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Abstract

We compare short rate di�usion models with respect to their implications

for term structure movements, the plausiblity of which serves us as a criterion

for evaluating the models. Analytically for Gauss{Markov models and numer-

ically for a broader collection of models prevalent in the literature, we isolate

the deformations of the term structure generated endogenously. Among other

analytical tools we use spread options on the forward rate curve as an aggregate

measure of term structure shapes across states.

On the basis of our analysis we conclude that the Ho/Lee model should

be discarded, since it cannot explain the emergence of downward sloping term

structures, that the introduction of mean reversion is essential in order to gen-

erate downward sloping term structures in any substantial proportion, that the

models typically favor upward sloping term structures for short maturities and

downward sloping term structures for longer maturities, and that there is a

surprisingly strong similarity among many of the models prevalent in the litera-

ture. A model which allows arbitrary boundaries for the short rate realizations

to be �xed exogenously completes our analysis.

JEL Classi�cation: G13

Keywords: arbitrage, term structure of interest rates, spread option pricing
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4 1 INTRODUCTION

1 Introduction

In stock option pricing models as a rule only the price processes of the securities

underlying the derivative are modelled. When turning to securities whose payments

are contingent on interest rates, however, the view changes considerably. No longer is

it su�cient for the pricing of an option on a bond to model solely the price process

of the particular underlying and that of a so{called reference bond1. Rather it is

necessary to model the stochastic movements of the entire bond market or, what

amounts to the same thing, of the complete term structure of interest rates. The

need for this arises from the fact that underlying securities other than zero coupon

bonds are liable to have payo�s at a number of dates during their lifetime, and that

some derivatives have several payo� dates. Nor is it clear, given the multitude of

arbitrage relationships between �nancial instruments in the \�xed income" markets

(money market, bond market, futures, forward rate agreements: : : ), why a hedging

strategy should only be carried out in some particular assets whose price processes
happen to have been modelled, while strategies in other assets cannot be considered

because their price processes are not captured by a given model. However, once a
model has been designed in such a way that it in fact encompasses the whole bond
market the question naturally arises what such a model implies about the movements
of relative prices of the di�erent securities in this market. This view is also expressed
in Ho/Lee (1986):

\[: : : ], when pricing interest rate contingent claims, in most cases we
are concerned with how the prices of discount bonds with di�erent matu-
rities move relative to each other."

Since movements of relative prices of di�erent securities are the consequence of
movements of the term structure of interest rates the above question can be restated
slightly di�erently as: What do di�erent speci�cations of stochastic models of the term

structure of interest rates imply for its future movements and deformations. This is
the �rst question addressed in this paper.

By raising this question and implying, as we do, that the answer will have bearing
on a second question, namely which model, if any, should be regarded as being more

plausible than another, we set di�erent priorities in our analysis than Hull/White

(1990a), who assert that

\[it] is important to distinguish between the goal of developing a model
that adequately describes term structure movements and the goal of devel-

oping a model that adequately values [: : : ] interest rate contingent claims

[: : : ]."

We feel somewhat uncomfortable with adopting this view without further analysis
of the inherently interesting and distinctive feature of term structure models, namely

1Although a number of models have been suggested which do just this, they can no longer be
regarded as representing the mainstream in the literature on interest rate derivative securities. For
a review of such models see Rady/Sandmann (1994).
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their de facto capturing the movements of the entire term structure. In particular, an

analysis of possible deformations of the term structure in the models under consider-

ation represents a �rst step in an evaluation of the �tness of these models for hedging

purposes.

Returning to our central question we shall look at the simplest though | in

terms of the number of such models that have been suggested in the literature |

largest class of term structure models, i.e. models in which only the stochastic process

describing the movements of the continuously compounded short rate of interest is

exogenously postulated. More speci�cally, in this paper we shall consider the following

speci�cations

1. The \�{root" models

drt = (�(t)� art)dt+ �r�t dWt

which contain as special cases among others

(a) the continuous{time Ho/Lee (1986) model

drt = �(t)dt+ �dWt

(b) the generalized2 Vasicek (1977) model

drt = (�(t)� art)dt+ �dWt

(c) the generalized Brennan/Schwartz (1977) model

drt = (�(t)� art)dt+ �rtdWt

(d) the generalized Cox/Ingersoll/Ross (1985) model

drt = (�(t)� art)dt+ �
p
rtdWt

2. Lognormal models

(a) Black/Derman/Toy (1990)

drt = rt � (�(t)� a ln rt +
1

2
�2)dt+ �rtdWt

(b) Sandmann/Sondermann (1993)

drt = (1 � e�rt)[(�(t)� 1

2
(1� e�rt)�2)dt+ �dWt]

3. Completing the speci�cations above which either allow the short rate to lie in

the interval (�1;1) or in (0;1); we also consider a speci�cation which has

not been discussed in the literature to date and which con�nes the short rate

realizations to some arbitrary interval (a; b) :

drt =

 
c(a+ b� 2rt)

b� a
+
(rt � a)(b� rt)

b� a
�(t)

!
dt+ �

(rt � a)(b� rt)

b� a
dWt
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In these models the rest of the term structure, namely zero coupon bond prices

of di�erent maturities, from which yields and forward rates can be calculated, is then

implicitly given by taking (conditional) expectations of discounted future payo�s. It

is our aim to make explicit the implications for term structure movements embedded

in the above speci�cations of short rate processes. The relevance of this question

stems the fact that any user of such models necessarily subscribes to these embedded

implications and de facto accepts them as plausible descriptions of future term struc-

ture movements.

As we are interested in the deformations of the term structure endogenously gener-

ated by the di�erent models under consideration in our analysis we shall, as a general

rule, start out with a at initial term structure. When necessary (in particular when

it comes to simulations) we shall also consider initial term structures which are not

at in order to verify that our qualitative results obtained in the case of at initial

term structures carry over to cases where this initial condition is changed.
We concentrate on instantaneous continuously compounded forward rates rather than
on zero coupon bond prices or yields because forward rates give the most disaggregate
information about the term structure, yields simply being a time average of forward

rates. The behaviour of the models will mainly be analysed from three vantage points.
First we shall look directly at the forward rate curves in the di�erent states of the
world, second we shall consider the distribution of the slopes of forward rate curves,
and third we shall use values of European spread options on the forward rate curve
as an aggregate measure of its shape. We de�ne the payo� of these options by

[FT0(x+ T0)� FT0(y + T0)]
+ and [FT0(y + T0)� FT0(x+ T0)]

+(1)

respectively, where x > y and FT0(x + T0) := forward rate at time T0 with time to
maturity x: Clearly the �rst option is the more valuable the more the term structure
is upward sloping between x and y whereas the second is favoured in the case of
downward sloping term structures.
While the �rst point gives us an idea about how rich the model is in generating dif-

ferent shapes of term structures points two and three address the question in which
way a certain model will typically change a given term structure, i.e. whether for

certain maturities a model will generate more upward or more downward sloping term

structures. Intuitively, if there is no marked tendency one way or another one could
call the model unbiased. The idea of a model being unbiased between changing the

slope of a given term structure in an upward or downward direction will play an im-
portant role in our analysis. Having introduced the necessary notation we shall make

this idea precise at the end of section 2.1 by stating two concepts of unbiasedness,
the �rst being based on the distribution of the slopes of the forward rate curve, the

second on spread option prices.
Of the above models only the Ho/Lee and Vasicek speci�cations are analytically

2We use the term \generalized" in the sense that prior to the seminal work by Ho and Lee (1986),
models were not �tted to an initial term structure, while in our study we will always do so. This
parallels the usage of the term as introduced by Hull/White (1990a).
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tractable. We shall therefore derive analytical results about term structure move-

ments in these models and in the larger class of Gauss/Markov term structure models

they belong to. All the models will, however, be analysed numerically with the help

of the implementation procedure suggested by Hull/White (1993).

The above approach to comparing term structure models di�ers from the vast

empirical literature on the subject. Some empirical papers focus on how well models

can reproduce certain actually observed term structures, e.g. Brown/Schaefer (1994),

Chen/Scott (1993) and Stambaugh (1988). Others compare observed prices of deriva-

tives with model prices, e.g. Flesaker (1993), who tests the Ho/Lee model. Chan,

Karolyi, Longsta� and Sanders (1992) concentrate on how well a number of short rate

processes capture the actual dynamics of the short term interest rate; their results

on the � parameter for the aforementioned �{root model speci�cation have recently

been subjected to reevaluation in Du�ee (1993). Cohen and Heath (1992) take two

approaches, for one comparing models on the basis of what likelihood they assign to
observed prices and secondly investigating whether deviations between market and
model prices can be taken advantage of to acquire wealth. Close in spirit to our
approach is a theoretical analysis by Musiela who proves among other things that

the support of the distribution of yield curves in one factor Gauss-Markov models of
the term structure is a one dimensional manifold and concludes that these models,
therefore, provide little scope for hedging against movements of the term structure
that may occur in reality.

The rest of the paper is organized as follows. Section 2 contains our analysis of

Gauss/Markov term-structure models with a special emphasis on the Ho/Lee and Va-
sicek speci�cations. In section 3 we analyse and compare numerically the �{root and
lognormal models. In section 4 the \bounded rate" speci�cation is treated. Section 5
concludes our analysis.
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2 An Analysis of Gaussian Term Structure Mod-

els in Continuous Time

2.1 Model Speci�cation

As is usual we shall assume that there is a complete set of zero bonds with maturities

T 2 [0; T �]. Immediately placing ourselves in a risk-neutral environment in Gaussian

term structure models the instantaneous change in the price at time t of a zero bond

maturing at T is then given by the following stochastic di�erential equation

dB(T; t) = r(t)B(T; t)dt+ �(T; t)B(T; t)dWt(2)

where Wt is a standard Brownian motion and is the same for all bonds of all matu-

rities. The probability space is given by (
;F; fFt; t � 0g; PW ) with fFt; t � 0g the

augmented natural �ltration of the Brownian motion. �(T; t) is the instantaneous

volatility of the zero bond maturing at T , which is assumed a deterministic twice con-
tinuously di�erentiable function of T and t, satisfying �(T; T ) � 0, which means that

the value of a zero coupon bond is deterministic at maturity. r(t) is the instantaneous
continuously compounded riskless rate of interest prevailing at time t.
Applying Ito's lemma, it can be checked that the solution to this di�erential equation
is given by

B(T; t) = D(T ) exp

�Z
t

0

�
r(s)� 1

2
�2(T; s)

�
ds+

Z
t

0
�(T; s)dWs

�
(3)

where we have made use of the initial condition B(T; 0) = D(T ) and D(T ) is the price
at time zero of a zero bond maturing at T . Requiring the process (r(t))0�t�T � to be

such that B(T; T ) � 1 8T 2 [0; T �] we have

B(T; t) =
B(T; t)

B(t; t)

=
D(T )

D(t)
exp

�
�1

2

Z
t

0

�
�2(T; s)� �2(t; s)

�
ds

�
� exp

�Z
t

0
[�(T; s)� �(t; s)]dWs

�

Since we want to concentrate on models where the process of the short rate is Markov
the volatility function must necessarily satisfy

@�(T; t)

@T
= �̂(t) exp

(
�
Z

T

t

�(s)ds

)
(4)

(For a proof see e.g. El Karoui et al. (1991).)

For this speci�cation of the volatility function the forward rate at time t for maturity

T , Ft(T ), or, what comes to the same thing, the forward rate at time t with time to
maturity x = T � t, Ft(x+ t); can be expressed in terms of the short rate as

Ft(T ) = Ft(x+ t)(5)

= F0(T ) +
Z

t

0
(�(T; s)� �(t; s))

@�(T; s)

@T
ds + exp

(
�
Z

T

t

�(s)ds

)
(r(t)� F0(t))
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which for the Vasicek speci�cation becomes

FVAS
t

(x+ t) = F0(x+ t) +
�2

2a2
(1� expf�2atg)(expf�axg � expf�2axg)(6)

+ expf�axg(r(t)� F0(t))

The continuous time version of Ho/Lee (1986) is obtained as a! 0:

For the reader's convenience in Lemmas 1 and 2 we state and prove some well known

results that hold in this framework

Lemma 1

The discounted price process of a zero bond is a martingale with respect

to the measure PW :

(Proof see appendix ??.)

We shall call PW the risk neutral measure. We also introduce the time T0 forward

measure, P (T0), proposed by El Karoui/Rochet (1989). This is de�ned independently
of the Gaussian framework as follows

De�nition 1

dP (T0)

dPW
=

B(T0; T0) exp
n
� R T00 rtdt

o
D(T0)

In the Gaussian term structure model we have

Lemma 2

In the framework of the Gaussian term structure model the time T0 forward
measure P (T0) is given by

dP (T0)

dPW
= exp

(
�1

2

Z
T0

0
�2(T0; t)dt+

Z
T0

0
�(T0; t)dWt

)

(Proof: easy consequence of equation (3) and de�nition 1)

Now since ZT0
t = E

h
d P (T0)

d P

���Fti ; 0 � t � T0; is a martingale solving the Dol�eans
equation

Zt = 1 +
Z

t

�(T0; )ZsdWs(7)

by Girsanov's theorem it follows that on [0; T0]

W T0
t

=Wt �
Z

t

0

dhW;Zis
Zs

=Wt �
Z

t

0
�(T0; s)ds(8)

is a standard Brownian motion under the T0 forward measure.
Therefore, under the forward measure the forward rate will be distributed as

FT0(x+ T0) � N(�(T0; x); �
2(T0; x))(9)
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where

�(T0; x) = F0(x+ T0) +
Z

T0

0
(�(x+ T0; t)� �(T0; t))

@�(x+ T0; t)

@x
dt

�2(T0; x) =
Z

T0

0

 
@�(x+ T0; t)

@x

!2

dt

In the special case of the Vasicek model, that is �(u) � a these expressions become

�VAS(T0; x) = F0(T0 + x) +
�2

2a2
(1� exp f�2aT0g) (exp f�axg � expf�2axg)(10)

�2VAS(T0; x) =
�2

2a
(1� exp f�2aT0g) exp f�2axg(11)

As already indicated, apart from looking at the forward rate curve itself we shall

also be concerned with the distribution of its slope at di�erent times to maturity and

with options on the spread between two forward rates. De�ning ST0(x) :=
@FT0

(x+T0)

@x
,

the slope of the time T0 forward rate curve at time to maturity x we have for the

distribution of this random variable

ST0(x) � N(�0VAS(T0; x); �
20

VAS(T0; x))(12)

where

�
0

VAS(T0; x) =
@F0(T0 + x)

@x
+
�2

2a
[(1 � exp f�2aT0g) (2 exp f�2axg � exp f�axg)]

�2
0

VAS(T0; x) =
�2

2a
[(1� exp f�2aT0g) exp f�2axg]

Now de�ning j := FT0(x + T0) � FT0(y + T0); x > y; and using (9) the value of
the options on the spread between the forward rates of time to maturity x and y

respectively at time T0 is given by

Proposition 1

V0([FT0(x+ T0)� FT0(y + T0)]
+)

= D(T0)
Z 1

0
j

1q
2��2

D

exp

(
�1

2

�
j � �D

�D

�2)
dj

= D(T0)
1q
2��2

D

""
��2

D
exp

(
�1

2

�
j � �D

�D

�2)#1
0

+ �D

Z
1

0
exp

(
�1

2

�
j � �D

�D

�2)
dj

#

= D(T0)

�
�D�

�
�D

�D

�
+ �D'

�
�D

�D

��

and

V0([FT0(y + T0)� FT0(x+ T0)]
+) = �D(T0)

Z 0

�1

j
1q
2��2

D

exp

(
�1

2

�
j � �D

�D

�2)
dj

= �D(T0)
�
�D�

�
��D

�D

�
� �D'

�
�D

�D

��
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where � is the distribution function of the standard normal distribution, ' is its

density and

�2
D

=
Z

T0

0

 
@�(x+ T0; s)

@x
� @�(y + T0; s)

@y

!2
ds

�D = (F0(x+ T0)� F0(y + T0)) +
Z

T0

0

"
(�(x+ T0; s)� �(T0; s))

@�(x+ T0; s)

@x

� (�(y + T0; s)� �(T0; s))
@�(y+ T0; s)

@y

#
ds

In the Vasicek case using (10) and (11) we have for the above expressions

�D VAS = (F0(x+ T0)� F0(y + T0)) +
�2

2a2
(1 � expf�2aT0g)(13)

[expf�axg � expf�2axg � [expf�ayg � expf�2ayg]]

�2
D VAS =

�2

a
(1 � expf�2aT0g)(14) �

1

2
[expf�2axg+ expf�2ayg]� expf�a(x+ y)g

�

The result for the Ho/Lee model is again obtained for a! 0 which yields �2
D HL = 0:

We are now ready to introduce our concepts of unbiasedness.

Concept 1

a) Given a at initial term structure we call a term structure model un-
biased between generating upward and downward sloping term struc-

tures at time T0 � 0 on the interval (a; b); a � b if for all times to

maturity x 2 (a; b)

P (T0) [ST0(x) � 0] = P (T0) [ST0(x) � 0]

b) If a) holds for all times T0 2 (T; T ) for a, b independent of T0 we say
that the model is unbiased on (a; b) and T0 2 (T; T ).

Concept 2

Given a at initial term structure we call a term structure model un-
biased between generating upward and downward sloping term structures

at time T0 � 0 and time to maturity y for a time to maturity di�erence c if

V0([FT0(y+ c+T0)�FT0(y+T0)]
+) = V0([FT0(y+T0)�FT0(y+ c+T0)]

+)
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Conversely we can say that a model is not unbiased if none of the concepts of un-

biasedness is satis�ed. If P (T0) [ST0(x) < 0] � P (T0) [ST0(x) > 0] for some T0 and x

we say that the model is biased towards increasing term structures at time T0 and

time to maturity x according to concept 1. If for some T0; y and c V0([FT0(y + c +

T0)� FT0(y + T0)]
+) � V0([FT0(y + T0)� FT0(y + c+ T0)]

+) we say that the model is

biased towards increasing term structures at time T0 time to maturity y and time to

maturity di�erence c according to concept 2. (Similarly for biases towards decreasing

term structures.)

2.2 Model Analysis

Being equipped with some useful tools we now turn to a characterization of the term

structure movements in this framework. We shall henceforth make

Assumption (A1)

The original term structure is at.

First looking immediately at the term structures of forward rates themselves we have

Proposition 2

a) Under (A1) term structures in the Ho/Lee model are always increas-
ing. Their slope is deterministic.

b) Under (A1) term structures in the Vasicek model are of three types

i) monotonically increasing

ii) monotonically decreasing

iii) humpshaped, that is they possess an interior maximum.

Proof

a) Follows immediately when letting a! 0 in equation (6) and di�erentiating with
respect to x:

b) From equation (6)

St(x) = expf�axg| {z }
>0

[a(F0(t)� r(t)) +
�2

2a
(1� expf�2atg)| {z }

>0

(2 expf�axg � 1)]

As 2 expf�axg�1 is monotonically decreasing in x and bounded the expression
in brackets will either be positive or negative or have a unique zero depending

on the value of F0(t)� r(t): If it has a zero at x; then St(x) > 0 for x < x and

St(x) < 0 for x > x: 2
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Now we turn to spread option prices to check our concept 2 of unbiasedness. Propo-

sition 2 implies that under (A1) V HL
0 ([FT0(y + T0) � FT0(y + c + T0)]

+) = 0 and

V HL
0 ([FT0(y + c + T0)� FT0(y + T0)]

+) � 0 in the Ho/Lee model. Hence the Ho/Lee

model is nowhere unbiased according to concept 2. In the Vasicek model, again under

(A1), we set x = y + c; c > 0 and without loss of generality D(T0) = 1: Consider

V VAS
0 ([FT0(x+ T0)� FT0(y + T0)]

+)� V VAS
0 ([FT0(x+ T0)� FT0(y + T0)]

�) = �D VAS(15)

It is easy to see that �D VAS has the following properties:

i) lim
y!0

�D VAS =
�2

2a2
(1 � expf�2aT0g) expf�acg(1� expf�acg) > 0

ii) lim
y!1

�D VAS = 0

iii) �D VAS = 0 , y =
1

a
ln (expf�acg+ 1) > 0

iv)
d�D VAS

dy
= 0 , y =

1

a
ln (2 expf�acg+ 1) >

1

a
ln (expf�acg+ 1)

We have thus shown

Proposition 3

For every given time to maturity di�erence c > 0 there exists a unique time to maturity
y(a) such that

V VAS
0 ([FT0(y + c + T0)� FT0(y + T0)]

+)
>

< V VAS
0 ([FT0(y + c+ T0)� FT0(y + T0)]

�)

as y
<

> y(a): Furthermore dy(a)

da
< 0:

Hence for every c there is exactly one time to maturity where the model is unbiased
according to concept 2. This time to maturity is independent of T0.

A similar result is obtained if we consider the slope of the forward rate curve at

time T0; ST0(x): From equation (12) we have

P (T0)[ST0(x) � 0] � 0:5 , x � ln 2

a
(16)

Hence there is exactly one time to maturity for which the model is unbiased according

to concept 1b) where the time interval is [0; T �]. Clearly the Ho/Lee model is again

not unbiased according to concept 1.

The results up to now allow us to draw the following conclusions. Using the Ho/Lee
model, that is assuming that there is no mean reversion, implies that one necessar-

ily believes that the di�erence between forward rates of longer maturity and forward

rates of shorter maturity can only increase. The model cannot explain the emergence



14 2 GAUSSIAN TERM STRUCTURE MODELS IN CONTINUOUS TIME

of downward sloping term structures. Introducing mean reversion means that there

is a structural bias towards an increase in the di�erence between the forward rates of

two maturities (i.e. towards upward sloping term structures) on the short end of the

term structure. The bias is reversed (i.e. favours downward sloping term structures)

on the long end. The threshold maturity which marks the boundary between the

thus characterized \short" and \long" end of the term structure is determined by the

choice of the speed of mean reversion.

Given the obvious importance of the mean reversion coe�cient the question arises

whether by making this coe�cient a function of time, �(t); as is admissible in the

general Gauss/Markov framework, one can obtain a model that will be unbiased

between upward and downward sloping term structures for an interval of maturities

[x; x] i.e. unbiased according to concept 1a) where the interval is nondegenerate. The

negative answer to this question is provided by the following

Proposition 4

Under (A1) the following holds:

In the general one{factor Gauss/Markov model there is no C1 function
�(t) � 0 such that there exists an interval of maturities [x; x]; x � 0 with
P (T0)[ST0(x) < 0] = P (T0)[ST0(x) > 0] = 0:5 8x 2 [x; x]:

Intuitively, making the mean reversion parameter a function of time can be regarded
as considering a sequence of Vasicek models all with di�erent speeds of mean reversion

for the short-rate. The e�ect of this is that there will no longer be a unique time to
maturity below which the model will be biased towards increasing term-structures
and above which the opposite will hold. However, the above result shows that by
mixing across di�erent speeds of mean reversion over time one can still not obtain an
unbiased model even if the original term-structure was at.

Proof

0) The case �(t) � 0 need not concern us since this is just the Ho/Lee case.

i) From equation (5) and (9) we have

ST0(x) =
@EP (T0)[FT0(T )]

@T

�����
x+T0

� �(T ) exp

(
�
Z

T

T0

�(u)du

)
(r(T0)� F0(T0))

and thus
@2FT0(T )

@T @r(T0)
= ��(T ) exp

(
�
Z

T

T0

�(u)du

)
< 0

since �(�) 6� 0 by assumption.
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As r(T0) is normally distributed around F0(T0) we have:

if
@EP (T0)

[FT0(T )]

@T

����
x+T0

> 0 ) ST0(x) > 0 8 r(T0) � F0(T0)

) P (T0)[ST0(x) > 0] > 0:5

if
@EP (T0)

[FT0(T )]

@T

����
x+T0

< 0 ) ST0(x) < 0 8 r(T0) � F0(T0)

) P (T0)[ST0(x) > 0] < 0:5

Therefore, due to the strict monotonicity and continuity of the normal distribu-

tion function

P (T0)[ST0(x) < 0] = P (T0)[ST0(x) > 0] = 0:5 , @EP (T0)[FT0(T )]

@T

�����
x+T0

= 0

Hence

P (T0)[ST0(x) < 0] = P (T0)[ST0(x) > 0] = 0:5 8 x 2 [x; �x]; x � 0

, @EP (T0)[FT0(T )]

@T

�����
x+T0

= 0 8 x 2 [x; �x]; x � 0

, EP (T0)[FT0(T )] = const. 8 x 2 [x; �x]; x � 0

ii) We now proceed to show that there is no C1 function �(�) > 0 such that the
above condition can be satis�ed. Since we have assumed a at term structure
at time "0" it is su�cient to consider the integral expression in equation (5).
Substituting (4) and setting �(�) the antiderivative of �(�) this can be expressed
as

Z
T0

0
�̂2(t)

"Z
x+T0

T0

expf�(t)� �(v)gdv
#
expf�(t)� �(x+ T0)gdt

= exp f��(x+ T0)g
Z

x+T0

T0

expf��(v)gdv| {z }
A(x;T0)

�
Z

T0

0
�2(t) expf2�(t)gdt| {z }

B(T0)

It is obviously su�cient to concentrate on A(x; T0). We have to show that there

is no �(�) > 0 such that A(x; T0) = const. 8 x 2 [x; �x]; x � 0. Assume to the

contrary that such a function �(�) existed. This would imply

dA(x; T0)

dx
= expf�2�(x+T0)g��(x+T0) expf��(x+T0)g

Z
x+T0

T0

expf��(v)gdv = 0

(�) ,
Z

x+T0

T0

expf��(v)gdv =
expf��(x+ T0)g

�(x+ T0)

and using (�)

d2A(x; T0)

dx2
= �2�(x+T0) expf��(x+T0)g��0(x+T0)

Z
x+T0

T0

expf��(v)gdv = 0
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whence using
dA(x;T0)

dx
= 0 we get �2�2(x+T0) = �0(x+T0), which is a separable

di�erential equation, and we obtain as the general solution

�(t) =
1

2t � c
;

where c is a constant. Since �(t) has to be greater or equal to zero for t � 0 it

follows that c � 0.

From this we obtain for �(t) = 1
2
ln(2t � c) + k, where k is again a constant,

which can, however, be neglected if all we are concerned with is whether for this

speci�cation of �(�) dA(x;T0)

dx
= 0 can hold. Working out

dA(x;T0)

dx
for our proposed

speci�cation of �(�) we obtain
dA(x; T0)

dx
=

expf��(x+ T0)g
2(x+ T0)� c

q
2T0 � c > 0 8 0 � x <1; c � 2T0

Hence we have a contradiction and the proposition is proved. 2

3 A Numerical Study

In this section we shall in turn look at the Vasicek (1977), Cox/Ingersoll/Ross (1985 {
CIR), Black/Derman/Toy (1990 { BDT), and Sandmann/Sondermann (1993 { SaSo)
speci�cations for the di�usion process for the continuously compounded short rate r;

as well as generalizations of CIR in which the exponent of r in the stochastic term
of the di�usion is greater 1

2
. Since the analytical tractability of the non{Gaussian

model speci�cations in the literature is very limited, the most e�cient way of deriving
qualitative results comparable to those in the previous section is to resort to numerical
methods.

We calculate discrete approximations of the di�usion processes using the Hull/White
(1993) algorithm. This is a forward induction3 algorithm based on the explicit �nite
di�erence method4, yielding Arrow{Debreu (state) prices for all nodes in the lattice
approximating the state space. To get the complete term structure realizations for all
nodes, one has to work backwards through the lattice, adding up the one{period state
prices along the way5. In this manner one can calculate term structure realizations

all the way back to period 0. Comparing the period 0 term structure thus calculated

with the initial term structure gives us an idea of how exact our approximation is.
The maximum deviations of the calculated period 0 term structure from the input
term structure, as well as the parameter constellations for each plot, are listed in table

D.1.

3.1 The Generalized Vasicek Model

This section serves as an introduction to the di�erent outputs of our numerical study
and relates them to the analytical results in section 2. From �gure 1, we can read

3see Jamshidian (1991)
4see Hull/White (1990b)
5see appendix C
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Figure 1: Forward rates in the generalized Vasicek model

o� the shapes of term structure realizations in the Vasicek model, as well as the
probability mass under the forward measure associated with these realizations. Each

of the lines plots the continuously compounded short rate rt as the state variable on
the horizontal axis and the di�erence between an instantaneous forward rate for a
time to maturity y and rt; i.e. Ft(y+ t)� rt; on the vertical axis. In the lower part of
the graphic, the density of the short rate under the forward measure is plotted (not
to scale).

For Gauss{Markov models forward rates are a�ne functions of the state variable,

as in equation (6). For low short rates the lines for forward rates of longer maturity
lie above those of shorter maturity, therefore we have upward sloping term structures.
For high short rates the term structures are downward sloping. Also, the lines for

forward rates of longer maturities intersect further to the left, so that we get term

structures which are upward sloping on the short end and downward sloping on the
long end. The distance between any two lines for forward rates of di�erent maturities

is an indication of the slope of the forward rate curve on the respective segment. The
greater the distance the steeper the forward rate curve.

These properties of the term structure realizations are reected in �gure 2. Fur-

thermore, note the inuence of mean reversion. The variance of the forward rates
under the forward measure is given in equation (11). Consider the derivative of �2VAS
with respect to the forward rate maturity x: It becomes immediately clear that for any
mean reversion parameter a greater than zero, the variance of instantaneous forward
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Figure 2: Vasicek term structure realizations
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Figure 3: Spread options in the Vasicek model

rates for longer maturities is less than for shorter maturities. Thus the term struc-
tures must slope downward in states with a su�ciently6 high short rate and upward

in states with a su�ciently low short rate.

6Quantifying \su�ciently" depends on the shape of the initial term structure and on the mean
reversion speed a:
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In �gure 3 we use spread options as an analytical tool to demonstrate the biased-

ness of the model with respect to the expected (under the forward measure) slope of

the term structure. On the vertical axis we plot the price of a contingent claim which

pays one dollar for every base point di�erence between the instantaneous forward rates

with time to maturity y years hence and y + c years hence, i.e. either long { short

([FT0(T0 + y + c)� FT0(T0 + y)]+) or short { long ([FT0(T0 + y)� FT0(T0 + y + c)]+):

The �rst is a bet on upward sloping, the second on downward sloping term structures.

On the horizontal axis we plot the shorter time to maturity y; keeping the maturity

di�erence c constant.

Figure 3 demonstrates graphically what we derived analytically in section 2. The

initial forward rate curve is at at 6%. For short times to maturity y; the claim

contingent on upward sloping term structures is more valuable, while for longer y

this relationship is reversed. When the mean reversion parameter is constant, there is

exactly one maturity for which the two curves intersect. For at initial term structures,

the intersection point is determined by the mean reversion parameter only7. Thus
two e�ects inuence the spread option values as y is increased: It becomes more
likely that the term structure is downward sloping at this maturity and the spreads
between FT0(T0 + y) and FT0(T0 + y + c) become smaller due to the lower volatility

of the longer rates. This gives an intuition for why the expected present value of
([FT0(T0 + y + c)� FT0(T0 + y)]+) falls monotonically in y; while for some parameter
constellations, speci�cally a su�ciently high speed of mean reversion and a su�ciently
high risk parameter �; there is some y > 0 for which the expected present value of
([FT0(T0+ y)�FT0(T0+ y+ c)]+) is maximal. Increasing � increases the di�erence in
value between the two spread options on either side of the intersection point: For at

initial term structures, the di�erence between the spread option prices is proportional
to �2 (equation (15)). A comparison of �gures 3 and 6 illustrates this e�ect.

3.2 The �{root Process

A whole class of models is based on the speci�cation (Hull/White 1993)

drt = (�(t)� art)dt+ �r
�

t dWt(17)

This family includes the generalizedVasicek (1977) model for � = 0; Cox/Ingersoll/Ross

(1985) for � = 0:5; and Brennan/Schwartz (1977) for � = 1: The most important qual-
itative di�erence between the Vasicek speci�cation and those with � � 0:5 is that for

these models there are parameter constellations such that there exists a solution to
the stochastic di�erential equation (17) which precludes negative interest rates.8 Also,

in contrast to Vasicek, not every positive initial forward rate curve can be �tted.9 As

for the shapes of the term structures generated by these models, our numerical stud-
ies show that there is no qualitative di�erence from those implied by the Vasicek

speci�cation.

7see proof of Proposition 3.
8Speci�cations with � 2]0; 0:5[ do not make sense, because in such a case the solution to (17) is

not unique. See Arnold (1973), p. 124.
9see Hull/White (1993)
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Figure 4: Cox/Ingersoll/Ross
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Figure 5: Brennan/Schwartz

As shown in �gures 4 and 5, there are three possible term structure shapes: Down-
ward sloping for states in which the short rate is high, upward sloping when the short

rate is low, and upward sloping on the short end and downward sloping on the long
end for states in the middle.10

The distributions of the short rate do di�er: It is well known that for � = 0:5 the
short rate is non{central11 �2 and for � = 1 lognormally distributed. However, this
does not have any signi�cant impact on the spread option values. Consider �gures 6,

7, 8, and 9. They show the spread option values (as de�ned in the previous section)
for spread options maturing two years hence, for four di�erent pairs of � and � (see
table D.1 for the complete parameter constellations). In order to make the plots
comparable, � was chosen in such a manner that the variance of the short rate in two
years' time (as seen from today) is the same in each of the four cases. This leads to

nearly identical spread option values for the respective maturities. While it is true
that matching variances of the short rate for some �xed horizon does not imply that
the short rate variances for other horizons will also be exactly matched, our simulation
results as exempli�ed in table D.2 show that the values of � required to obtain an

exact match of the short rate variances for di�erent time horizons are remarkably

stable so that the qualitative result in �gures 6 through 9 would carry over to other
time horizons with the values of � unchanged.

We therefore conclude that by specifying di�erent values of �; it is not possible
to implement term structure models which di�er substantially with respect to their

structural implications for future realizations of the shape of the term structure. The
qualitative results concerning the development of the term structure shapes over time

10For the Cox/Ingersoll/Ross model, the simulations are in keeping with the analytical results
about the shape of the yield curve in the original model setting, i.e. with �(t) constant over t: See
Cox/Ingersoll/Ross (1985), p. 394 and Kan (1992).

11see Cox/Ingersoll/Ross (1985), p. 392.
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Figure 6: � = 0
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Figure 7: � = 0:5
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Figure 8: � = 1
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Figure 9: � = 1:5

derived analytically for the Gauss{Markov case are upheld in our numerical studies
for other values of �: In particular we �nd that given a time to maturity di�erence
c in every model there is only one time to maturity for which the model is unbiased

according to concept 2.
It is worth noting that the implicit structural biases identi�ed so far are una�ected by

the shape of the initial term structure. By de�ning \at{the{money" spread options,

i.e. options that pay one dollar for every base point di�erence between the spread
between two forward rates at maturity of the option and the respective spread in the
initial term structure [(FT0(y+ c+T0)�FT0(y+T0))� (F0(y+ c+T0)�F0(y+T0))]

+;

we veri�ed that all these models have a tendency to produce term structures that
are more upward sloping on the short and more downward sloping on the long end

irrespective of the slope of the initial term structure.

Thus, by focusing on the movements of the whole term structure rather than on

the short rate dynamics only, we see the empirical �ndings of Chan/Karolyi/Long-
sta�/Sanders (CKLS { 1992) in a di�erent light. For one, while CKLS report that

by making the volatility more dependent on the level of the short rate by increasing

the exponent � to 1.499 one attains a better empirical �t of the model of short rate
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dynamics12, this does not mitigate the structural imbalance in the dynamics of the

entire forward rate curve. Secondly, CKLS �nd that the evidence for mean reversion

in the short rate is very weak. This is in contrast to the �ndings by Chen and

Scott (1993) who report strong evidence for mean reversion in the factor reecting

the variability of the level of the short rate in one{, two{, and three{factor models.

Our analysis shows that the introduction of a mean reversion parameter has a much

stronger e�ect on the structural features, namely the generation of downward sloping

term structures, than the value of �:

3.3 The Black/Derman/Toy Model

Black, Derman, and Toy (1990) have constructed a binomial model which avoids

the problems that the �{root speci�cations encounter when �tting the initial term

structure. The continuous time equivalent of this model is13

d ln rt = (�(t)� a ln rt)dt+ �dWt(18)

which by Ito's Lemma is transformed to

drt = rt � (�(t)� a ln rt +
1

2
�2)dt+ rt�dWt(19)

for the continuously compounded short rate r; where a is the speed of mean reversion.
In �gure 10, again setting � so that the variance of the short rate in two years' time
is the same as in �gures 6 through 9, we note that there is no substantial qualitative

di�erence between this speci�cation and the �{root models. The forward rate curves
are merely somewhat atter, leading to lower spread option prices.
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Figure 10: Black/Derman/Toy
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Figure 11: Sandmann/Sondermann

12A recent study by Du�ee (1993) takes are more comprehensive look at US short{term interest
rates. He �nds evidence for values of � \anywhere between 0 and 1.5 [: : : ], depending on the short{
term rate used and the time period examined."

13see Black/Karasinski (1991)
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3.4 The Sandmann/Sondermann Model

Sandmann and Sondermann (1993) propose a term structure model in which the

actuarial short rate is lognormally distributed14. The continuously compounded short

rate then follows the di�usion

drt = (1� e�rt)[(�(t)� 1

2
(1 � e�rt)�2)dt+ �dWt](20)

The term that can be viewed as generating a mean reversion e�ect 1
2
(1 � e�r)�2; is

bounded between 0 and 1
2
�2 for all r 2 IR+:

15 For the same variance of the short

rate realizations in two years' time as in �gure 6 the term structures are therefore

atter and upward sloping term structures carry relatively more weight, as evidenced

in �gure 11: Spread option prices are much lower and for all maturities the claims

contingent on upward sloping term structures are more valuable than those contingent

on downward sloping term structures.
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Figure 12: Forward rates in the Sandmann/Sondermann model

However, raising � su�ciently leads to spread option prices as in �gure 14. This

graphic is quite similar to �gure 3 (the Vasicek case): On the short end upward

14An important feature of this speci�cation is that it avoids the problem of in�nite expected roll{
over returns encountered in the Black/Derman/Toy model or when setting � � 0:5 in the �{root
process. See Sandmann/Sondermann (1993) and Hogan/Weintraub (1993).

15Negative interest rates are not generated. The problems inherent in the �{root speci�cations
when �tting the initial term structure do not present themselves in this model.
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sloping term structure carry more weight while on the long end this relationship is

reversed. On the short end only upward sloping term structures carry any substantial

probability, as evidenced in �gures 12 and 13.
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Figure 13: Sandmann/Sondermann term
structure realizations
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mann/Sondermann model

4 A One Factor Model With Bounded Short Rates

While a lower bound at zero for the realizations of nominal interest rates is necessary in
a model designed for a monetary economy in order to avoid violating the no arbitrage
condition, there is no such argument for an upper bound.

However, remembering that the nominal interest rate is after all a macroeconomic

variable one might want a model to be exible enough to reect one's a priori knowl-
edge about the economic environment one is operating in. The knowledge about the
institutional set{up and conduct of the monetary policy seems to be particularly per-
tinent in this context. If e.g. the stability of the value of money is an essential of the
monetary policy and institutions are designed in such a way as to make this pledge
credible there is reason to believe that interest rates, even in the long run, won't ex-

ceed a certain upper bound. Notwithstandingly, they may be rather volatile within a

certain range.
These ideas are reected in the following model

drt =

"
c(a+ b� 2rt)

b� a
� (b� rt)(rt � a)

b� a
�(t)

#
dt+ �

(b� rt)(rt � a)

b� a
dWt(21)

where b > a are the upper and lower bounds respectively; c > 0 the strength of mean

reversion and we assume that a probability space is given as in section 2.

First we show that for this model short rates will indeed remain in the interval (a; b)

if the process is started at r0 2 (a; b): To this end consider
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Proposition 5

Let �(t) be constant on [t1; t2] and rt1 2 (a; b) then the process de�ned by (21) will

remain in (a; b) on [t1; t2].

Proof

See appendix A.1.

Given this result considering again the whole time interval [0; T �] and assuming that

there is a sequence of step functions (�n(t))
n2IIN approximating �(t) we have by Propo-

sition 5 and the continuity of the sample paths that rt 2 (a; b) on [0; T ] if r0 2 (a; b)

for any step function �n(t) and hence also for �(t) since (�n(t))
n2IIN approximates �(t).

An immediate consequence of bounded spot rates is given in

Proposition 6

If rt 2 (a; b) 8t 2 [0; T �] then Ft(x+ t) 2 (a; b) 8t 2 [0; T �]; x � T � � t.

Proof

Suppose to the contrary that there is some �t 2 [0; T �] for which there is some �x � T ���t
such that F�t(�x+�t) � b. This means that it is possible at time �t to enter an agreement
to lend money at a rate F�t(�x + �t) at time �t+ �x. However, this provides an arbitrage
opportunity for the lender since at time �t + �x he can borrow the required amount
at the short rate r�t+�x 2 (a; b) whereas the rate of return on the forward loan will be
F�t(�x + �t) � b > r�t+�x: Reversing the argument shows that Ft(x + t) > a 8t 2 [0; T �];

x � T � � t: 2

Further, in order to make sure that the following simulations make sense, we show

Lemma 3

If r0 2 (a; b) and sup
t2[0;T �]�(t) <1 there exists a pathwise unique strong solution to

(21) on [0; T �] such that rt 2 (a; b) 8t 2 [0; T �].

Proof

See appendix A.2.

To complete the preliminaries notice that the model under consideration can basically

be calibrated to any initial forward rate curve that takes values only in (a; b):We give

an argument for this assertion in appendix B.
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Figure 15: Bounded model, c = 0:045
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Figure 16: Bounded model, c = 0:45
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Figure 17: Bounded rate model term structure realizations
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Figure 18: � = 0:6 Maximal bias = 10.51%
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Figure 19: � = 1:2 Maximal bias = 13.78%
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Figure 20: � = 2:4 Maximal bias = 13.06%

We start studying the properties of this model by �rst considering the role of the
mean reversion parameter. To this end we assume a at term structure at 6% and a

symmetric interval for the short rate realizations ranging from 2.75% to 9.25%. We
set � = 1:2 and compare c = 0:045 (�gure 15) to c = 0:45 (�gure 16). It can be seen
that for weak mean reversion the distribution of the short rate is strongly bimodal
whereas this e�ect is mitigated by increasing the speed of mean reversion. In general,
reducing the volatility and/or increasing the speed of mean reversion will lead to uni-

modal distributions of the short rate. The e�ect of the speed of mean reversion on
endogenously generated term structures are in line with our earlier �ndings. Weak
mean reversion will lead to comparatively at term structures whereas stronger mean

reversion will result in term structures which exhibit more pronounced slopes for the
shorter maturities and are rather at for the long maturities. This is also reected
in �gure 17 which shows that strong mean reversion will lead to volatilities decreas-

ing sharply with maturity and hence necessarily to more pronounced slopes of term

structures.

Considering the spread options we observe that low speed of mean reversion will
again entail a more pronounced bias towards upward sloping term structures whereas

increasing the speed of mean reversion will lead to the values of both types of options

tracking each other closely across maturities.

It is a distinctive feature of this model that it is the speed of mean reversion,

c; rather than the relative size of � and c which determines whether or not the

model is substantially biased towards increasing term structures. This is evidenced
by �gures 18, 19 and 20, where for a given speed of mean reversion c = 0:01 we

raise � from 0.6 to 1.2 and 2.4. The maximal bias towards increasing term struc-
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tures [V0([FT0(T0 + y + c)� FT0(T0 + y)]+)=V0([FT0(T0 + y)� FT0(T0 + y + c)]+)] � 1

changes from 10.51% to 13.87% and 13.06%. This is a very mild increase when com-

pared to the e�ects of a similar increase of � in the models considered in the previous

section.
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Figure 21: Bounded rates Range (4%; 10:5%)
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Figure 22: Bounded rates Range (1:5%; 8%)
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Figure 23: Bounded rates Range (4%; 10:5%)
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Figure 24: Bounded rates Range (1:5%; 8%)

We now turn to the asymmetric situation where the original term structure is still

at 6% but the intervals are now from 4% to 10.5% (�gures 21 and 23) and from 1.5%
to 8% (�gures 22 and 24) respectively. The mean reversion is 0.45 and � = 1:2. The

distributions of the short rate are now right (�gure 23) and left (�gure 24) skewed

respectively, which is intuitive since under the forward measure the expected value of
the short rate has to equal 6% in this framework.
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The remarkable result, however, is that disregarding numerical e�ects the spread

option values indicate that this model is fairly little biased between generating upward

and downward sloping term structures across all maturities.

5 Conclusion

In this paper we have reviewed a number of speci�cations of di�usion processes for

the short term interest rate, all but one of which have been suggested in the literature.

Our aim has been twofold. The �rst was to establish which typical features of future

movements of the term structure a user of these models implicitly accepts. The

second was to judge on the plausibility of the term structure models analyzed. Our

main results are

� The continuous time Ho/Lee model will always generate upward sloping term

structures. A user of this model can never expect an upward sloping term
structure to become downward sloping. The other models are very similar in
that they can all generate monotonically increasing and decreasing as well as
hump-shaped term structures. Some peculiarities are, however, worth noting.

In the Sandmann/Sondermann model monotonically decreasing term structures
are fairly unimportant while this is true for hump-shaped term structures in the
bounded rate model.

� The introduction of mean reversion is essential if a model of the kind consid-
ered before is to generate in a signi�cant proportion term structures which are
downward sloping over some maturity range. Without mean reversion all the

models considered are biased towards upward sloping term structures. Intro-
ducing mean reversion will lead to more steeply sloped term structures for short
maturities.

� The generalized Vasicek, �{root, and Black/Derman/Toy models are biased
towards upward sloping term structures for short maturities and downward

sloping term structures for long maturities. This is also true of the Sand-

mann/Sondermann model; however, the fact that the mean reversion of this
speci�cation is bounded and cannot be increased exogenously implies a stronger

bias towards upward sloping term structures than in the models where this bias

can be mitigated by increasing the mean reversion parameter.

� In the generalized Vasicek, �{root, and Black/Derman/Toy models, the model{

immanent bias towards either upward or downward sloping term structures (con-
cept 2) increases with �: The maturity where the bias switches from upward to

downward sloping term structures is reduced as the speed of mean reversion is
increased.

� For comparable values of � the spread option values obtained in the general-
ized Vasicek, �{root, and Black/Derman/Toy models do not di�er substantially.
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Hence the implicit structural biases (concept 2) concerning the generation of fu-

ture term structures are very similar in these models.

� In the bounded short rate model the bias towards both upward and downward

sloping term structures can be reduced considerably across all maturities, as

compared to the other models. This result continues to hold if � is increased

for a given speed of mean reversion.

Returning to our second question as to which of the models analysed can be regarded

as being the most plausible in view of the above analysis the following picture emerges.

Apart from the Ho/Lee model which can be dismissed as being implausible since it only

generates increasing term structures there is a great similarity between the models

considered, both concerning the shapes of term structures that can be generated

and the biasedness towards increasing and decreasing term structures. Arguably the

typical pattern of the models being biased towards increasing term structures for short

maturities and decreasing term structures for longer maturities is hardly convincing
since it is not clear why the bias of a model should be a function of time to maturity.
A bias towards increasing term structures is not preferable to any other bias even if
one regards upward sloping term structures as the \normal" case. For a model with a
bias towards upward sloping term structures will put ever more weight on ever more

upward sloping term structures, even if the initial term structure is already increasing.
Therefore it would seem that a model would be more plausible than others if it allowed
for the emergence of many shapes of term structures while exhibiting as small a bias
as possible. The model with bounded realizations of the short rate goes some way in
this direction.

We see the analysis of the qualitative implications of various one{factor models
conducted in this paper as a platform from which to embark on two lines of further
research: For one it would be interesting to see how the introduction of a second
stochastic factor inuences the results contained herein. Secondly, these results may
prove useful when evaluating term structure models empirically, as we have identi�ed
some model{immanent restrictions on the term structure movements.
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A Proofs

A.1 Proof of Proposition 5

By Lemma 6.3 in Karlin/Taylor it is su�cient to show that

limx!a

Z
x

x0

S(�)d� = �1

limx!b

Z
x

x0

S(�)d� = +1

where x0 2 (a; b) is an arbitrary constant and

S(�) := expf�
Z

�

�0

[2�(�)=�2(�)]d�g

�0 2 (a; b) is an arbitrary constant and �(�) and �(�) are the drift and di�usion
coe�cients respectively of the process in equation (21).

(i) Let us �rst consider
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(iii) This yields

Z
x

x0

S(�)d� =
Z

x

x0

 
� � a

b� �

! 2�

�2

exp

(
2c

�2

 
1

� � a
+

1

b� �

!)
kd�



A.2 Proof of Lemma 3 33

where

k = exp

(
�8c

�2(b� a)

)

Since the exponential function grows faster than any polynomial as its argument

goes to in�nity, for every � 2 IR there exists some �x0(�) < b such that S(�) >
k

b��
; � 2 (�x0; b). Since x0 is arbitrary we can assume x0 � �x0(�). We then

have

lim
x!b

Z
x

�x0

S(�)d� � lim
x!b

Z
x

�x0

k

b� �
d� = lim

x!b

k[ln(b� �x0)� ln(b� x)] =1

Similarly there exists ��x0 such that S(�) > k

��a
; � 2 (a; ��x0): Hence for x � ��x0

lim
x!a

Z
x

��x0

S(�)d� � lim
x!a

Z
x

��x0

k

� � a
d� = lim

x!a
k[ln(x� a)� ln(��x0 � a)] = �1

A.2 Proof of Lemma 3

It is su�cient to check the Lipschitz and growth conditions for the drift and di�usion
coe�cients.

(i) the growth condition is trivially satis�ed since the di�usion coe�cient and

c(a+ b)� 2r)

b� a
� (b� r)(r � a)

b� a
sup
t2[0;T ]

�(t)

are continuous functions of r on [a; b].

(ii) Lipschitz condition�����
 
c(a+ b� 2x)

b� a
� (b� x)(x� a)

b� a
�(t)

!
�
 
c(a+ b� 2y)

b� a
� (b� y)(y � a)

b� a
�(t)

!�����
� 1

b� a

����
�
2c + j�tj(b� a)

�
jy � xj

����
� sup

t2[0;T �]

1

b� a

�
2c + j�(t)j(b� a)

�
jy � xj

= kjy � xj

similarly for the di�usion coe�cient.

B Fitting the Bounded Short Rate Model to an

Initial Term Structure

We consider the question in how far the model in (21) can be calibrated to a given

original term structure. To this end apply the transformation

x = f(r) = ln
r � a

b� r
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to (21) to obtain

dxt =

"
(a+ b� 2rt) � c
(b� rt)(rt � a)

� 1

2

a+ b� 2rt

b� a
�2 � �(t)

#
dt+ �dWt(22)

A discrete time approximation to (22) is given by

�xt =

"
(a+ b� 2f�1(xt)) � c

(b� f�1(xt))(f�1(xt)� a)
� 1

2

a+ b� 2f�1(xt)

b� a
�2 � �(t)

#
�t+ ��t

p
�t

where

�t � i.i.d. N(0; 1)

t = j ��t

j = 0; 1; :::
T

�t

f�1(x) = a+
b� a

1 + expf�xg
We assume that the original term structure is such that the forward rates are all in
(a; b). We thus have r0 = F0(0) 2 (a; b). Now we consider the zero bond maturing at

time 2�t. There must exist a �(0) such that

D(2�t) = expf�
1X
i=0

F0(i)�tg !
= E

h
exp

n
(�r0 � f�1(x0 +�x0))�t

oi

, expf�F0(1)�tg !
= E[expf�f�1(x0 +�x0)�tg]

Now the random variable under the E{operator has support S = [expf�b�tg; expf�a�tg]
and expf�F0(1)�tg 2 int S by assumption. Varying �(0) 2 IR the expectation on
the right hand side can be moved to any value in the interior of S. Since f is strictly
monotonic in � there is exactly one �(0) such that the above equation is satis�ed.

Moreover r1 = f�1(x0 +�x0) 2 (a; b) since f�1 : IR! (a; b).
Assuming that the function �(�) has been constructed up to time (j � 1)�t to �t the
original term structure we now consider
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Now varying �(j � 1) 2 IR the expectation can take any value between expf�b�tg
and expf�a�tg and the argument proceeds as before16.

16Obviously if �t ! 0 additional assumptions on the smoothness of the original term structure
are needed to guarantee that the function �(�) remains �nite.
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C Calculating Term Structures From the Hull/White

(1993) Algorithm Output

Consider the following case
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The one{period zero bond price for state i in period n is given by

Bn;i(1) = expf��trn;ig

Let �n;i;d; �n;i;m; �n;i;u be the one{period state prices of the down{, middle{, and up{

state, as seen from state i in period n: The price of a k{period zero bond in (n; i)

is the weighted sum of (k � 1){period zero bond prices in the three states attainable
from (n; i): For state �1 in period 1:

B1;�1(k) = �1;�1;dB2;�1(k � 1) + �1;�1;mB2;0(k � 1) + �1;�1;uB2;1(k � 1)

If the model has been calculated for N periods, then by backward induction for

each state (n; i) we can determine the values of all zero bonds maturing in k 2
f1; : : : ; N � ng periods, where n runs from N � 1 to 0.
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D Tables

D.1 Parameter Constellations

The initial curve of instantaneous forward rates is at at 6% for all plots.

Figure Model Time17 � MR � Range18 Ref.19 Dev.20

1 Vasicek 2 yrs. 0 0.15 0.08 (�1;1) 16 0.12500

2 Vasicek 2 yrs. 0 0.15 0.08 (�1;1) 16 0.12500
3 Vasicek 2 yrs. 0 0.15 0.08 (�1;1) 16 0.12500

4 CIR 2 yrs. 0.5 0.15 0.12 [0;1) 16 0.01468

5 Brennan/Schwartz 2 yrs. 1 0.15 0.16 (0;1) 16 0.00180

6 Vasicek 2 yrs. 0 0.15 0.01 (�1;1) 16 0.00195

7 CIR 2 yrs. 0.5 0.15 0.0408914 [0;1) 16 0.00193

8 Brennan/Schwartz 2 yrs. 1 0.15 0.1649986 (0;1) 16 0.00192
9 �{root 2 yrs. 1.5 0.15 0.6578632 (0;1) 16 0.00146

10 BDT 2 yrs. na 0.15 0.1436448 (0;1) 16 0.00145
11 SaSo 2 yrs. na na 0.1483548 (0;1) 16 0.00147

12 SaSo 2 yrs. na na 0.8 (0;1) 32 0.01358

13 SaSo 2 yrs. na na 0.8 (0;1) 32 0.01358
14 SaSo 2 yrs. na na 0.8 (0;1) 32 0.01358
15 bounded rate 3 yrs. na 0.045 1.2 (2:75%; 9:25%) 32 0.30175
16 bounded rate 3 yrs. na 0.45 1.2 (2:75%; 9:25%) 32 0.27803

17 bounded rate 3 yrs. na 0.45 1.2 (2:75%; 9:25%) 32 0.27803
18 bounded rate 3 yrs. na 0.45 0.6 (2:75%; 9:25%) 32 0.08242
19 bounded rate 3 yrs. na 0.45 1.2 (2:75%; 9:25%) 32 0.27803
20 bounded rate 3 yrs. na 0.45 2.4 (2:75%; 9:25%) 32 0.71588

21 bounded rate 3 yrs. na 0.45 1.2 (4%; 10:5%) 80 3.24455

22 bounded rate 3 yrs. na 0.45 1.2 (1:5%; 8%) 80 3.29063
23 bounded rate 3 yrs. na 0.45 1.2 (4%; 10:5%) 80 3.24455
24 bounded rate 3 yrs. na 0.45 1.2 (1:5%; 8%) 80 3.29063

17The point in time for which the possible term structure realizations are plotted. For options,
the maturity of the option.

18Range of possible short rate realizations.
19Re�nement: the discretization of the time line in periods per year.
20The maximumdeviations of the calculated period 0 term structure from the input term structure

(in base points). See section 3.
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D.2 Matching the Variances of the Short Rate for Di�erent

Horizons

�{root speci�cation, speed of mean reversion a = 0:15, re�nement 16 p.a., initial

forward rate curve at at 6% (instantaneous) p.a.

Horizon � for � for

(years) � = 0 � = 1:5

1 0.01 0.6669764
2 0.01 0.6557919

5 0.01 0.6337317
8 0.01 0.6305960

9 0.01 0.6345709
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D.3 Di�usion Processes for the

Short Rate

Listed below are the di�usion process speci�-
cations considered in this paper, as well as the
transformations into processes with constant
instantaneous standard deviation. These trans-
formations are needed when implementing the

Hull/White (1993) algorithm.
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