hence also arbitrage opportunities. Furthermore so far no closed form solutions are

known for these models.

As has been observed by Sandmann{Sondermann (1993) the problems of rate explo-

sion result from modelling the "wrong" rate, namely the continuously compounded

rate. Assuming that the continuous rate is log-normal results in "double exponen-

tial" expressions, i.e. where the exponential function is itself an argument of an

exponential, thus giving rise to in�nite expectations under the martingale measure.

The problem disappears if, instead of the continuous rate, one assumes that the

e�ective annual rates are log-normal. In practice interest rates, both spot and for-

ward are quoted as rates per annum, even if the compounding period is di�erent,

e.g. three months. E�ective annual rates are then used as benchmark for compar-

ing nominal rates with di�erent compounding periods. Hence these rates and their

volatilities are directly observable in the market and form a natural starting point

for modelling the term structure2. Assuming that the e�ective annual rates are

log-normal, it follows that the continuously compounded short rate rc(t) follows a

di�usion which is neither normal nor log-normal, but a dynamic combination of

both with the following properties: for small values of rc(t) the di�usion process

approaches a log-normal di�usion3, thus generating positive rates, whereas for large

values of rc(t) the di�usion approaches a normal di�usion process, generating sta-

ble �nite expected returns and futures values. It thus combines { in a very simple

and straightforward manner { the strengths of the normal and log-normal model

and avoids their shortcomings. This type of dynamics of rc(t) has been supported

by an independent empirical study by Miltersen (1993a).

The main result of this paper is the derivation of solutions for interest rate caps and

oors as well as puts and calls written on zero-coupon bonds within the context of

a log-normal interest rate model. In some speci�c cases these solutions are closed

2See also Goldys, Musiela and Sondermann (1994).
3Indeed, if the continuous rate rc(t) becomes in�nitesimally small, i.e. rc(t) = 0(dt), then the

two dynamics coincide, for further details see Sandmann-Sondermann (1993).
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forms and coincide with modi�cations of the Black-Scholes formula. In particu-

lar, for caplets with payment periods of same length as the compounding period4

we obtain the usual Black formula often used by market practioners, however,

without making the unrealistic assumption that forward rates are independent of

the accummulation process. Thus in this case our model supports market prac-

tice. Moreover, the log-normal assumption is shown to be consistent with the

Heath-Jarrow-Morton model for a speci�c choice of volatility. Since the model

imply non-negative interest rates with probability one, the model is, in addition,

arbitrage free in an economy where money exists.

The paper is organized as follows. Section 2 contains the model and the relationship

to the Heath-Jarrow-Morton framework. A discussion about the induced forward

yield dynamics is given in Section 3. The solutions for interest rate derivatives

are derived in Section 4. Appart from the proof of Proposition 1 the Appendix

contains a further discussion about the situation within a log-normal multi-factor

interest rate model.

2 A Model of Annually Compounded Forward

Rates

By r(t; x; �) we will denote the annually compounded interest rate prevailing at

time t for the future time interval [t+ x; t + x + �]. With � we �x the length of

the time period and by x the forward starting point of the contract is speci�ed.

Note that r(t; x; �) are observable market rates. I.e. for � = 0:25 and xi = i �� the

sequence fr(t; xi; �)gni=1 is a sequence of three month forward rate agreements valid

at time t quoted on annually compounding basis. Due to the de�nition of r(t; x; �),

as t moves, we observe this sequence of forward rate agreements as a time series

as t moves. Furthermore, we can now de�ne the relationships between on the one

side zero-coupon bond prices B(t; x), the continuously compounded forward rates

f(t; x), and the continuously compounded (forward) yields y(t; x) or y(t; x; �) and

on the other side to the annually compounded forward rate r(t; x; �).

a) Let B(t; x + �) be the price of a default free zero-coupon bond, at time t,

with maturity t+ x+ � and face value 1. Per de�nition

B(t; x+ �) = B(t; x) � (1 + r(t; x; �))��:

b) We de�ne the continuously compounded forward rate prevailing at time t for

the time t+ x as f(t; x) = lim�!0 ln(1 + r(t; x; �)). Since

ln(1 + r(t; x; �)) = �
1

�
[lnB(t; x+ �)� lnB(t; x)]; (1)

implying that f(t; x) = �
@

@x
lnB(t; x): (2)

4In the paper we have chosen one year, but it could be as well three or six months with

quarterly or biannual compounding.
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c) The continuously compounded yield y(t; x), at time t, for the time interval

[t; t+ x] is thus de�ned by

B(t; x) = expf�x � y(t; x)g = exp

�
�
Z x

0
f(t; �)d�

�

which imply

y(t; x) =
1

x

Z x

0
f(t; �)d�

and the continuously compounded forward yield y(t; x; �) is determined by

B(t; x+ �)

B(t; x)
= exp

�
�
Z x+�

x
f(t; �)d�

�
= exp f��y(t; x; �)g (3)

implying

y(t; x; �) =
1

�

Z x+�

x
f(t; �)d�:

So far these relations have to hold per de�nition. Any stochastic assumption upon

one of these instruments induces the stochastic behaviour of the remaining objects.

The starting point of the Heath-Jarrow-Morton model is a stochastic description

of the continuously compounded forward rates. The signi�cance of this approach

is that the consequences of no arbitrage can be made precise. In other words the

Heath-Jarrow-Morton model is a brilliant theoretical framework for the modelling

of the term structure of interest rates under no arbitrage. In this paper, we in-

troduce the Heath-Jarrow-Morton model in order to enlighten the question of the

existence of an equivalent martingal measure for the description of the interest

rate market. In this sense the Heath-Jarrow-Morton model can be interpreted

as the term structure of interest rates counter part to the Black-Scholes model

in that both models describe the stochastic behaviour of the underlying security.

Despite this consistency of the theoretical basis both modelling backgrounds are

of di�erent quality from an empirical point of view. Whereas the distributional

assumption of the Black-Scholes model is relative to observable prices as stock

prices, exchange rates, stock index notations, etc. The continuously compounded

forward rates in the Heath-Jarrow-Morton model are not at �rst glance observ-

able market data. The question remains why one should start with assumptions

on the stochastic behaviour of continuously compounded rates since the empiri-

cal investigation of the plausability of these assumptions can only be analysed on

the basis of observable prices or rates. However, the behaviour of these observ-

able prices or rates is endogenously determined by the model of the continuously

compounded forward rate process. That is, there is only an indirect relation be-

tween the assumptions and the empirically observed behaviour of the model. The

question is, is this relation one-to-one? The idea of the paper is in a sense to

turn the Heath-Jarrow-Morton model upside-down. More precisely, starting with

exogenously given behaviour of annually compounded forward rates we want to

characterize the endogeneous Heath-Jarrow-Morton model supporting this struc-

ture. The building block of the model is a family of annually compounded forward

rates. Each annually compounded forward rate is determined by the two parame-

ters (x; �). The market-data prevailing at time t is thus de�ned by the following
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two dimensional �nite set

� = f(x1; �1); : : : ; (xk; �k)g

where for each (x; �) 2 � there exists an empirically observable annually com-

pounded forward rate with starting point at time t+ x and maturity t+ x+ �.

In general, this set can change over time but for simplicity we assume that it is

invariant with respect to time. Furthermore, we assume that for each (x; �) 2 � the

annually compounded forward rate process r(t; x; �) follows a log-normal di�usion

process, i.e.,

dr(t; x; �) = �(t; x; �; r)dt+ (t; x; �)r(t; x; �)dWx;�; (4)

where the instantaneous drift and volatility are such that there exists a strong

unique solution of the stochastic di�erential equation which is log-normally

distributed.5 By Wx;�(t) we denote a standard Wiener process which could be

dependent on (x; �). For the moment there are no restrictions on the set �, but

obviously given the distributional assumptions on the annually compounded for-

ward rates the no arbitrage condition will imply restrictions on the set �, i.e. on the

number and structure of elements of � which can be exogenously considered. First

of all we want to consider the consequences of the assumptions implied by Equa-

tion (4) on the dynamics of the continuously compounded forward rate process

f(t; x), if we assume that Wx;�(t) = W (t) is independent of (x; �).

From Equation (3) we know that

(1 + r(t; x; �))�� = exp

�
�
Z x+�

x
f(t; �)d�

�
= expf��y(t; x; �)g:

Setting y(t) = y(t; x; �) = 1
�

R x+�
x f(t; �)d� , Itô's lemma gives

dr(t; x; �) = d
�
ey(t) � 1

�
= ey(t)

�
dy(t) +

1

2
d hyi (t)

�
: (5)

From Musiela and Sondermann [1993] we know how to specify the drift term of the

dynamics of any zero-coupon bond B(t; x) under the risk neutral measure. This is

given by

dB(t; x) = B(t; x) [(f(t; 0) � f(t; x))dt� � (t; x)dW (t)] ; (6)

where � is a given return volatility of the zero-coupon bond. Furthermore, Equa-

tion (2) and (6) and Itô's lemma imply

df(t; x) =
@

@x

�
(f(t; x) +

1

2
� 2(t; x))dt+ � (t; x)dW (t)

�
(7)

where @�(t;x)

@x
determines the volatility function of the continuously compounded

forward rate f(t; x). We can now derive

dy(t) =
1

�

Z x+�

x
df(t; �)d�

5This implies that (t; x; �) is deterministic and it also puts strong conditions on �(t; x; �; r).

E.g. deterministic or linear in r works.
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=
1

�

Z x+�

x

@

@�

�
(f(t; �) +

1

2
� 2(t; �))dt+ � (t; �)dW (t)

�
d�

=
1

�

�
f(t; x+ �)� f(t; x) +

1

2
(� 2(t; x+ �)� � 2(t; x))

�
dt

+
1

�
[� (t; x+ �)� � (t; x)]dW (t)

d hyi (t) =
1

�2
[� (t; x+ �)� � (t; x)]

2
dt

De�ne (t; x; �) as the exogeneously given volatility of the annually compounded

forward rate process r(t; x; �). We can then conclude by matching drift terms of the

quadratic variation processes that the function � (t; x) must satisfy the condition:

d hr(�; x; �)i (t) = 2(t; x; �) � r2(t; x; �)dt

=
1

�2

�
ey(t)

�2
(� (t; x+ �)� � (t; x))2dt

=
�
ey(t)

�2
d hyi (t)

This yields the following necessary condition for the Heath-Jarrow-Morton term

structure model that supports the assumption of a log-normally distributed annu-

ally compounded forward rate r(t; x; �):

1

�
(� (t; x+ �) � � (t; x)) =

�
1� exp

�
�
1

�

Z x+�

x
f(t; �)d�

��
(t; x; �) (8)

= (1 � exp f�y(t; x; �)g) (t; x; �):

For � = 0 the case is elementary because we have the following simple relation

between r(t; x; 0) and f(t; x):

1 + r(t; x; 0) = ef(t;x);

implying

�(t; x) =
@� (t; x)

@x
= lim

�!0

1

�
[� (t; x+ �)� � (t; x)] (9)

= (1� exp f�f(t; x)g) � lim
�!0

(t; x; �)

where �(t; x) is the volatility function of the corresponding Heath-Jarrow-Morton

model. From Morton (1988) we know that the stochastic di�erential equation

describing the continuously compounded forward rate process of the Heath-Jarrow-

Morton model, f(t; x), has a unique strong solution with this volatility function.

Moreover this volatility function ful�lls the conditions in Miltersen (1993b) which

implies that the continuously compounded forward rates are positive. This case of

� = 0 is also the subject in Goldys, Musiela, and Sondermann (1994)6.

6For � > 0 the case is not so simple. And we have not so far been able to �nd the volatility of

the underlying supporting Heath-Jarrow-Morton model. We will hopefully be able to solve this

problem soon.
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3 Dynamics of the forward price process

Let us denote by F (t; T; �) the forward price, at time t � T , of a zero coupon bond

for delivery at time T which pays 1 $ at time T + �. No arbitrage implies

F (t; T; �) :=
B(t; T � t+ �)

B(t; T � t)
= exp

(
�
Z T�t+�

T�t
f(t; �)d�

)
: (10)

In contrast to Section 2, we are now considering the situation where the time to

maturity is not �xed, i.e. if time t moves the time to maturity T � t gets smaller.

The reason is when looking at interest rate contingent claims as e.g. caps and oors

we have to consider hedging strategies. As usual these hedging strategies consist of

a self-�nancing portfolio which dublicates a given contingent claim. Therefore the

dynamics of the portfolio value is only dependent on the dynamics of the involved

interest rate securities. Under no-arbitrage the initial value of the portfolio, at time

t0, coincides with the arbitrage price of the contingent claim which is duplicated

by this portfolio strategy. Thus the stochastic processes of the underlying interest

rate securities determines the arbitrage price of any redundant contingent claim.

In line with the assumptions in Section 2, we assume that there exists an e�ective

rate r(t; T � t; �) which satis�es the log-normal assumption (3) such that

F (t; T; �) = (1 + r(t; T � t; �))
��

:

In other words, we assume that (T � t; �) 2 � 8t � T . As a consequence the set

of observable e�ective rates is now time dependent on the whole interval. Setting

y(t) = y(t; T � t; �) :=
1

�

Z T�t+�

T�t
f(t; �)d� =

1

�

Z �

0
f(t; T � t+ �)d�

we can compute the dynamic behaviour of the forward price process in analogy to

Section 2 by:

dF (t; T; �) = d (1 + r(t; T � t; �))
��

= d [ exp f��y(t)g ] (11)

= �� exp f��y(t)g
�

dy(t)�
�

2
d hyi (t)

�

= �� F (t; T; �)

�
dy(t)�

�

2
dhyi(t)

�
:

Furthermore, we know that

dy(t) =
1

�

Z �

0
df(t; T � t+ �)d�

=
1

�

Z �

0

@

@�

�
(f(t; T � t+ �) +

1

2
� 2(t; T � t+ �))dt+ � (t; T � t+ �)dW (t)

�
d�

=
1

�

�
f(t; T � t+ �) � f(t; T � t) +

1

2
(� 2(t; T � t+ �) � � 2(t; T � t))

�
dt

+
1

�
[� (t; T � t+ �) � � (t; T � t)]dW (t)
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d hyi (t) =
1

�2
[� (t; T � t+ �) � � (t; T � t)]

2
dt

= (1 � expf�y(t; T � t; �)g)2 2(t; T � t; �)

Given the log-normal assumption for the e�ective rate per annum r(t; T�t; �), the

stochastic process of the forward price is determined by the above equations. In

particular the process of the quadratic variation of the forward price is given by:

d hF i (t; T; �) = �2F 2
�
1� F

1

�

�2
2(t; T � t; �) dt : (12)

We can conclude that the resulting volatility �
�
1� F

1

�

�
(t; T � t; �) of the for-

ward price process is state and time dependent.

4 Pricing of interest rate derivatives

In this section we focus on the arbitrage price of interest rate derivatives. More

precisely we consider two special interest rate derivatives: interest rate caps and

oors and European type debt options where the underlying security is a zero

coupon bond. Since the construction of the underlying term structure model is

very closely related to the Black-Scholes model, we should expect similar pricing

formulae for these derivatives within our model. Nevertheless we show that only in

very special situations modi�cations of known closed form solutions for the pricing

of interest rate derivatives are supported by this model. In most circumstances

numeric methods are needed to compute the arbitrage price for these interest rate

derivatives.

Caps and oors are special types of options where a nominal interest rate is the

underlying security. The underlying interest rate could be for example the 3- or

6-month LIBOR. A cap is an insurance against upward moving interest rate and a

oor against downward moving interest rate. Let L be a nominal interest rate with

compounding period �, i.e. for � = 0:25 the 3-month LIBOR. Let T = f0 = t0 <

t1 < � � � < tNg be a set of times such that � = ti+1 � ti 8i = 0; � � � ; N � 1. Fix

now some date ti 2 T , then a cap contract with level L, face value V , underlying

nominal interest rate ~r and payment dates T n ft0g is de�ned by the payo� at all

times ti 2 T n ft0g:

V � [~r(ti�1)� L]
+
= V �maxf~r(ti�1)� L; 0g :

Here we denote with ~r(t) the nominal interest rate valid at t with compounding

period of length �. Clearly the relation between ~r(t) and the e�ective rate r(t; 0; �)

is given by

(1 + �~r(t))
1

� = 1 + r(t; 0; �):

Since the nominal rate of the underlying interest rate ~r(ti�1) is known at time ti�1
the present value of this payo� at time ti�1 is equal to:

B(ti�1; �)V � [~r(ti�1)� L]
+
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= B(ti�1; �)V [1 + �~r(ti�1)� (1 + �L)]
+

= V

"
1�

1 + �L

(1 + r(ti�1; 0; �))
�

#+
(13)

= V (1 + �L)

"
1

1 + �L
�

1

(1 + r(ti�1; 0; �))
�

#+

where under the no-arbitrage assumption and the absence of transaction costs we

have

B(ti�1; �) (1 + �~r(ti�1)) = 1 :

Since a cap pays at each time ti 2 T nft0g, the total payment is a linear combination

of these so-called caplets with payo� given by (13). The oor is just the opposite

contract. At each time ti 2 T n ft0g the payo� is de�ned by:

V � [L� ~r(ti�1)]
+

and the present value at time ti�1 is determined by:

B(ti�1; �)V � [L � ~r(ti�1)]
+
= V (1 + �L)

"
1

(1 + r(ti�1; 0; �))
� �

1

1 + �L

#+
:

(14)

Therefore the payo� of a cap resp. a oor at each time ti�1 is equivalent to V (1+�L)
times that of a European type put option resp. a call option with exercise date

ti�1, exercise price K = 1
1+�L

where the underlying security is a zero coupon bond

with maturity ti�1 + �. Thus the arbitrage price of a cap or a oor is equal to

the arbitrage price of a portfolio formed by european type put resp. call options.

Furthermore focusing on one payment date the time ti�1 the forward arbitrage price
of the payo� (13) resp. (14) is completely determined by the stochastic process of

the forward price

B(t; ti�1 � t+ �)

B(t; ti�1 � t)
=

1

(1 + r(t; ti�1 � t; �))
� = F (t; ti�1; �) :

The same argument is also valid for european type debt options on zero coupon

or coupon bonds7, i.e. the arbitrage price of these contracts is determinded by the

forward price process. This has now a very useful consequence with respect to

those portfolio strategies which are self-�nancing and duplicate a given contingent

claim. As already shown by M�uller (1985) a portfolio strategy is self-�nancing

and duplicates a given contingent claim on the spot market if and only if it is

self-�nancing and duplicates this contingent claim on the forward market. In other

words we are free to choose whether we consider the spot or forward market. From

these observations we can now compute the arbitrage price of any contingent claim

which depends only on some forward price processes F (t; T; �). As already proved

by Rady and Sandmann in the context of european type debt options the arbitrage

price on the forward market is characterized by the following theorem:

7see e.g. Rady, Sandmann (1994)
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Theorem 1:

Suppose the process of the quadratic variation of the forward price process

F (t; T; �) is given by a function �(t; z) on [0; T ]� [0; 1], i.e.

d hF i (t; T; �) = �2(t; F (t; T; �))dt :

Let u(t; z) be a continuous function on [0; T ]� [0; 1] and a solution of the partial

di�erential equation

0 = ut(t; z) +
1

2
�2(t; z)uz;z(t; z) (15)

on [0; T ]�]0; 1[. Then, the portfolio strategy � = (�1; �2) on the forward market

de�ned by

�1(t) = uz(t; F (t; T; �)) and �2(t) = u(t; F (t; T; �))� uz(t; F (t; T; �))F (t; T; �)

is self-�nancing.

a) Moreover, suppose u has a terminal value u(T; x) = A[K � x]+ for some

A > 0 and satis�es 0 � u(t; x) � AK, then for A = 1 the portfolio strategy

� duplicates a European put option with exercise price K, exercise date T

and underlying zero coupon bond B(t; T � t+ �), resp. for A = V (1 + �L)

the time T present value of the cap payment at time T + � with face value

V , cap level L = 1�K
�K

and underlying nominal interest rate ~r(t; T; �).

b) If u has a terminal value u(T; x) = A[x�K]+ for some A > 0 and satis�es

A[x�K]+ � u(t; x) � Aminfx; 1�Kg, then for A = 1 the portfolio strategy

� duplicates a European call option with exercise price K, exercise date T

and underlying zero coupon bond B(t; T � t+ �), resp. for A = V (1 + �L)

the time T present value of the oor payment at time T + � with face value

V , cap level L = 1�K
�K

and underlying nominal interest rate ~r(t; T; �).

Proof of theorem 1:

The de�nition of the portfolio strategy � = �1; �2 implies that the value process of

the portfolio on the forward market satis�es

V (�(t)) = �1(t)
B(t; T � t+ �)

B(t; T � t)
+ �2(t)

= �1(t)F (t; T; �) + �2(t) = u(t; F (t; T; �)) :

By Ito's lemma and (15) this implies:

dV (�(t)) =

�
ut(t; F (t; T; �)) +

1

2
�2(t; F (t; T; �))ux;x(t; F (t; T; �))

�
dt

+ux(t; F (t; T; �))dF (t; T; �)

= ux(t; F (t; T; �))dF (t; T; �)

= �1(t)dF (t; T; �) = �1(t)

 
d
B(t; T � t+ �)

B(t; T � t)

!
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Thus the portfolio strategy is self-�nancing on the forward market. By the usual

no-arbitrage argument the forward price of a contingent claim with terminal payo�

u(T;F (T; T; �)) at time T is therefore equal to u(t; F (t; T; �)) whereas the spot

arbitrage price of this contingent claim is given by B(t; T � t)u(t; F (t; T; �)). The

restriction on the function u(t; x) given in a) resp. b) is due to the fact that the

state space of the forward price process is equal to [0; 1] given the log-normal

distribution assumption on r(t; x; �)8(x; �) 2 �.

2

To compute the arbitrage price of interest rate derivatives we usually have to

compute in the �rst place the entire term structure curve. This determines then

the state space, i.e. the drift process of the underlying factors is endogeneously

determined with respect to the initial term structure of interest rates and the model

assumptions. This procedure involves in most cases numeric techniques which can

be very time consuming. With thereom 1 the problem to price a interest rate

contingent claim within the framework of a term structure model is reduced to

the solution of the partial di�erential equation (15) with the appropiate endvalue

condition. More precisely the question whether we have to use the entire term

structure model to derive the arbitrage price of a speci�c contingent claim or not

depends on two circumstances:

� First, whether the payo� of the contract depends on one interest rate instru-

ment or on some set of the entire term structure. In the case of caps, oors

or European type call and put options only a speci�c forward price process

determines the arbitrage price. Independent of the precise log-normal dis-

tribution assumption we therefore cannot expect that the arbitrage price of

European type debt options is dependent on the entire term structure model

as long as the volatility process of each of the continuously compounded

forward rate is independent of the other forward rates. Beside the stochas-

tic process of the forward price, the remaining information contained in the

term structure is without any e�ect for the pricing of a debt option under this

structural form of the volatlity. The di�erence between the so-called indirect

approach via a model of the term structure of interest rates and the direct

approach, i.e. a model of the price processes of zero coupon bonds is thus

without consequence for the pricing of European type debt options. If we

consider e.g. a term structure model with normal distributed continuously

compounded forward rates as generated in the limit by the Ho-Lee model

(1986), then the arbitrage price of a European type call or put option where

the underlying security is a zero coupon bond is exactly equal to the duration

model of Kemna, de Munik and Vorst (1989).

� Secondly, whether the involved forward rate is a factor of the model or not,

i.e. an element of the exogeneously given set �. The relevance of this re-

striction is not independent of the distribution assumption. In the case of

normal distributed continuously compounded forward rates this has no con-

sequences. If instead the distributional assumption is imposed on e�ective
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forward rates then the set � is of relevance. As shown in the appendix the

log-normal distribution assumption is not satis�ed for those processes which

can be duplicated by elements in �. The process of such rates has to be de-

termined within the term structure model and is endogeneously determined.

The arbitrage price of contingent claims depending on such forward rates is

inuenced by at least a part of the term stucture. This is also valid if we

assume normal distributed e�ective forward rates instead of the log-normal

distribution.

Given these remarks we can now consider the arbitrage price of caps, oors and

European call and put options under the assumption of log-normal distributed ef-

fective forward rates. If the underlying forward price process is not associated with

one element in the set of observable e�ective forward rate processes per annum,

�, the volatility function �(:; :) is a function of some elements of the set �. In

general, we cannot expect to go far beyond the statement of theorem 1. If in-

stead the e�ective forward rate process is associated with one e�ective rate within

�, the log-normal distribution assumption implies that the arbitrage price of the

contingent claim is a solution of the partial di�erential equation (15), i.e.

0 = ut(t; F ) +
1

2
�2F 2

�
1 � F

1

�

�2
uF;F (t; F )

2(t; T � t; �) (16)

subject to some terminal value condition u(T;F ). In the special situation where

� = 1 we can now derive closed form solutions for some interest rate contingent

claims.

Proposition 1:

Suppose that for the forward price process given by B(t;T�t+1)
B(t;T�t) = 1

(1+r(t;T�t;1) the

e�ective forward rate per annum r(t; T � t; 1) is an element of � then the arbi-

trage price of a European call option with exercise price K, exercise time T and

underlying zero coupon bond B(t; T � t+ 1) is equal to:

Call[t; B(t; T � t+ 1); B(t; T � t); T;K] (17)

= B(t; T � t+ 1) �N(e1)�K �B(t; T � t) �N(e2)

�K �B(t; T � t+ 1) � (N(e1)�N(e2))

with:

e1n2 =
1

s(t; T; 1)

 
ln

 
B(t; T � t+ 1)(1�K)

(B(t; T � t)�B(t; T � t+ 1))K

!
�
s2(t; T; 1)

2

!

s2(t; T; 1) =

Z T

t
2(�; T � �; 1)d� ;

where N(:) denotes the standard normal distribution.

Within the context of a bond price based model the closed form solution was

�rst derived by K�asler (1991). A discussion of this model relative to other bond

price based models can be found in Rady and Sandmann (1994). The proof of
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proposition 1 follows the presentation in Rady and Sandmann8. We can now apply

proposition 1 to the pricing of interest rate caps and oors.

Proposition 2:

Let T = f0 � t0 < t1 < � � � < tNg be a set of times with ti+1 � ti = � = 1 8i =
0; : : : ; N � 1. Suppose that (ti � t; 1) 2 � 8t � ti 2 T n ft0g, i.e. the e�ective

forward rates r(t; ti � t; 1) are log-normal distributed, then the arbitrage price of

an interest rate cap at time t � t0 with yearly payment dates ti 2 T n ft0g, face
value V and interest rate level L is given by:

Cap[t; L; V; T n ft0g] (18)

= V �
N�1X
i=0

B(t; ti+1 � t) [r(t; ti � t; 1) �N(d1(t; ti; 1))� L �N(d2(t; ti; 1))]

with:

d1n2(t; ti; 1) =
1

s(t; ti; 1)

 
ln

 
r(t; ti � t; 1)

L

!
�
s2(t; ti; 1)

2

!

s2(t; ti; 1) =

Z ti

t
2(�; ti � �; 1)d� ;

where N(:) denotes the standard normal distribution.

Proof of proposition 2:

Under the assumptions of proposition 2 we can consider each payment of the cap

contract separately. With (13) each cap payment is equivalent to V (1 + L) times

the payo� of a European put option where the underlying security is a special

zero coupon bond. Consider e.g. a caplet with payment at time ti+1. The time ti
present value of this payo� can be written as:

V (1 + L) =

"
1

1 + L
�

1

1 + r(t; 0; 1)

#+

which is equal to V (1 + L) times the payo� of a European put option

with exercise price K = 1
1+L

, exercise date ti and underlying zero coupon

bond B(t; ti+1 � t) = B(t; ti � t + 1) = B(t; ti � t) (1 + r(t; ti � t; 1))
�1
.

By proposition 1 the arbitrage price of this put option is equal to:

V (1 + L) [KB(t; ti � t)N(�e2)�B(t; ti+1 � t)N(�e1)

� KB(t; ti+1 � t) (N(e1)�N(e2))]

= V B(t; ti+1 � t) [(1 + r(t; ti � t; 1))N(�e2)� (1 + L)N(�e1)� (N(e1)�N(e2))]

= V B(t; ti+1 � t) [r(t; ti � t; 1)N(�e2)� LN(�e1)]

where

�e1n2 =
�1

s(t; ti; 1)

 
ln

 
B(t; ti+1 � t)(1�K)

(B(t; ti � t)�B(t; ti+1 � t))K

!
�
s2(t; ti; 1)

2

!

8For completeness we give the outline of the proof and the corresponding formula for the

European put option in the appendix.
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=
�1

s(t; ti; 1)

 
ln

 
1 � 1

1+L

r(t; ti � t; 1) 1
1+L

!
�
s2(t; ti; 1)

2

!

=
1

s(t; ti; 1)

 
ln

 
r(t; ti � t; 1)

L

!
�
s2(t; ti; 1)

2

!

= d2n1 :

By summing up this yields the pricing formular for a cap.

2

The pricing formula (18) for a cap9 is a modi�cations of the Black-Scholes formula

for a call option. The reason for this is the assumption of log-normal distributed

e�ective interest rates. As already mentioned this formula is only valid for � = 1,

i.e. for a time grid of one year. If � < 1 as it is usually the case for caps and

oors the arbitrage price of the caplets resp. oor payments is a solution of the

partial di�erential equation (15). In the situation of proposition 1 and 2 this can be

reduced to the partial di�erential equation (16) . But still for � < 1 this solution

has to be computed by numeric techniques as e.g. �nit di�erences. In other words,

modi�cations of the Black-Scholes formulae to price interest rate derivatives can

only be supported by a log-normal model of the term structure of interest rates in

a very speci�c case.

9The pricing formula for a oor is given in the appendix
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Appendix

Proof of proposition 1:

The proof follows exactely the arguments given by Rady, Sandmann (1994). Given the

assumptions of proposition 1 we have to solve terminal value problem (22) on [0; T ]�]0; 1[
for � = 1, i.e.

0 = ut(t; F ) +
1

2
F 2(1� F )2uFF (t; F )

2(t; T � t; 1)

u(T; F ) = [F �K]+ resp. [K � F ]+ =: g(F )

where u(t; F ) is the time T forward price of the option contract. This problem is trans-

formed by introducing the new time variable

s = s(t; T; 1) =

Z T

t

(�; T � �; 1)2d� ;

and the new space variable

z = ln
F

1� F
or F =

1

1+ e�z

and �nally setting

u(t; F ) = a(z)b(s)h(s; z) :

The idea is now to choose di�erentiable functions a and b in such a way that any solution

h of the heat equation yields a solution u of the original partial di�erential equation. As

shown by Rady, Sandmann this can be done by setting

a(z) =
1

exp
�
z
2

	
+ exp

�� z
2

	
b(s) = exp

�
�s

8

�
:

By setting

u(t; F ) =
1

e
z
2 + e�

z
2

e�
s
8h(s; z) ;

we obtain the transformed problem on [0; T ]� IR

0 =
1

2
hzz � hs

h(0; z) =
�
e
z
2 + e�

z
2

�
g

�
1

1 + e�z

�

with the solution: h(s; z) =
1p
2�

Z 1
�1

h(0; z + �
p
s)e�

�2

2 d� :

Consider e.g. the initial value condition for a European call option, i.e.

h(0; z) = (e
z
2 + e�

z
2 )

�
1

1 + e�z
�K

�+

then the solution is determined by:

h(s; z) =
1p
2�

Z 1
1p
s
[ln K

1�K�z]

�
e
1

2
[z+�

p
s] + e�

1

2
[z+�

p
s]
�� 1

1 + e�[z+�
p
s]
�K

�
e�

�2

2 d�

= (1�K)I1 �KI2
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with

I1 =
1p
2�

Z 1
1p
s
[ln K

1�K�z]
e
1

2
[z+�

p
s]e�

�
2

2 d� = e
z
2 � e s8N

�
1p
s

�
z + ln

1�K

K
+

s

2

��

I2 =
1p
2�

Z 1
1p
s
[ln K

1�K�z]
e�

1

2
[z+�

p
s]e�

�2

2 d� = e�
z
2 � e s8N

�
1p
s

�
z + ln

1�K

K
� s

2

��

Therefore:

u(t; F ) =
e�

s
8

e
z
2 + e�

z
2

h(s; z) = (1�K)
e
z
2

e
z
2 + e�

z
2| {z }

=F

N(e1)�K
e�

z
2

e
z
2 + e�

z
2| {z }

=1�F

N(e2)

and since B(t; T � t + 1) = B(t; T � t) � F = B(t; T � t) � 1
1+r(t;T�t;1) the spot arbitrage

price of the European call option is equal to

Call[t; B(t; T � t + 1); B(t; T � t); T;K] = B(t; T � t)u(t; F ) :

2

Pricing formula for a European put option

By call-put parity

Put = Call +KB(t; T � t)�B(t; T � t+ 1)

Hence under the assumptions of proposition 1 the arbitrage price of a European put

option with exercise price K, exercise time T and underlying zero coupon bond B(t; T �
t+ 1) is equal to:

Put[t; B(t; T � t + 1); B(t; T � t); T;K]

= K �B(t; T � t) �N(�e2)�B(t; T � t+ 1) �N(�e1)
�K �B(t; T � t + 1) � (N(e1)�N(e2))

Pricing formula for a interest rate oor

Under the assumptions of proposition 2 the arbitrage price of an interest rate oor at

time t � t0 with yearly payment dates ti 2 T n ft0g, face value V and interest rate level

L is given by:

Floor[t; L; V; T n ft0g]

= V �
N�1X
i=0

B(t; ti+1 � t) [L �N(�d2(t; ti; 1))� r(t; ti � t; 1) �N(�d1(t; ti; 1))]

The multifactor situation: Necessary restrictions on the

e�ective forward rate processes

A �rst restriction on the volatility function of the e�ective rate process is given by (9).

To construct a viable Heath-Jarrow-Morton model we assume that there exists a function
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(t; x) which satis�es the Lipschitz- and growth condition and for each (x; �) 2 � the

volatility function of the corresponding e�ective rate process is given by

(t; x; �) =
1

�

Z x+�

x

(t; �)d� : (19)

So far the set � was characterized by the set of all observable e�ective forward rates.

Together with the log-normal assumption we have to restrict the set � to a subset of

observable e�ective rates in such a way that non of the e�ective rates within the set � can

be duplicated by using other rates in �. Consider for example the following situation:

Let (x; �1); (x+ �1; �2) 2 � such that r(t; x; �1) and r(t; x+ �1; �2) are two observable

e�ective rates satisfying the log-normal assumption (4). Furthermore the involved Wiener

processes Wx;�1(t) and Wx+�1;�2(t) are not necessarily assumed to be identical. Using

the de�nition of the continuously compounded forward rate we can express the e�ective

forward r(t; x; �1+ �2) by:

1 + r(t; x; �1+ �2)

= exp

�
1

�1 + �2

Z x+�1+�2

x

f(t; �)d�

�

= exp

�
1

�1 + �2

Z x+�1

x

f(t; �)d�

�
exp

�
1

�1 + �2

Z x+�1+�2

x+�1

f(t; �)d�

�

= exp

�
�1

�1 + �2
y(t; x; �1)

�
exp

�
�2

�1 + �2
y(t; x+ �1; �2)

�

Given the log-normal assumption for the two observable rates the stochastic behaviour

for the e�ective rate r(t; x; �1+ �2) is endogeneously determined.

dr(t; x; �1+ �2)

= d

�
exp

�
�1

�1 + �2
y(t; x; �1)

�
exp

�
�2

�1 + �2
y(t; x+ �1; �2)

�
� 1

�

=
1

�1 + �2
exp fy(t; x; �1+ �2)g

�
��

f(t; x+ �1 + �2)� f(t; x) +
1

2
(�2(t; x+ �1 + �2)� �2(t; x))

�
dt

+(�(t; x+ �1)� �(t; x))dWx;�1(t)

+ (�(t; x+ �1 + �2)� �(t; x+ �1))dWx+�1;�2(t)

�

+
1

2(�1 + �2)2
exp fy(t; x; �1+ �2)g �

h
(�(t; x+ �1)� �(t; x))2

+2�(t; x; �1; x+ �1; �2)(�(t; x+ �1)� �(t; x))(�(t; x+ �1 + �2)� �(t; x+ �1))

+�(t; x+ �1 + �2)� �(t; x+ �1))
2dt

i

where �(t; x; �1; x+ �1; �2) is the instantaneous correlation coe�cient between the two

Wiener processes, i.e

dWx;�1dWx+�1;�2(t) = �(t; x; �1; x+ �1; �2)dt: (20)

The volatility function �() of the e�ective rate r(t; x; �1 + �2) is thus endogeneously

determined by:
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�2(t; x; �1 + �2)

�
r(t; x; �1+ �2)

1 + r(t; x; �1 + �2)

�2

=

�
�1

�1 + �2

r(t; x; �1)

1 + r(t; x; �1)
(t; x; �1)

�2

+2�()
�1�2

(�1 + �2)2
r(t; x; �1)r(t; x+ �1; �2)

(1 + r(t; x; �1))(1 + r(t; x+ �1; �2))
(t; x; �1)(t; x+ �1; �2)

+

�
�2

�1 + �2

r(t; x+ �1; �2)

1 + r(t; x+ �1; �2)
(t; x+ �1; �2)

�2
:

We conclude that the endogeneously determined e�ective rate r(t; x; �1 + �2) does not

satisfy the log-normal distribution assumption (4) which is assumed for all rates within

the set �. In the special case where the instantaneous correlation �() is equal to one, i.e.

we consider a 1-factor model this can be simpli�ed to

�(t; x; �1 + �2) r(t; x; �1+ �2)

=
�1

�1 + �2
r(t; x; �1)

1 + r(t; x; �1+ �2)

1 + r(t; x; �1)
(t; x; �1)

+
�2

�1 + �2
r(t; x+ �1; �2)

1 + r(t; x; �1+ �2)

1 + r(t; x+ �1; �2)
(t; x+ �1; �2)

This behaviour of the e�ective volatility is very similar to some estimation rules used

in applications of the Black-Scholes model to interest rate derivatives. Nevertheless this

shows that even in the 1-factor case the volatility of redundant e�ective forward rate

processes is state dependent. Only in the situation of a at e�ective forward rate curve

(i.e r(t; x; �1) = r(t; x + �1; �2)) the volatility of the redundant rates is given by the

time proportional weighted average of the other volatilities. To conclude at this point a

necessary condition on the set of exogeneous e�ective rates � to be a viable input under

the no-arbitrage restriction is the no-redundency of this set, i.e we furtheron assume that

(x; �) 2 � i� 8� � �n (x; �) [t+x; t+x+�] 6=
[

(xi;�i)2�
[t+xi; t+xi+�i] (21)

We �nally consider the situation when the forward price cannot be expressed in terms of

one factor in the set �. More precisely let (T�t; �1); (T�t+�1; �2) 2 �. By construction

we have:

F (t; T; �1+ �2) = F (t; T; �1)F (t; T + �1; �2)

Following the arguments in section 2 and setting for simplicity

F1 = F (t; T; �1) resp. F2 = F (t; T + �1; �2) ;

�(t) = �(t; T � t; �1; T � t+ �1; �2)

the process of the quadratic variation for this compounded forward price is given by:

d hF i (t; T; �1+ �2)

=
h

�2
1 (F1F2)

2
�
1� F

1

�1

1

�2

2(t; T � t; �1)

+2�1�2�(t) (F1F2)
2
�
1� F

1

�1

1

��
1� F

1

�2

2

�
2(t; T � t; �1)

2(t; T � t + �1; �2)

+�2
2 (F1F2)

2
�
1� F

1

�2

2

�2

2(t; T � t+ �1; �2)

#
dt :
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In the special case where the instantaneous correlation �() is equal to one this relationship

between the volatility functions can be simpli�ed to

d hF i (t; T; �1+ �2)

= (F1F2)
2
�
�1

�
1� F

1

�1

1

�
(t; T � t; �1)� �2

�
1� F

1

�2

2

�
(t; T � t + �1; �2)

�2
dt :

Again this shows that even in the 1-factor case the functional form of the volatility for

the redundant forward price is not precisely of the form (11). Only in the situation of a

at e�ective forward rate curve (i.e r(t; T � t; �1) = r(t; T � t+ �1; �2)) the volatility of

the redundant forward price is given by the time proportional weighted average of the

other volatilities.


