
On the existence of equivalent �{measures in �nite
discrete time

Klaus Sch�urger

Department of Economics, University of Bonn, Bonn, Germany

Short title: Equivalent �{measures

Abstract

Suppose that (X(n)) is a �nite adapted sequence of d{dimensional random variables
de�ned on some �ltered probability space (
;F; (Fn); P ). We obtain conditions which
are necessary and su�cient for the existence of a probability measure Q equivalent
to P (which we call an equivalent �{measure) such that each of the d component

sequences of (X(n)) has a prescribed martingale property w.r.t. Q (i.e., it is either
a Q{martingale, a Q{sub{ or a Q{supermartingale). This extends a version of the
Fundamental Theorem of Asset Pricing due to Dalang, Morton and Willinger (1990).

AMS 1980 Subject Classi�cations: Primary 60G42; Secondary 90A09.

equivalent martingale measure � no{arbitrage � security market

Correspondence to: Dr. K. Sch�urger, Department of Economics, University of Bonn,
Adenauerallee 24{42, D{53113 Bonn, Germany.

Work supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303
at the University of Bonn.



1. Introduction

In the sequel X(n) = (X1(n); :::;Xd(n)); n = 0; 1; :::; T (T � 1) will denote Rd{

valued random variables de�ned on a common probability space (
;F; P ): Let F0 �

F1 � ::: � FT � F be any �ltration such that the process (X(n)) is adapted to

(Fn); i.e. X(n) is Fn{measurable for all n . Let Q be any probability measure

on F which is equivalent to P (Q � P ); i.e. Q and P have the same null sets.

One says that Q is an equivalent martingale measure for (X(n)) if (X(n)) is an Q{

martingale w.r.t. (Fn); i.e. EQ [ kX(n)k ] < 1; n = 0; :::; T ( k � k denoting the

Euclidean norm ) and EQ[X(n) � X(n � 1)jFn�1] = 0 a.s., n = 1; :::; T: It is easy

to verify that in this case (X(n)) satis�es the following "no{arbitrage" condition:

For n = 1; :::; T and each bounded Rd{valued random variable h which is Fn�1{
measurable, (h;X(n) � X(n � 1)) � 0 a.s. implies (h;X(n) � X(n � 1)) = 0 a.s.
(here, (x; y) denotes the scalar product of x; y 2 Rd).

The no{arbitrage condition has the following economic interpretation: Let Xi(n)
denote the price of a certain security i at time n and let h represent the investor's
portfolio during the period ]n � 1; n], where hi is the quantity of security i (here,
hi may assume negative as well as positive values). The Fn�1{measurability of h
means that the selection of the portfolio only uses the information available to the

investor at time n � 1. The no{arbitrage condition then says that the total net gain
(h;X(n)�X(n� 1)) at time n is either almost surely equal to zero or negative with
probability 0 < p < 1.

It is remarkable that the no{arbitrage condition is also su�cient for the existence
of an equivalent martingale measure. More precisely we have the following beautiful
version of the Fundamental Theorem of Asset Pricing:

Theorem 1.1 (Dalang, Morton and Willinger (1990)).

There exists an equivalent martingale measure Q for the process (X(n)) i� (X(n)) sat-

is�es the no{arbitrage condition. In this case Q may be chosen such that the Radon{
Nikodym derivative dQ=dP is FT{measurable and bounded.

Note that in Theorem 1.1 (X(n)) is not assumed to be integrable, and there are no
additional assumptions on the �ltration (Fn). (In Theorem 2.6 of Dalang et al. (1990)

the probability space (
;F; P ) and the �{algebras Fn are assumed to be complete.
It is, however, easy to see that these additional hypotheses are unnecessary.) Special

cases of Theorem 1.1 were derived e.g. by Harrison and Pliska (1981), Taqqu and

Willinger (1987) and Back and Pliska (1991). The original proof of Theorem 1.1 given
in Dalang et al.(1990) is based on measurable selection and measure{decomposition

theorems. Alternative proofs are due to Schachermayer (1992) (using certain Hilbert

space techniques), Kabanov and Kramkov (1994) and Rogers (1994).

Note that Theorem 1.1 holds if we allow for positive and negative amounts of

any security in the portfolio. One might ask whether Theorem 1.1 remains true for

markets in which trading of some securities is restricted to either positive or negative
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amounts. To be more speci�c, let us consider a market not allowing short sales of the

d securities involved (i.e., trading of these securities is restricted to positive amounts).

One could think for instance of small investors avoiding short sales. It follows from

our main result (see Theorem 2.4 below) that in this case the absence of arbitrage

opportunities is equivalent to the existence of an equivalent supermartingale measure

Q for X = (X(n)), i.e. we have Q � P and, for any 1 � i � d, the sequence (Xi(n))

is a Q-supermartingale w.r.t. (Fn).

It turns out that there is an interesting connection between the set M of all

equivalent supermartingale measures for X and the existence of some self-�nancing

hedging strategy for a given contingent claim f (i.e., f is a nonnegative real-valued
random variable which is FT -measurable). One could think for instance of an investor
who sells at time zero a certain option which obliges him to pay at time T the cash
amount f to the option buyer. In order to hedge himself against this situation, the
investor might apply a self-�nancing hedging strategy H = (H(n)); 0 � n � T , for f .
Here, H(n) is a d-dimensional random vector which represents the investor's portfolio

during the period ]n�1; n] whereHi(n) is the amount of security i in the portfolio. Let
us assume for the moment that F0 = f;;
g. Then H is called a self-�nancing hedging
strategy for the contingent claim f with (constant) initial value x > 0, provided H is
predictable w.r.t. (Fn) and has the following properties:

H(n) � 0 (componentwise); 0 � n � T; (H1)

(H(0);X(0)) = x; (H2)

(H(n);X(n)) � 0 a.s.; 1 � n � T � 1; (H3)

(H(T );X(T )) � f a.s. (H4)

and

(H(n + 1)�H(n);X(n)) = 0 a.s.; 0 � n � T � 1: (H5)

(The predictability of H means that, for any 1 � n � T;H(n) is Fn�1 - measurable,
and H(0) is F0{measurable (hence constant).) Note that (H1) means that the investor
avoids short sales. On the other hand, (H5) expresses the self{�nancing property of

H since the scalar product in (H5) equals the change of the value of the portfolio

immediately after time n due to the investor's rearrangement of his portfolio. (H2)
expresses the fact that the initial value of the portfolio equals x. According to (H4)

the value of the portfolio at time T is at least equal to f , and (H3) guarantees that
the investor is never put into a position of debt. The set of all hedging strategies

satisfying (H1){(H5) will be denoted by H(x; f). For any H 2 H(x; f) let V H
n =

(H(n);X(n)); 0 � n � T , denote the value of the resulting portfolio at time n. By
(H5) and (H2), V H = (V H

n ) is a discrete stochastic integral of the form

V H
n = x+ (H �X)n

= x+
nX

m=1

(H(m);X(m)�X(m� 1)); 0 � n � T (1.1)
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(note that (H(m);X(m)�X(m� 1)) equals the change of the value of the portfolio

due to the change of the prices of securities at timem). Let us put H(f) =
S
x>0

H(x; f)

(note that H(x; f) 6= ; implies H(y; f) 6= ; for any y > x).

Lemma 1.2.

For any Q 2M and H 2 H(f); V H is a Q{supermartingale.

In order to see this, it su�ces to note that, by (H1), (H2) and (H3), the Q{

integrability of (H(n);X(n)�X(n � 1)) follows from the fact that if

(H(n);X(n)�X(n � 1)) � � Q� a:s:

for some Q{integrable random variable �, then

EQ [j(H(n);X(n)�X(n� 1))j] � 2EQ [��]

where a = maxf�a; 0g; a 2 R.

In the case M 6= ; our next result gives a necessary condition for H(f) to be
nonvoid. (Note that, according to Theorem 2.4 below,M 6= ; holds i� (X(n)) satis�es
a no{arbitrage condition in the case when short sales are excluded.) ProvidedM 6= ;

we put, for any contingent claim f ,

~V f
n = ess sup

Q2M

EQ[f jFn]; 0 � n � T: (1.2)

According to Theorem 1.3(i) below, ~V f
n provides a uniform lower bound for the values

V H
n ;H 2 H(f). In particular, this implies (since F0 = f;;
g)

~V f
0 = sup

Q2M

EQ[f ] � inffx > 0jH(x; f) 6= ;g: (1.3)

Note that the right{hand side of (1.3) provides an upper bound for the fair price (at

time zero) of an option consisting of a payment f to the option buyer at time T . In
fact, let H(x; f) 6= ;. An investor who contemplates buying the option at time zero

can instead apply some strategy H 2 H(x; f) to a certain portfolio of initial value x

which guarantees him the wealth V H
T � f at time T .

According to Theorem 1.3 (ii) ~V f has nice martingale properties which were re-
cently used to obtain a condition which is su�cient for H(f) to be nonvoid (see

Remark 1.4 below).

Theorem 1.3.

Let F0 = f;;
g and assume M 6= ;:

3



(i) For any contingent claim f such that H(f) 6= ; we have

sup
Q2M

EQ[f ] <1 (1.4)

and, for any H 2 H(f);

~V f
n � V H

n a.s., 0 � n � T: (1.5)

(ii) Let (X(n)) be (componentwise) nonnegative. Then, for any contingent claim f

such that (1.4) holds, we have that

( ~V f
n )is a Q{supermartingale for any Q 2M: (1.6)

Remark 1.4.

Recently, H. F�ollmer and D.O. Kramkov (oral communication) have shown by using

a Hahn{Banach type argument that (1.6) implies H(f) 6= ;. Therefore, under the
nonnegativity assumption in Theorem 1.3 (ii), (1.4) is equivalent to H(f) 6= ;.

Note that Theorem 1.3 (i) is an easy consequence of Lemma 1.2 and (H4). Let us
now outline the proof of part (ii). In the sequel let Q� 2 M and 0 � m < n � T be

�xed. Expectations w.r.t. Q� will be denoted by E�. We put

z(Q) = E�[dQ=dQ� j Fn]; Q 2M:

We will need the following properties of M. For any P1; P2 2M and A 2 Fn we have

(1B denoting the indicator function of a set B)

1

z(P1)

dP1

dQ�
1A +

1

z(P2)

dP2

dQ�
1
nA =

dP0

dQ�
for some P0 2M (1.7)

(note that z(P0)=1 a.s.) which implies that, for any nonnegative random variable �,

EP0 [� j Fn] = 1AEP1 [� j Fn] + 1
nA EP2 [� j Fn] a.s. (1.8)

and
EP0 [�] = E�

h
1AEP1 [�jFn] + 1
nAEP2 [�jFn]

i
: (1.9)

Furthermore, for any Q 2M, we have that

EQ [dQ�=dQ j Fn] = d ~Q=dQ for some ~Q 2M (1.10)

which implies that, for any �{algebra G � Fn and any nonnegative random variable

�,
E� [EQ [� j Fn] j G] = E ~Q [� j G] a.s. (1.11)

(We omit the proof that P0 (given by (1.7)) and ~Q (given by (1.10)) belong to M,
which, in particular, uses the Bayes' rule for conditional expectations (see for instance
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Dalang et al. (1990), p. 188).) Now let P1; P2 2 M and put A = fEP1 [f j Fn] �

EP2 [f j Fn]g. Then (1.8) implies that, for some P0 2 M,

EP0 [f j Fn] = maxfEP1 [f j Fn] ; EP2 [f j Fn]g : (1.12)

It follows from (1.12) that there exists a sequence (Qk) �M such that the sequence

(EQk
[f j Fn]), k � 1, is a.s. increasing and

~V f
n = lim

k!1
EQk

[f j Fn] a:s: (1.13)

Hence, by (1.9), (1.4) and the monotone convergence theorem, ~V f
n is Q�{integrable.

It remains to show that

E�[ ~V
f
n j Fm] � ~V f

m a.s. (1.14)

In order to see this, note that, by (1.13),

E�
h
~V f
n j Fm

i
= ess sup

Q2M

E� [EQ[f j Fn] j Fm] a.s.

which, by (1.11), entails (1.14). This completes the proof of Theorem 1.3.

The nonnegativity assumption in Theorem 1.3 (ii) is clearly satis�ed if we assume
that the random vectors X(n) represent prices of certain securities. The following

example shows however that, in general, (1.7) does not hold if (X(n)) is not assumed
to be nonnegative.

Example 1.5.

Let 
 = f1; 2; : : :g, let F0 be the �{algebra generated by the sets f3n�2; 3n�1; 3ng,
n � 1, and let F1 = F be the power set of 
. Let the real{valued random variables
Y0; Y1 be de�ned on 
 by Y0 � 0 and

Y1(3n� 2) = 0; Y1(3n� 1) = 2n; Y1(3n) = �2n; n � 1:

De�ne probability measures P and Q on F by

Pf3n � 2g =
3

4 � 2n
; Pf3n � 1g = Pf3ng =

3

8 � 4n
;

Qf3n� 2g = Qf3n� 1g = Qf3ng =
1

4n
; n � 1:

Then Y = (Yn); n = 0; 1; is a martingale w.r.t. P and Q. Let P0 � P be given by

dP0

dP
=

dQ=dP

EP [dQ=dP j F0]
:

An easy calculation gives

dP0

dP
=

1X
n=1

2n + 1

3 � 2n
1f3n�2g +

1X
n=1

2(2n + 1)

3
1f3n�1;3ng
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which implies (putting a+ = max fa; 0g; a 2 R)

EP0 [(Y1)+] = EP [EQ[(Y1)+ j F0]] =1

and

EP0 [(Y1)�] = EP [EQ[(Y1)� j F0]] =1:

Hence Y is not a P0{supermartingale.

It is clear that Q is an equivalent submartingale measure for (X(n)) (in the ob-

vious sense) i� Q is an equivalent supermartingale measure for (�X(n)). Therefore

Theorem 2.4 below can be interpreted in this case as saying: "if one can't lose betting
on a process (playing at nonnegative stakes)then it must be a submartingale under

an equivalent change of measure".

Let us now introduce the notion of an equivalent �{measure which generalizes the
notion of an equivalent martingale measure and that of an equivalent super{(sub{)

martingale measure (in the sequel (Fn) denotes any �ltration to which (X(n)) is
adapted).

De�niton 1.6.

Let � 2 f�1; 0; 1gd. Let Q � P be a probability measure such that each X(n) is Q{
integrable. Then Q is called an equivalent �{measure for (X(n)) if, for all 1 � i � d;

we have that, w.r.t. (Fn); (Xi(n)) is a Q{martingale if �i = 0; a Q{submartingale if

�i = �1; and a Q{supermartingale if �i = 1: Clearly, by an equivalent sub{ (super{)
martingale measure we mean an equivalent (�1; :::;�1)� ((1; :::; 1)�) measure.

The main result of the present paper (see Theorem 2.4 in Section 2), extending

Theorem 1.1, gives a condition which is necessary and su�cient for the existence of an

equivalent �{measure for (X(n)). We will also deal with the question how equivalent
�{measures for various � 's are related to each other (see Corollary 2.5). In the one{
dimensional case it turns out that there exists an equivalent martingale measure i�

there exists an equivalent sub{and supermartingale measure.

Let us outline some ideas used in the proof of Theorem 2.4 which is given in
Section 3. Using induction on T , one only needs to prove the desired result for

processes (X(n)); n = 0; 1; such that X(0) � 0 and X(1) = Y; Y being integrable.
Now, the basic strategy is to decompose 
 into suitable sets belonging to F0, and to

prove the desired result for the restrictions of X to these sets (the �ltrations being the

"traces" of (Fn) on these sets). "Putting together" the equivalent �{measures thus
obtained yields the desired �{measure for X (see the proof of Lemma 3.3 which is

based on a result due to Yan (1980) (see The orem 3.2 below)). In order to obtain
a decomposition of 
 being suitable for our purposes, we apply, in a �rst step, an

elementary result due to Kabanov and Kramkov (1994) (see Lemma 3.4 below) which

provides a decomposition of 
 into sets 
(i) 2 F0; i = 1; 2, with the following
properties:
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(D1) The components of Y are on 
(1) "F0{ linearly independent" in the following

sense: If h is any bounded F0{measurable Rd{valued random variable, then

(h1
(1); Y ) = 0 a.s. implies h1
(1) = 0 a.s.

(D2) The components of Y are on 
(2) "F0{linearly dependent" in the following

sense: There exists some bounded F0{measurable Rd{valued random variable g

such that

g 6= 0 on 
(2); g = 0 on 
(1); and (g; Y ) = 0 a.s.

Now suppose that, for some � 2 f�1; 0; 1gd; X (or, for short, Y ) satis�es the "no{�{
arbitrage" condition occurring in Lemma 2.1 (here, �i = +1 (�1) means that trading
of security i is restricted to positive (negative) amounts, whereas in the case �i = 0
trading of security i is not subject to any restrictions). Then (D1) implies that, on

(1); Y satis�es the following stronger form of no{�{arbitrage: If, on 
, a portfolio

has a nonnegative value, then, on 
(1), it does not contain any securities. This
stronger form of no{�{arbitrage enables us to derive the existence of an equivalent
�{measure for the restriction of X to 
(1) in a straightforward manner by using a
deep result due to Koml�os (1967) (see Theorem 3.7 below). It thus remains to prove
the desired result for the restriction of X to 
(2). A simple conditioning argument

(which again involves Lemma 3.3) shows that we may additionally assume that the
random variable g in (D2) has the property that, for any 1 � i � d, one of the sets
fgi � 1g; fgi = 0g and fgi � �1g equals 
(2). Finally, we may replace Y and � by
Y � and � �, respectively, where, for any 1 � i � d,

Y �i =

(
giYi if gi 6= 0
Yi otherwise;

and

� �i =

(
�i if gi � 1 or gi = 0
��i otherwise.

Applying the same permutation to the components of Y � and � � carries Y � and � �

over into (say) ~Y and ~� , respectively. Obviously, Y has an equivalent �{measure
i� ~Y has an equivalent ~�{measure. This shows that in order to �nish the proof of
Theorem 2.4 it su�ces to derive the desired result for all Y which are of type � for

some � 2 f�1; 0; 1gd and, additionally, satisfy the condition

Y1 + : : :+ Y� � 0 on 
 for some 1 � � � d: (1.15)

Now, (1.15) enables us to use induction on d. Assume that Therem 2.4 holds for all

k{dimensional Y 's (1 � k � d � 1) satisfying (1.15). If one tries to prove Theorem

2.4 for all d{dimensional Y 's subject to the constraint (1.15), then the only di�cult

case is where the type of Y equals some � which, for some 1 � m � �=2, satis�es the

condition

�i = 1; �m+i = �1; 1 � i � m; and �i � 0; 2m+ 1 � i � �: (1.16)
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Assume that, at time 1, Yi is the price of security i and let Z be the value (at time

1) of some portfolio such that the amounts of securities 1; : : : ; d in the portfolio are

subject to the constraints given by � . Then (1.15) and (1.16) imply (see relation

(3.15) below) that there exist m portfolios having total value Z at time 1 such that,

for any 1 � j � m, the j{th portfolio does not contain security j, satis�es the

constraints given by �1; : : : ; �j�1; �j+1; : : : ; �d and, furthermore, has (at time 1) value

�jZ where 0 � �j � 1 is F0{measurable. According to this observation the induction

hypothesis applies, and using Koml�os's theorem once more proves the desired result

for d{dimensional Y 's satisfying (1.15). This �nishes the proof of Theorem 2.4. Let

us note that the proof of Theorem 2.4 in the case d = 1 is much shorter than in the

case d � 2 (see the proof of Lemma 3.8 in Section 3).

2. On the existence of equivalent �{measures

If G � F is any �{algebra, we denote by L1d (G) (L
1
d(G)) the family of all Rd{valued ran-

dom variables de�ned on (
;F; P ) which are G{measurable and bounded (integrable);
we write L1(G) (L1(G)) instead of L11 (G) (L11(G)). If M is any family of real{valued
functions, we put M0 = M and let M�1(M1) denote the family of all f 2 M which
are nonpositive (nonnegative). For any � 2 f�1; 0; 1gd let L1d (G)� (L1d(G)� ) consist of
all h in L1d (G) (L1d(G)) such that hi belongs to L

1(G)�i (L1(G)�i) ; 1 � i � d:

Lemma 2.1.

If there exists an equivalent �{measure for (X(n)), then, for all 1 � n � T and
h 2 L1d (Fn�1)� ,

(h;X(n)�X(n � 1)) � 0 a.s. implies (h;X(n) �X(n� 1)) = 0 a.s.

Proof.

Let Q be an equivalent �{measure for (X(n)). Then, for each 1 � n � T ,

(g;EQ [X(n) �X(n � 1)jFn�1]) � 0 Q{a.s.; g 2 L1d (Fn�1)� ;

and hence

EQ [(g;X(n) �X(n � 1))] � 0 ; g 2 L1d (Fn�1)� : (2.1)

If, for some 1 � n � T and h 2 L1d (Fn�1)� ,

(h;X(n)�X(n � 1)) � 0 P{a.s. and therefore Q{a.s. ;

then, by (2.1),

(h;X(n)�X(n � 1)) = 0 Q{a.s. and therefore P{a.s.
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Remark 2.2.

Using backward induction it is easy to show that the condition of Lemma 2.1 is equiv-

alent to the following condition:

For each random variable Z of the form

Z =
TX
n=1

(h(n);X(n)�X(n � 1)) ; where h(n) 2 L1d (Fn�1)� ; 1 � n � T;

we have that Z � 0 a.s. implies Z = 0 a.s..

(Note that Z is a discrete stochastic integral.) In fact, let us prove this claim using
backward induction on

N = minf1 � n � T jP (h(n) 6= 0) > 0g

(we put min ; = T ). The claim clearly holds in the case N = T . Suppose it holds for

all Z for which 2 � m � N � T . Let Z be a random variable of the above form for
which N = m� 1 and let Z � 0 a.s. Then

TX
n=m

(h(n);X(n)�X(n� 1)) � 0

a.s. on the set A = f(h(m� 1);X(m� 1) �X(m � 2)) � 0g (note that A 2 Fm�1).
The induction hypothesis implies

TX
n=m

(h(n)1A;X(n)�X(n� 1)) = 0 a.s.

Since Z � 0 a.s., this yields 1A(h(m� 1);X(m � 1) �X(m� 2)) � 0 a.s. Therefore

(h(m � 1);X(m � 1) �X(m � 2)) � 0 a.s. which, by the condition of Lemma 2.1,

implies (h(m� 1);X(m� 1)�X(m� 2)) = 0 a.s. Applying the induction hypothesis
once more gives Z = 0 a.s.

De�nition 2.3.

Let � 2 f�1; 0; 1gd: We say that the process (X(n)) is of type � if (X(n)) satis�es the

condition of Lemma 2.1 (or, equivalently, the condition in Remark 2.2).
The following theorem generalizing Theorem 1.1 is our main result (its proof will

be given in Section 3).

Theorem 2.4.

There exists an equivalent �{measure Q for the process (X(n)) i� (X(n)) is of type

� . In this case Q may be chosen such that dQ=dP is FT{measurable and bounded.

The following easy consequence of Theorem 2.4 shows how equivalent �{measures

for various � 's are related to each other (note that part (ii) is an easy consequence of

Lemma 2.1 and Theorem 1.1).
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Corollary 2.5.

(i) Let � 2 f�1; 0; 1gd be such that �i = 0 for at least one 1 � i � d. Suppose that

(X(n)) has an equivalent �{measure for all � such that �j = �j whenever �j 6= 0;

and �j 6= 0 whenever �j = 0: Then (X(n)) has an equivalent �{measure.

(ii) In particular, (X(n)) has an equivalent martingale measure i� (X(n)) has an

equivalent �{measure for all � 2 f�1; 1gd:

Remark 2.6.

The following example shows that the condition in Corollary 2.5 (ii) cannot be relaxed.

In fact, �x any � � 2 f�1; 1gd. Then there exists a process (X(n)) such that (X(n))
is of type � for all � 2 f�1; 1gd n f� �g but does not have an equivalent martingale

measure.

Example 2.7.

Let 
 = [0; 1[ be equipped with the �{algebra F of Borel sets and Lebesgue measure.

Let d � 2; T = 1; F1 = F and let F0 be trivial. Let X(0) � 0; X(1) = Y where

Yi = 2d
2
i�1�1X
k=0

1�
2k

2i
;2k+1
2i

� � 2
i�1X

k=1

1�
2k�1

2i
;2k
2i

� ; 1 � i � d � 1;

Yd =
2
d�1�2X
k=0

1�
2k

2d
;2k+1
2d

� � 2
d�1X

k=1

1�
2k�1

2d
;2k
2d

� � 1�
2d�2

2d
;2

d
�1

2d

�

Since Y1 + : : :+ Yd�1 � dYd � 1; (X(n)) is not of type � �, where � � = (1; : : : ; 1;�1).

On the other hand, (X(n)) is easily shown to be of type � for all � 2 f�1; 1gd n f� �g.
In fact, let sgn a, a 2 R, denote the sign of a which equals 1 if a > 0, �1 if a < 0, 0
if a = 0. Fix any � 2 f�1; 1gd n f� �g. Then P (sgn Xi = ��i; 1 � i � d) > 0. Let

(a1; : : : ; ad) 2 Rd be such that, for all 1 � i � d, sgn ai � 0 if �i = 1, sgn ai � 0

if �i = �1, and let a1X1 + : : : + adXd � 0 a.s.. Then a1X1 + : : : + adXd � 0 a.s.
on fsgn Xi = ��i; 1 � i � dg which shows that P (a1X1 + : : : + adXd < 0) > 0 if

ai 6= 0 for some 1 � i � d. Therefore a1 = : : : = ad = 0, and (X(n)) is of type � .
Replacing Y by (s1Y1; : : : ; sdYd) where si 2 f�1; 1g; 1 � i � d, we obtain a process

(X(n)) which is of type � for all � 2 f�1; 1gd n f(s1�
�
1 ; :::; sd�

�
d )g but does not have

an equivalent martingale measure.

Example 2.8.

Let Y (0); : : : ; Y (T ) be i.i.d. real valued random variables de�ned on (
;F; P ). For n =
0; : : : ; T put S(n) = Y (0) + : : :+ Y (n); X(n) = c�1n S(n) and Fn = �fY (0); :::; Y (n)g.

Here, c0; :::; cT are denoting strictly positive real numbers. Put a = ess sup Y (0); b =

�ess inf Y (0). We shall assume a > 0 and b > 0. It turns out that the conditions on

10



the constants cn under which (X(n)) has an equivalent �{measure only depend on a

and b and (possibly) on whether the distribution of Y (0) has positive mass at a or b.

Case 1. 0 < a <1 and 0 < b <1:

Let

P (Y (0) = �b) > 0 ; P (Y (0) = a) > 0:

Then an equivalent submartingale measure exists i�

1 �
a

nb
<

cn

cn�1
< 1 +

1

n
; 1 � n � T:

(Note that this excludes the choice cn = n + 1 ; 0 � n � T !) Furthermore, an
equivalent martingale measure exists i�

1�
1

n
min

 
a

b
;
b

a

!
<

cn

cn�1
< 1 +

1

n
; 1 � n � T:

Applying this to the process (�X(n)) gives conditions under which an equivalent
supermartingale measure exists. Now assume

P (Y (0) = �b) = 0 ; P (Y (0) = a) > 0:

Then an equivalent submartingale measure exists i�

1�
a

nb
�

cn

cn�1
< 1 +

1

n
; 1 � n � T:

An equivalent supermartingale measure exists i�

1 �
b

na
<

cn

cn�1
� 1 +

1

n
; 1 � n � T:

This implies (using Corollary 2.5 (ii)) that an equivalent martingale measure exists in
the case a � b i�

1 �
b

na
<

cn

cn�1
< 1 +

1

n
; 1 � n � T ;

it exists in the case a < b i�

1�
a

nb
�

cn

cn�1
< 1 +

1

n
; 1 � n � T:

Finally assume

P (Y (0) = �b) = P (Y (0) = a) = 0:

Then an equivalent submartingale measure exists i�

1 �
a

nb
�

cn

cn�1
� 1 +

1

n
; 1 � n � T:

An equivalent martingale measure exists i�

1 �
1

n
min

 
a

b
;
b

a

!
�

cn

cn�1
� 1 +

1

n
; 1 � n � T:

11



Case 2. a =1 and 0 < b <1.

Then for any choice of the constants cn, an equivalent submartingale measure ex-

ists. On the other hand, an equivalent supermartingale measure exists in the case

P (Y (0) = �b) > 0 i�

1 �
cn

cn�1
< 1 +

1

n
; 1 � n � T ;

it exists in the case P (Y (0) = �b) = 0 i�

1 �
cn

cn�1
� 1 +

1

n
; 1 � n � T:

Note that, in view of Corollary 2.5 (ii), the last two claims remain true if "super-
martingale" is replaced by "martingale".

Case 3. a =1 and b =1.

Then, for any choice of the constants cn, an equivalent martingale measure exists!

We shall verify the above claims only in two typical cases. Assume 0 < a <1; 0 <
b <1 and let

1 �
a

mb
=

cm

cm�1
for some 1 � m � T: (2.2)

If P (Y (0) = �b) > 0; then no equivalent submartingale measure exists. In fact,
consideration of

h(m) = �1fS(m�1)=�bmg

shows that (X(n)) is not of type (�1): Now assume P (Y (0) = �b) = 0 and (2.2). Let

h(m) be any nonpositive Fm�1{measurable random variable for which

h(m)(X(m)�X(m� 1)) � 0 a.s. , i.e.

h(m)
�
Y (m) +

a

mb
S(m� 1)

�
� 0 a.s. (2.3)

Let us verify that this implies h(m) = 0 a.s. . In fact, since Y (m) is independent of
Fm�1 we obtain

P (h(m) < 0) = P

�
h(m) < 0 ; �

a

mb
S(m� 1) �

a

2

���� Y (m) >
a

2

�

+
1X
k=1

P

�
h(m) < 0 ; a

�
1�

1

2k

�
< �

a

mb
S(m� 1) � a

�
1�

1

2k+1

� ���� Y (m) > a

�
1�

1

2k+1

��

+P

�
h(m) < 0 ;�

a

mb
S(m� 1) = a

�
:

This implies h(m) = 0 a.s. since, by (2.3),

Y (m) � �
a

mb
S(m� 1) a.s. on fh(m) < 0g:

12



3. Proof of Theorem 2.4

Using an induction argument (see Dalang et al.(1990)) it is not di�cult to verify that

it su�ces to prove Theorem 2.4 in the case T = 1. For the rest of the proof we

will therefore assume T = 1. Suppose that the desired result holds for all processes

(Y (n)) ; n = 0; 1, of type � such that Y (0) � 0 and E [ k Y (1) k ] < 1. Then, if

(X(n)); n = 0; 1 , is any process of type �; the process (Y (n)) given by Y (0) � 0 and

Y (1) = (max(1; k X(0) k; k X(1) k))�1(X(1) � X(0)) is of type � . By assumption,

(Y (n)) has an equivalent �{measure Q such that � = dQ=dP is F1{measurable and

bounded. Then the probability measure Q� on F, given by

dQ�=dP = c�(max(1; k X(0) k; k X(1) k))�1�

(c� > 0 denoting a normalizing constant) is easily checked to be an equivalent �{
measure for (X(n)) with the desired properties.

In the sequel we shall therefore consider only processes (X(n)); n = 0; 1; such that
X(0) � 0 and X(1) = Y 2 L1d(F1): Following the usual notation, we denote e.g. by
L1d (G)� the family of equivalence classes of random variables in L1d (G)� ( in order to

simplify notation, a random variable and the equivalence class it represents will be
denoted by the same symbol). For any W 2 L1d and � 2 f�1; 0; 1gd put

KW (� ) = f(h;W ) j h 2 L1d (F0)�g

(note that KW (� )�L1(F1) if W 2 L1d(F1)). Then (X(n)) (or, for short, Y) is of type �
i�

KY (� ) \ L1
+(F1) = f0g:

The desired result is a consequence of

Theorem 3.1.

For any � and any Y 2 L1d(F1), the following properties are equivalent:

(i) KY (� ) \ L1
+(F1) = f0g ;

(ii) KY (� )� L1
+(F1) \ L1

+(F1) = f0g

(the bar denoting closure w.r.t. the L1(F1){norm);

(iii) The process (X(n)) given by X(0) � 0 ;X(1) = Y has an equivalent �{measure
Q such that dQ=dP is F1{measurable and bounded.

(Here, KY (� )� L1
+(F1) means f� � � j � 2 KY (� ); � 2 L1

+(F1).)

The proof of Theorem 3.1 uses the following result which is due to Yan (1980) (see

also Ansel and Stricker (1990)):

13



Theorem 3.2.

For any convex set K � L1(F1) such that 0 2 K, the following conditions are equiva-

lent:

(a) For each � 2 L1
+(F1); � 6= 0, there exists a constant c > 0 such that c� =2

K � L1+ (F1) (the bar denoting closure w.r.t. the L1(F1){norm);

(b) There exists a random variable � 2 L1(F1) such that � > 0 a.s. and

sup
Z2K

E[Z�] <1:

(Note that the sets K �L1+ (F1) and K � L1
+(F1) have the same closure w.r.t. the

L1(F1){norm.)

Proof of Theorem 3.1.

It follows from Lemma 2.1 that (iii) implies (i). On the other hand, (ii) implies that
Condition (a) in Theorem 3.2 holds for K = KY (� ). Therefore, by Condition (b) in
Theorem 3.2, there exists a random variable � 2 L1(F1) such that � > 0 a.s., E[�] = 1
and (since KY (� ) is a cone)

E[Z�] � 0 for all Z 2 KY (� ) : (3.1)

Let Q be the probability measure on F with density dQ=dP = �. Using (3.1) one easily

veri�es that Q is an equivalent �{measure of (X(n)) having the desired properties.
This shows that (ii) implies (iii).

In the sequel we shall show that (i) implies (ii) (this will also complete the proof
of Theorem 2.4). Since we might replace P by its restriction to F1, we may (and will)
from now on assume F1 = F, and we shall denote F0 by G.

Let 
(i) 2 G be disjoint sets such that

P (
(i)) > 0 ; i = 1; 2:::; and P (
(1)) + P (
(2)) + ::: = 1:

Put

F(i) = fA \ 
(i) j A 2 Fg ;

G(i) = fA \ 
(i) j A 2 Gg ;

Y (i) = Y j
(i) (Y restricted to 
(i)) ;

Pi = P (� j 
(i)) (Pi de�ned on F(i)):

Lemma 3.3.

Fix any � 2 f�1; 0; 1gd and let Y 2 L
1
d. If the desired implication (i) ) (ii) holds

for each Y (i) (the probability space being (
(i);F(i); Pi) equipped with the �ltration

(G(i);F(i))) , then it also holds for Y .

14



Proof.

Assume that (i) holds for Y . Then (i) holds for each Y (i) which, by assumption,

implies

KY (i)(� )� L1
+(F(i)) \ L1

+(F(i)) = f0g for each i:

Therefore each process
�
X(i)(n)

�
given by X(i)(0) � 0; X(i)(1) = Y (i); has an equiv-

alent �{measure Qi de�ned on F(i) such that its density �i := dQi=dPi satis�es �i � ci
for some constant ci > 0 because (ii) implies (iii) in Theorem 3.1. Put

ai = max

 
ci

P (
(i))
; EQi

[ k Y (i) k ]

!

and let �i > 0 be real numbers such that �1+�2+ ::: = 1 and �1a1+�2a2+ ::: <1:

Then the probability measure Q given by

Q(A) =
X
i

�iQi (A \ 
(i)) ; A 2 F;

has a density
dQ

dP
=
X
i

�i

P (
(i))
�i 1
(i)

such that
dQ

dP
�
X
i

�iai <1:

It is easily veri�ed that Q is an equivalent �{measure for (X(n)): Combining (2.1)
and Theorem 3.2 shows that (ii) holds for Y .

The following simple (but crucial) result provides, for any Y 2 L1d; a decomposition

of 
 into sets 
(i) 2 G ; i = 1; 2; to which Lemma 3.3 will be applied.

Lemma 3.4 (Kabanov and Kramkov (1994)).

For any Rd{valued random variable W there exists a decomposition of 
 into sets


(i) 2 G; i = 1; 2, with the following properties:

(a) for each h 2 L1d (G) we have that (h1
(1);W ) = 0 a.s. implies h1
(1) = 0 a.s.;

(b) there exists some g 2 L
1
d (G) such that g 6= 0 on 
(2); g = 0 on 
(1) and

(g;W ) = 0 a.s.

A decomposition with these properties is unique up to null sets.

The following result suggests that Property (a) should become e�cient when com-

bining the Lemmas 3.3 and 3.4.
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Lemma 3.5.

Let Y 2 L1d and � 2 f�1; 0; 1gd. Assume that, for all h 2 L1d (G)� , we have that

(h; Y ) � 0 a.s. implies h = 0 a.s. (3.2)

Then

KY (� )� L1
+ \ L1

+ = f0g : (3.3)

Remark 3.6.

In the case where � = (0; : : : ; 0), Lemma 3.5 was proved by Kabanov and Kramkov
(1994) by using the fact that the closed unit ball in L1d (G) is weak� sequentially
compact. Our proof uses instead the following deep result due to Koml�os (1967)
which makes the proof shorter.

Theorem 3.7.

Let (Zn) � L
1 be any sequence such that, for some constant c, E[jZnj] � c, n � 1.

Then there exists a random variable Z1 2 L1 and a subsequence (nk) of indices such
that, for any further subsequence (mk) � (nk),

lim
n!1

1

n

nX
k=1

Zmk
= Z1 a.s.

Proof of Lemma 3.5.

If (3.3) does not hold, then there exist � 2 L1+ such that P (� > 0) > 0, and sequences
(h(n)) � L

1
d (G)� ; (f(n)) � L

1
+ such that, as n �!1,

(h(n); Y )� f(n) � � �! 0 a.s. and in mean (3.4)

and
(h(n); E[Y jG])� E[f(n)jG]� E[�jG] �! 0 a.s. and in mean. (3.5)

Then, by (3.5),

lim inf
n!1

kh(n)k > 0 a.s. on A := fE[�jG] > 0g : (3.6)

Since � is nonnegative and P (� > 0) > 0, we have P (A) > 0. For r 2 R put r� = 1
r

if r 6= 0, and r� = 0 if r = 0. Let

~h(n) = 1Ak1Ah(n)k
�h(n) ; n � 1 :

Note that ~h(n) is G{measurable and, as n!1,

k~h(n)k = 1A\fh(n)6=0g �! 1 a.s. on A : (3.7)
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By (3.4) and (3.6),

(~h(n); Y )� 1Ak1Ah(n)k
�(f(n) + �) �! 0 a.s. as n!1 : (3.8)

For any � 2 f�1; 1gd put I� = I�1 � : : :� I�d, where I1 := [0;1[ and I�1 :=]�1; 0[.

Let

g(�; n) = 1I�(
~h(n))~h(n) ; � 2 f�1; 1gd ; n � 1 :

An application of Koml�os's theorem shows that we may additionally assume that, for

all �,

g(�) := lim
n!1

1

n

nX
k=1

g(�; k) exists a.s. (3.9)

where g(�) 2 L1d (G)� . By (3.8), this gives (g(�); Y ) � 0 a.s. and hence, by (3.2),

g(�) = 0 a.s. for all � : (3.10)

Since X
�

 
�;

1

n

nX
k=1

g(�; k)

!
�

1

n

nX
k=1

k~h(k)k =
1

n

nX
k=1

1fh(k)6=0g1A ;

we obtain from (3.9) and (3.7)

X
�

(�; g(�)) � 1 a.s. on A

which contradicts (3.10) since P (A) > 0. This proves Lemma 3.5.

Combining the Lemmas 3.3, 3.4 and 3.5 shows that in order to �nish the proof of

Theorem 3.1 it su�ces to prove that if Y 2 L1d is of type � and if there exists some
g 2 L1d (G) such that

g(!) 6= 0 ; (g(!); Y (!)) = 0 ; ! 2 
 ; (3.11)

then

KY (� )� L1
+ \ L

1
+ = f0g :

Let Y 2 L1d be of type � and assume (3.11) for some g 2 L1d (G). Another application

of Lemma 3.3 shows that we may additionally assume that, for each 1 � i � d,
one of the events fgi � 1g, fgi = 0g and fgi � �1g equals 
. Applying the same

permutation to the components of Y and � and multiplying the same components of
Y and � by minus one leaves KY (� ) unchanged and shows that we may additionally

assume that there exists a number 1 � � � d such that

gi(!) � 1 ; 1 � i � � ; gi(!) = 0 ; � + 1 � i � d ; ! 2 
 : (3.12)

Now consider ~Y := (g1Y1; : : : ; g�Y�; Y�+1; : : : ; Yd). Clearly ~Y 2 L
1
d and, by (3.12),

KY (�) = K~Y (�) for all � 2 f�1; 0; 1g
d. In order to �nish the proof of Theorem 3.1 it

therefore su�ces to derive
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Lemma 3.8.

Fix � 2 f�1; 0; 1gd and let Y 2 L1d be such that, for some number 1 � � � d,

Y1 + : : :+ Y� = 0 on 
 : (3.13)

If Y is of type � , then

KY (� )� L1
+ \ L1

+ = f0g : (3.14)

We shall prove Lemma 3.8 by induction on d. In the case d = 1 Lemma 3.8 is trivial

since (3.13) implies Y � 0. Now let d � 2 and assume that Lemma 3.8 holds in the

k{dimensional case for any 1 � k � d� 1. For any x 2 Rd let x̂(i) 2 Rd�1, 1 � i � d,

be de�ned by x̂(i) = (x1; : : : ; xi�1; xi+1; : : : ; xd). Consider any Y 2 L1d which is of type
� and satis�es (3.13) for some 1 � � � d.

Case 1. �i � 0, 1 � i � �.

It follows from (3.13) that Y is of type � where �i = 0, 1 � i � �, and �i = �i,
� + 1 � i � d. By (3.13),

KY (�) = KŶ (�)(�̂(�)) :

Since Ŷ (�) is of type �̂(�), the induction hypothesis implies

KŶ (�)(�̂(�))� L1
+ \ L

1
+ = f0g

and hence (3.14).

The case where �i � 0 , 1 � i � �, can be reduced to Case 1 by noting that

KY (� ) = K�Y (�� ) :

In the sequel we will assume � � 2 since otherwise Y1 � 0 and therefore KY (� ) =
K
Ŷ (1)

(�̂(1)). Noting again that KY (� ) is left unchanged if the same permutation is

applied to the components of Y and � , and if the same components of Y and � are

multiplied by minus one, it is clear that all remaining cases can be reduced to

Case 2. For some 1 � m �
�
2
, we have �i = 1, �m+i = �1, 1 � i � m, and �i � 0,

2m+ 1 � i � �.

Then for each Z 2 KY (� ) there exists a partition of 
 into sets Aj 2 G, 1 � j � m,

such that

Z1Aj
2 K

Ŷ (j)
(�̂ (j)) ; 1 � j � m : (3.15)

This can be interpreted as follows. Assume (for the moment) that Yi is the price of

security i at time 1. Then Z is the value (at time 1) of some portfolio such that the
amounts of securities 1; : : : ; d in the portfolio are subject to the constraints given by

� . Now, (3.15) says that there exist m portfolios having total value Z such that, for

any 1 � j � m, the j-th portfolio does not contain security j, satis�es the constraints
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given by �̂ (j) and, �nally, has value Z1Aj
(1Aj

being G{measurable). In order to prove

(3.15) note that there exists some h 2 L1d (G)� such that, by (3.13),

Z =
�X
i=1

(hi � hj)Yi +
dX

i=�+1

hiYi ; 1 � j � m :

If we put

�(!) = min

�
1 � j � m

���hj(!) = min
1�i�m

hi(!)

�
; ! 2 
 ;

and

Aj = f� = jg ; 1 � j � m ;

then (3.15) follows. Since Y is of type � , the induction hypothesis implies

KŶ (j)(�̂(j))� L1
+ \ L

1
+ = f0g ; 1 � j � m : (3.16)

Combining (3.15) and (3.16) yields (3.14). In fact, let � 2 KY (� )� L1
+ \ L1

+. Then

there exist sequences (h(n)) � L
1
d (G)� and (g(n)) � L

1
+ such that

lim
n!1

E[j(h(n); Y )� g(n)� �j] = 0 : (3.17)

According to (3.15) it follows that, for each n � 1, there exists a partition of 
 into
sets Aj(n) 2 G ; 1 � j � m, such that

(h(n); Y )1Aj(n) 2 KŶ (j)(�̂(j)) ; 1 � j � m ; n � 1 :

Put

S(j; n) =
1

n

nX
k=1

1Aj(k) ; 1 � j � m ; n � 1 :

An application of Koml�os's theorem shows that we may additionally assume that

S(j) := lim
n!1

S(j; n) exists a.s., 1 � j � m :

Putting

H(j; n) =
1

n

nX
k=1

h(k)1Aj(k) ; G(j; n) =
1

n

nX
k=1

g(k)1Aj (k) ;

we have

(H(j; n); Y ) 2 KŶ (j)(�̂ (j)) ; 1 � j � m; n � 1 ;

and, by (3.17),

lim
n!1

E[j(H(j; n); Y )�G(j; n) � �S(j; n)j] = 0 ; 1 � j � m :

Hence, by the dominated convergence theorem,

lim
n!1

E[j(H(j; n); Y )�G(j; n) � �S(j)j] = 0; 1 � j � m;

which, by (3.16), implies �S(j) = 0 a.s., 1 � j � m. Since S(1) + : : :+S(m) = 1 a.s.,
we obtain � = 0 a.s. This yields (3.14) and �nishes the proof of Lemma 3.8.

19



Acknowledgements

I gratefully acknowledge stimulating discussions with H. F�ollmer, Yu. M. Kabanov

and D. O. Kramkov. In particular, D. O. Kramkov noted the importance of relation

(1.12) for the set of equivalent martingale measures for X. The idea behind Example

1.5 was suggested by a discussion with Yu. M. Kabanov. I would also like to thank

the referee and an Associate Editor for their constructive criticism which led to a

considerable expansion of the introductory section.

20



References

J.{P. Ansel and C. Stricker, Quelques remarques sur un th�eor�eme de Yan, in: J.

Az�ema, P.A. Meyer and M. Yor, eds., S�eminaire de Probabilit�es XXIV, Lecture

Notes in Math.,Vol. 1426 (Springer, Berlin, 1990) pp.266{274.

K. Back and S.R. Pliska, On the fundamental theorem of asset pricing with an

in�nite state space, J. Math. Econom. 20 (1991) 1{18.

R.C. Dalang, A. Morton and W. Willinger, Equivalentmartingale measures and

no{arbitrage in stochastic securities marketmodels, Stoch. Stoch. Rep. 29 (1990)

185{201.

M.J. Harrison and S.R. Pliska, Martingales and stochastic integrals in the the-
ory of continuous trading, Stochastic Process. Appl. 11 (1981) 215{260.

Yu. M. Kabanov and D.O. Kramkov, No{arbitrage and equivalent martingale
measures: An elementary proof of the Harrison{Pliska theorem, to appear in:
Theory Probab. Appl. (1994).

J. Koml�os, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hun-
gar. 18 (1967) 217{229.

L.C.G. Rogers, Equivalent measures and no arbitrage, to appear in: Stoch. Stoch. Rep.
(1994).

W. Schachermayer, A Hilbert space proof of the fundamental theorem of asset
pricing in �nite discrete time, Insurance: Mathematics and Economics 11 (1992)
249{257.

M.S. Taqqu and W. Willinger, The analysis of �nite security markets using mar-
tingales, Adv. in Appl. Probab. 19 (1987) 1{25.

J.{A. Yan, Caract�erization d'une classe d'ensembles convexes de L1 ou H1, in: J.
Az�ema and M. Yor, eds., S�eminaire de Probabilit�es XIV, Lecture Notes in Math.,
Vol. 784 (Springer, Berlin, 1980) pp.220{222.


