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Abstract

A partnership game is a two person game in which both players necessarily receive the

same payoff. For symmetric partnership games it is shown that asymptotic stability with respect to

the replicator dynamics, evolutionary stability (Maynard Smith and Price [1973], Thomas [1985])

and equilibrium evolutionary stability (Swinkels [1992]) are equivalent concepts. This equivalence

result is also derived for asymmetric partnership games, both in the asymmetric contest (Selten

[1980]) and in the two population setting (Balkenborg and Schlag [1994]). A side result shows

for general games that equilibrium evolutionary stability is weaker than evolutionary stability.

Keywords: evolutionarily stable set, strict equilibrium set, equilibrium evolutionarily stable, local

efficiency, replicator dynamics, asymptotic stability, minimal attracting set.

JEL classification number: C79.



1

0. Introduction

Evolutionary game theory has become a popular tool to select among outcomes of a

game. However there are various theoretical approaches that lead to different solution concepts.

An issue that previously arose in the refinement literature reappears: which solution concept

should be used? We show that such considerations do not arise in partnership games because the

major concepts are equivalent in these games. Partnership games are two person games in which

both players always receive the same payoff, especially they include coordination games. A side

result shows for general games that equilibrium evolutionary stability is weaker than evolutionary

stability.

In the following we give a short review of the solution concepts of evolutionary game

theory we are referring to.

Maynard Smith and Price [1973] introduced the concept of an evolutionarily stable

strategy (ESS) in order to capture intuitively the properties a strategy might need to survive in an

evolutionary process. Stability means that a monomorphic population can resist any one time

entry of a small frequency of mutants. 

Later this concept was related to the replicator dynamics, a dynamic system common in

population genetics and biology in general. The relevant solution concept in this context is

asymptotic stability. A strategy or set of strategies is called asymptotically stable if trajectories

starting close stay close and eventually converge to an element in the set. Taylor and Jonker

[1978] and Zeeman [1980] showed that each ESS is asymptotically stable in the replicator

dynamics. These replicator dynamics have appeared in other fields too, lately they have especially

started emerging from models of human learning (e.g. Binmore, Gale and Samuelson [1993],

Börgers and Sarin [1993], Cabrales [1993] and Schlag [1994]). 

Thomas [1985] extended the concept of an ESS to sets of strategies (called evolutionarily

stable set) and showed that this concept is sufficient for asymptotic stability of sets in the

replicator dynamics. Balkenborg and Schlag [1994] reinterpreted the ES set condition as close to

the original ESS setting as possible.

Swinkels [1992] weakened the definition of an ESS in a different manner and introduced
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the concept of an equilibrium evolutionarily stable set. Here mutants may only enter if they get the

best payoff once they are in the population. Although elements of singleton EES sets are

evolutionarily stable strategies the concept of EES remains an intuitive one because a general

connection to some explicit dynamic process has not been found. 

In this context we extend the understanding of equilibrium evolutionary stability by

showing that connected evolutionarily stable sets are equilibrium evolutionarily stable. The

previous proof of a weaker version by Blume, Kim and Sobel [1993] is shown to be incomplete.

The object of this paper is to convey some findings as to the equivalence of various

evolutionary concepts in partnership games. It namely turns out that the structure of the payoffs in

partnership games is such that the differences apparent in the various concepts are eliminated. One

lemma that gives some initial idea of the specific payoff structure in partnership games states that

payoffs in connected sets of Nash equilibria are constant.

Concerning the evolutionary analysis we must distinguish two matching situations. In the

(classical) symmetric setting the agents can not be distinguished, hence the game is symmetric. In

the biological terms this coincides to the case in which all agents belong to the same specie. In the

asymmetric setting, there are two kinds of agents, one coinciding to each player in the game.

Here, the biological story tells about two species where one specie is matched against the other

and then breeds among its own specie. 

At first we consider the specific properties of partnership games in the symmetric setting.

Early work on partnership games in the context of mendelian dynamics has shown that the

average payoff in the population increases over time in the replicator dynamics, a result known as

the fundamental theorem of natural selection (see Hofbauer and Sigmund [1988] for the various

contributions to this result). Other work by Hofbauer and Sigmund [1988] has shown that

evolutionary stability and asymptotic stability of a strategy are equivalent in this class of games. 

Our main theorem for the symmetric case shows that the set valued concepts of

asymptotic stability in the replicator dynamics, evolutionary stability and equilibrium evolutionary

stability are equivalent in partnership games. Moreover such sets always exist and are precisely
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the sets with payoff allocations that are locally efficient. A set of strategies is called locally

efficient (this term is due to Weibull [1994]) if the payoff to a strategy against itself achieves a

strict local maximum and is constant on the set. Due to our result, the calculation of e.g. the

evolutionarily stable sets in partnership games is reduced to a maximization problem. 

We then replicate the above analysis for asymmetric games. Here there are two alternative

approaches in the literature. One approach is to symmetrize the game by a random assignment of

roles before the game is played. Players are identical and have a strategy they will play when they

are player one and a strategy to play in the position of player two. Depending on whether a player

uses a tuple of mixed strategies or mixes over tuples of pure strategies the resulting game is called

the asymmetric contest (Selten [1980]) or the symmetrized game (Balkenborg and Schlag

[1994]). Given this symmetrization the results we derived in the symmetric setup can be applied in

a straightforward manner. The only difference is that in a way the resulting concepts are now

more stringent. Evolutionarily stable strategies become equivalent to strict Nash equilibria (Selten

[1980]) and evolutionarily stable sets are equivalent to strict equilibrium sets (Balkenborg [1994],

Balkenborg and Schlag [1994]). Especially we prove the analog to the symmetric setting that each

connected strict equilibrium set (and hence each connected evolutionarily stable set) is equilibrium

evolutionarily stable. 

The alternative approach is to consider the asymmetric game as a contest between two

separate populations. Balkenborg and Schlag [1994] apply the notion of evolutionary stability to

this two population setting (for earlier related work restricted to extending ESS to this setting see

Swinkels [1992] and Cressman [1992]). They show that (analog to the symmetrization approach)

ESS in the two population setting is equivalent to the notion of a strict Nash equilibrium and ES

set is equivalent to the concept of a strict equilibrium set. Therefore with our analysis of the

symmetrized game we again obtain that a connected ES set is equilibrium evolutionarily stable.

For our analysis of partnership games in this two population setting we allow for two different

versions of the replicator dynamics, one due to Maynard Smith [1982] and one to Taylor [1979].

We derive the fundamental theorem of natural selection for both versions of the dynamics. The

subsequent equivalence theorem for the two population setup is then quite analogous to the one

that is derived from symmetrizing the asymmetric game.
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In the last section we utilize the invariance of the payoff functions to translations and show

how our equivalence theorems can be applied to a wider class of games.
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1. Preliminaries

We will start out by introducing some notation and by reviewing some equilibrium

concepts. For a finite set A={a,..,a } let )A be the set of probability distributions on A, i.e.,1 N

)A={x 0U  s.t. x$0 and x=1}. Consider a two person game in normal form '(S ,S ,E ,E )N
i i 1 2 1 2

with the pure strategies S ={e , i=1,..,N }, S ={a , j=1,..,N } and the payoff functions1 1 2 2
i j

E :)S ×)S 6U, i=1,2. The game ' is called symmetric if S =S  and E (x,y)=E (y,x) for alli 1 2 1 2 2 1

x,y0)S . In symmetric games we will simplify notation by dropping the indices (e.g.S=S ) and1 1

setting '(S,E)='. 

For z0)S c)S  let C(z) be the support of x, i.e., C(z)={e0S cS  s.t. z(e)>0}. For1 2 1 2

j0{1,2}, i0{1,2}\{j} and z0)S  let BR (z) be the set of best replies of player i to the strategy z ofj i

player j, i.e., given (x,y)0)S ×)S , BR (y)=argmax{E (x',y), x'0)S } and1 2 1 1 1

BR (x)=argmax{E (x,y'), y'0)S }. The pair of strategies (x,y)0)S ×)S  is called a Nash2 2 2 1 2

equilibrium if x0BR (y) and y0BR (x). 1 2

Next we will review some dynamic stability concepts. Let X be either )S  or )S ×)S1 1 2

and consider a dynamic process on X given by the solutions to the differential equation x=f(x)C

where f:X6X is Lipschitz continuous. A closed and non empty set GfX is called attracting if there

exists an open neighborhood U of G such that each trajectory starting in U converges to G

(UfX). G is called a minimal attracting set if there is no set G' that is attracting such that G'fG

and G�G'. Following Zorn's lemma a minimal attracting set always exists. Notice that minimal

attracting sets are candidates for the dynamics to get "caught" if mutations are very rare. A

strategy p0)S is called stable if for every open neighborhood U of p there exists an open

neighborhood V of p such that the trajectories starting in V do not leave U (U,VfX). A set GfX

is called an asymptotically stable set (AS set) if it is attracting and each x0G is stable. The element

of a singleton AS set is called an asymptotically stable strategy. 

In the following we add some notes on the above definitions. A trajectory starting in W

converges to L (L,WfX) if for any x0W and (t )  such that t64 when k64 (t 0U) it follows!

k k0ù k k
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that inf{dist( ,z), z0L} 60 as k64 where x  solves x=f(x) starting at x =x. The abovet C 0 !

definition of asymptotic stability is slightly stronger than the classical one (see e.g. Bhatia and

Szegö [1970]): in the standard definition additional to attracting the set as a whole must be stable,

not necessarily each point. Finally, w.l.o.g. we also require additionally to the standard definition

for an attracting set to be closed. We find it intuitive to include rest points on the border of an

attracting set into the set. 

Notice that a consequence of our definition of asymptotic stability is that trajectories

starting sufficiently close to such a set will converge to an element of the set (this follows easily

from the pointwise stability condition).
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2. Evolutionary Solution Concepts (Symmetric Case):

In this section we will review the major concepts of evolutionary game theory together

their interdependence relationships. Some original work will be provided regarding equilibrium

evolutionary stability. In this section we will restrict attention to the setup in which the agents

participating are identical, in the biological setup referred to as the one specie case. Since there is

no role identification, the players (or agents) can only be distinguished according to the strategy

they play when matched, especially the game that is associated with the matching process must be

symmetric. The asymmetric case can be found in sections 5 and 6.

An evolutionarily stable strategy (short, ESS) is a strategy that as a monomorphic

population can drive out any one time mutation of a sufficiently small frequency of mutants

playing some strategy q. Thomas [1985] extends this notion to sets without giving much intuition.

DEFINITION 2.1:  (Thomas [1985]) 

Let '(S,E) be a symmetric game. Then

Gf)S is called an evolutionarily stable set (ES set) if

i) G is non empty and closed,

ii) (p,p) is a Nash equilibrium and

iii) for any p0G there exists an open neighborhood U(p) such that E(p,x)$E(x,x) for all

x0U(p)1BR(p) and where E(p,x)=E(x,x) implies x0G. 

Especially, p0)S is called an evolutionarily stable strategy (ESS) (Maynard Smith and

Price [1973]) if {p} is an evolutionarily stable set (ES set).

Balkenborg and Schlag [1994] reinterpret the condition of an ES set along the lines of the

original ESS interpretation. A set Gf)S is evolutionarily stable if for sufficiently small mutations

the following holds: given q0)S and p0G the mutant strategy q can not spread in a population

playing p and is driven out if qóG. This leads to the following intuitive characterization of an ES

set.
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THEOREM 2.1:  (Balkenborg and Schlag [1994])

Gf)S is an evolutionarily stable set if and only if there exists ,E>0 such that for all p0G,

q0)S and 0<,<,E, E(p,(1!,)p+,q)$E(q,(1!,)p+,q) where the inequality holds strict if qóG.

The main innovation in the above theorem is that ES sets have a uniform invasion barrier,

i.e., ,E is independent of p and q. 

The concept of an ES set has been shown to be closely related to the stability properties of

the so called replicator dynamics.

DEFINITION 2.2:  (see Taylor and Jonker [1978]):

The replicator dynamics of '(S,E) on )S for continuous time and pure strategy types is

defined as follows:

x =x and x =[E(e ,x )!E(x ,x )]x , i=1,..,N; t$0, (RD)0 ! Ct i t t t t
i i

where x0)S is the initial state and x  is the frequency of the type using strategy e  (e0S) at time t.! t i i
i

To simplify notation we will drop the parameter t from the expressions (e.g., x=x ).t

The following theorem states that ES sets are asymptotically stable with respect to the

trajectories of the continuous replicator dynamics (RD). 

THEOREM 2.2 (Thomas [1985]): 

If Gf)S is an evolutionarily stable set (ES set) then G is an asymptotically stable set w.r.t.

the replicator dynamics (RD). The converse is not true.

We refer to Thomas [1985] for the proof of this theorem. It should be mentioned that both

Taylor and Jonker [1978] and Zeeman [1980] previously proved this theorem for the case of

singleton sets.
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An alternative evolutionary solution concept that is not related to an explicit dynamic

process was introduced by Swinkels [1992], here given in its symmetric version.

DEFINITION 2.3:  (Swinkels [1992])

A set Gf)S is called (symmetric) equilibrium evolutionarily stable (short, EES) if it is

minimal with respect to the following properties:

i) G is closed and non empty,

ii) if p0G then (p,p) is a Nash equilibrium and

iii) there exists ,E0(0,1) such that for all ,0(0,,E), p0G and q0)S, if q0BR((1!,)p+,q) then

(1!,)p+,q0G.

It follows easily that an equilibrium evolutionarily stable set (EES set) is a connected

component of ) ={x0)S s.t. x0BR(x)} (see Swinkels [1992]). NE

The following theorem shows that equilibrium evolutionary stability is weaker than

evolutionary stability.

THEOREM 2.3:

Let '(S,E) be a symmetric game. If Gf)S is a connected evolutionarily stable set then G

is a symmetric equilibrium evolutionarily stable set. In general the converse is not true.

We will first present an example to demonstrate that in general EES sets must not be ES

sets. Consider the symmetric game '(S,E) with strategy set S={T,M,B} and payoffs given in table

I.
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T M B

T 1,1 1,1 1,1

M 1,1 2,2 0,3

B 1,1 3,0 0,0

Table I: A symmetric game with an EES set that
is not an ES set.

It follows that {T} is EES but {T} is clearly not an ES set. 

The proof of theorem 2.3 is simple when theorem 2.1 is available since equilibrium

evolutionary stability requires a uniform invasion barrier (i.e., ,E does not depend on p0G or q in

definition 2.3). In fact, previously a weaker version of theorem 2.3 was claimed by Blume, Kim

and Sobel [1993]. However their proof remains incomplete because prior to the result of

Balkenborg and Schlag [1994] it was conceivable that an ES set does not have a uniform invasion

barrier and consequently must not contain an EES set.

PROOF of theorem 2.3:

Let G0)S be a connected ES set and let ,E be defined as in theorem 2.1. We will first

show that G satisfies conditions i) - iii) in the definition of EES. 

Parts i) and ii) follow immediately from the definition of an ES set. 

We will now show part iii). Let p0G, ,0(0,,E), z0)S and x=(1!,)p+,z. Assume

z0BR(x). Then E(z,x)$E(p,x). Since G is an ES set it follows that E(p,x)$E(x,x) (if and only if

E(p,x)$E(z,x)) where equality implies x0G. It follows E(p,x)=E(x,x) and hence x0G.

Finally, G is minimal because an ES set is a connected subset of )  and each EES set is aNE

connected component of )  (see note made after definition 2.3). G
NE
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3. Partnership Games

In this section introduce the class of games in which both players have the same payoff

function, called partnership games. 

DEFINITION 3.1:  (Hofbauer and Sigmund [1988])

The two person game '(S ,S ,E ,E ) is called a partnership game if E (e,e')=E (e,e') for all1 2 1 2 1 2

e0S  and e'0S . 1 2

A special property of partnership games is that in any connected set of Nash equilibria the

associated payoffs are constant.

LEMMA 3.1:

Let '(S ,S ,E ,E ) be a partnership game and Gf)S ×)S  be a connected set of Nash1 2 1 2 1 2

equilibria. Then (x,y),(x',y')0G implies E (x,y)=E (x',y'), i=1,2.i i

PROOF:

Let (x,y),(x',y')0G. Since G is connected there exists a continuous function f:[0,1]6G such

that f(0)=(x,y) and f(1)=(x',y').

With f=(f ,f ) such that f0)S , let a=max{t s.t. t0[0,1], E (f (t),f (t))=E (x,y)}. Assume1 2 i i 1 1 2 1

that a<1. Since f (t)6f (a) as t6a it follows that there exists b0(a,1] such that C(f (a))fC(f (t))2 2 1 2 2

and hence f (a)0BR (f (t)) for t0(a,b ). From the upperhemicontinuity of the best response2 2 1 1

correspondence it follows that there exists b0(a,b ] such that f (t)0BR (f (a)) for all t0(a,b ). We2 1 1 1 2 2

therefore obtain for t0(a,b ) that2

E (f (a),f (a))=E (f (t),f (a))=E (f (t),f (a))=E (f (t),f(t))=E (f (t),f (t)) which contradicts the fact1 1 2 1 1 2 2 1 2 2 1 2 1 1 2

that a<1 and thus proves the lemma. G
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4. Evolution in Symmetric Partnership Games

In this section we will analyze the relationship of the various solution concepts in the one

population setting (see section two) in partnership games. Since we are now only concerned with

the symmetric case (one specie hypothesis) we must restrict our attention to symmetric

partnership games. 

Previous work on evolution in partnership games relevant to our analysis was undergone

by Hofbauer and Sigmund [1988] and is summarized in the following theorem. The first part

states that the ESS condition is not only a sufficient (see Taylor and Jonker [1978], Zeeman

[1980]) but also a necessary condition for the asymptotic stability of a strategy in partnership

games. Part ii) is self explanatory and is referred to as the fundamental theorem of natural

selection.

THEOREM 4.1:  (Hofbauer and Sigmund [1988])

Let '(S,E) be a symmetric partnership game. Then

i) A strategy p0)S is an asymptotically stable strategy of (RD) if and only if p is an evolutionarily

stable strategy.

ii) Given (x )  solves (RD), the average payoff in the population E(x ,x ) increases strictly overt t t
t$0

time if x  is not a rest point of (RD).0

In our main theorem that is coming up we will need the concept of local efficiency (see

Weibull [1994]).

DEFINITION 4.1:

A set Gf)S is called locally efficient if there exists an open neighborhood Uf)S of G

such that for y,z0G and x0U\G, E(x,x)<E(y,y)=E(z,z).

The following characterization theorem shows that in the class of partnership games
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various evolutionary solution concepts are equivalent and essentially select locally efficient sets. 

THEOREM 4.2:

Let '(S,E) be a symmetric partnership game and let Gf)S be non empty. Then the

following statements are equivalent:

i) G is a connected evolutionarily stable set (ES set).

ii) G is a connected asymptotically stable set of (RD).

iii) G is a minimal attracting set of (RD).

iv) G is an equilibrium evolutionarily stable set (EES set).

v) G is connected and locally efficient.

In particular argmax{E(x,x), x0)S} is an evolutionarily stable set (ES set).

PROOF:

"v) Y i)":

Let Gf)S be a connected locally efficient set and let U be the corresponding

neighborhood of G from definition 4.1. From the continuity of E() it follows that G is closed. 

Let p0G and y0)S. For 80[0,1) let p =(1!8)p+8y. If 8 is sufficiently small then p0U8 8

and E(p,p)$E(p ,p ) which implies (2!8)E(p,p)$2(1!8)E(y,p)+8E(y,y). It follows that8 8

E(p,p)$E(y,p) and since y was arbitrary we obtain that (p,p) is a Nash equilibrium.

Let y0BR(p)1U. Then E(p,y)=E(y,p)=E(p,p)$E(y,y) and E(p,y)=E(y,y) implies y0G.

Hence G is an ES set.

"i) Y ii)" is stated in theorem 2.2 and "ii) Y iii)" follows directly from the definitions.

"iii) Y v)":

Let G be a minimal attracting set and let Uf)S be the corresponding open neighborhood

of G such that trajectories starting in U will converge to G. Using the fact that G is closed, let

xE0argmax{E(x,x), x0G}. From part ii) of theorem 4.1 it follows that E(xE,xE)>E(x,x) for all

x0U\G. Let GE be a (non empty) connected component of {x0G s.t. E(x,x)=E(xE,xE)}. It follows

that GE together with U satisfy iv). From the proof of "v) Y i)" it follows that GE is an ES set.

Since GEfG and G is minimal it follows that G=GE.
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"i) Y iv)" is stated in theorem 2.3.

"iv) Y v)":

Let Gf)S be a symmetric EES and ' be a partnership game. Since G is EES it is

connected. Let p0G. Lemma 3.1 implies that Gf{z0)S s.t. E(z,z)=E(p,p)}. Therefore all that is

left to show is that there exists an open neighborhood U of p such that E(x,x)<E(p,p) when

x0U\G.

Let ,  be given from the definition of EES. Moreover, let ,'0(0,, ] be such that for any0 0

x0)S and ,0(0,,'), if y0BR((1!,)p+,x) then y0BR(p).

Let K={y'0)S s.t. � y0)S and ,0[0,,'] s.t. y'=(1!,)p+,y}. It follows that K is convex.

Let yE0argmax{E(x,x), x0K}. Since yE0K there exists y0)S and ,E0(0,, ) such that0

yE=(1!,E)p+,Ey. 

We will now show that y0BR(yE). Let z0BR(yE). By definition of K it follows that

z0BR(p). With zE=(1!,E)p+,Ez it follows that zE0K and hence E(yE,yE)$E(zE,zE). For 80[0,1]

let y =(1!8)yE+8zE. Then y0K and hence E(yE,yE)$E(y ,y ) which implies8 8 8 8

(2!8)E(yE,yE)$2(1!8)E(zE,yE)+8E(zE,zE) and hence E(yE,yE)$E(zE,yE). Since yE,zE0BR(p) it

follows that E(y,y)$E(z,y). Therefore E(y,yE)$E(z,yE) and hence z0BR(yE) implies y0BR(yE).

Let UfK be an open neighborhood of p. Since yE0K, y0BR(yE) and G is EES it follows

that yE0G. Therefore E(x,x)<E(p,p) for all x0U\G which completes the proof of part ii).

Finally to the "in particular" statement: G={x0)S s.t. E(x,x)$E(y,y) for all y0)S} can be

split into a union of disjoint connected sets, each trivially satisfying condition iv) of the theorem.

Therefore G is an ES set. G

One evolutionary concept we omitted from section two is that of weak equilibrium

evolutionary stability (see Kim and Sobel [1991]), a weakening of the EES condition. Formally,

Gf)S is called a (symmetric) weakly equilibrium evolutionarily stable (symmetric WEES) if it is

minimal with respect to i) and ii) from definition 2.3 and the following condition iii'):

iii') There exists , 0(0,1) such that for all ,0(0,, ), x0G and y0)S, if y0BR((1!,)x+,y) and0 0

y0BR(y) then (1!,)x+,y0G.

Following theorem 4.2 it might be conjectured that WEES and EES coincide in
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T M B

T 1,1 1,1 0,0

M 1,1 2,2 3,3

B 0,0 3,3 0,0

Table II : A partnership game with a WEES set
that is not an ES set.

partnership games. The following example shows that this is not the case. Consider the symmetric

partnership '(S,E) with S={T,M,B} and payoffs given in table II.

{T} is not a (symmetric) EES since M0BR((1!,)T+,M) for all ,>0. However {T} is a

(symmetric) WEES since (T,T) is the unique symmetric Nash equilibrium in BR(T)×BR(T).
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5. The Asymmetric Contest and the Symmetrized Game

In this section we will extend the results of the previous sections to asymmetric games by

means of symmetrization. Agents are identical as in the one population setting but each agent has

a strategy he uses when he is player one and one he uses when he is player two. When two such

agents are matched to play the asymmetric game, an independent random outcome assigns one

agent to be player one and the other to be player two. If agents choose a mixed strategy for each

role then the resulting game is called the asymmetric contest (see van Damme [1991]). 

DEFINITION 5.1:

We will call pair ()S ×)S ,E ) the asymmetric contest of the asymmetric game1 2
c

'(S ,S ,E ,E ) if E : ()S ×)S )×()S ×)S )6U is such that E (x,z)=½E (x ,z )+½E (z ,x ) for all1 2 1 2 1 2 1 2 1 1 2 2 1 2
c c

x,z0)S ×)S . 1 2

Notice that the asymmetric contest is not a two person (or bimatrix) game in normal form.

Never-the-less the concept of an evolutionarily stable set can be defined using the statement in

theorem 2.1 (see Balkenborg and Schlag [1994]). Such a set in )S ×)S  will be called a direct1 2

evolutionarily stable set. Balkenborg and Schlag [1994] show that a direct evolutionarily stable set

of the asymmetric contest is equivalent to a strict equilibrium set (concept due to Balkenborg

[1994]) of the original game.

DEFINITION 5.2:  (Balkenborg [1994])

Let ' be an asymmetric game. The non empty set Gf)S ×)S  is called a strict1 2

equilibrium set (short, SE set) if for any (x,y)0G and (x',y')0)S ×)S ,1 2

i) E (x',y)#E (x,y) where equality implies (x',y)0G and1 1

ii) E (x,y')#E (x,y) where equality implies (x,y')0G.2 2
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THEOREM 5.1:  (Balkenborg and Schlag [1994])

Let '(S ,S ,E ,E ) be an asymmetric game. Then Gf)S ×)S  is a strict equilibrium set if1 2 1 2 1 2

and only if G is a direct evolutionarily stable set.

An alternative way to encompass mixed strategies in the above symmetrization is to let

agents randomize over tuples of pure strategies. This leads to a symmetric game in normal form

with the set of pure strategies S ×S  and the payoff function that is identical to E  when restricting1 2
c

play to pure strategies.

DEFINITION 5.3:  (Balkenborg and Schlag [1994])

Let '(S ,S ,E ,E ) be an asymmetric game. Let E :)(S ×S )×)(S ×S )6U be bilinear such1 2 1 2 1 2 1 2
s

that E (e,e')=E(e,e') for all e,e'0S ×S . Then the symmetric game '(S ×S ,E ) will be called thes c s
1 2 1 2

symmetrized game of '(S ,S ,E ,E ).1 2 1 2

Notice that if '(S ,S ,E ,E ) is a partnership game then so is the symmetrized game. Since1 2 1 2

the symmetrized game is a symmetric bimatrix game the concept of an evolutionarily stable set is

well defined. Balkenborg and Schlag [1994] show that evolutionarily stable sets of the

symmetrized game are essentially equivalent to strict equilibrium sets. This equivalence is to be

considered with respect to the projection r() on the marginal distributions. Let

r:){S ×S }6)S ×)S  be such that r (p) is the marginal distribution of p in )S . Formally, r() is1 2 1 2 i i

the unique linear function such that r() is the identity on S ×S . 1 2

THEOREM 5.2:  (Balkenborg [1994])

Let '(S ,S ,E ,E ) be an asymmetric game. If Gf)S ×)S  is a strict equilibrium set then1 2 1 2 1 2

r (G) is an evolutionarily stable set of the symmetrized game '(S ×S ,E ). Conversely, if!1 s
1 2

G'f)(S ×S ) is an ES set of '(S ×S ,E ) then r(G') is a strict equilibrium set.1 2 1 2
s

For asymmetric games there is a separate definition of EES. The relationship to a
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symmetric EES set of the asymmetric contest will become apparent later. 

DEFINITION 5.4:  (Swinkels [1992])

A set Gf)S ×)S  is called equilibrium evolutionarily stable if it is minimal with respect to1 2

the following properties: 

i) G is closed and non empty.

ii) (x,y)0G implies (x,y) is a Nash equilibrium.

iii) There exists ,E>0 such that for all 0<,<,E, (x,y)0G and (u,v)0)S ×)S , if1 2

u0BR ((1!,)y+,v) and v0BR ((1!,)x+,u) then (1!,)(x,y)+,(u,v)0G.1 2

It is easy to show that an EES set is a connected component of the set of Nash equilibria

(see Swinkels [1992]). Moreover together with theorems 5.1 and 5.2 we obtain the pendant to

theorem 2.3.

THEOREM 5.3:

Let '(S ,S ,E ,E ) be an asymmetric game. If Gf)S ×)S  is a connected strict1 2 1 2 1 2

equilibrium set then G is equilibrium evolutionarily stable. In general the converse is not true.

We will first present an example to show that EES sets must not be strict equilibrium sets.

Consider the game ' with S ={T,B}, S ={L,R} and payoffs given in table III.1 2
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L R

T 1,1 0,1

B 1,0 !1,1

Table III : An asymmetric game with an EES set
that is not a strict equilibrium set.

It follows that this game has no strict equilibrium set although {(1!8)(T,L)+8(T,R),

80[0,1]} is an equilibrium evolutionarily stable set.

PROOF of theorem 5.3:

Let G be a connected strict equilibrium set. From theorem 5.2 it follows that G'=r (G) is-1

an ES set of the symmetrized game '(S ×S ,E ). Therefore using theorem 2.3, G' is a symmetric1 2
s

EES of '(S ×S ,E ), i.e., there exists ,E such that p0G', ,<,E and q0BR ((1!,)p+,q) implies1 2
s s

q0G' (the superscript s refers to the fact that we are considering the symmetrized game).

We will now show that G is EES given ,E defined above. Conditions i) and ii) in the

definition of EES follow from the properties of strict equilibrium sets. Let ,<,E, (x,y)0G and

consider (u,v)0BR ((1!,)y+,v)×BR ((1!,)x+,u). With p,q0){S ×S } such that r(p)=(x,y) and1 2 1 2

r(q)=(u,v) it follows that q0BR ((1!,)p+,q). Since p0G' it follows that q0G' and hence (u,v)0G.s

This shows that condition iii) holds too.

Finally, the minimal property of G follows as in the proof of theorem 2.3 from the fact that

an EES set is a connected component of the set of Nash equilibria. G

Especially we showed in the above proof that a symmetric EES set of the symmetrized

game corresponds via the projection r() to an EES set of the original asymmetric game. Similarly

a converse statement can be derived, i.e., if Gf)S ×)s  is an EES set then r (G) is a symmetric1 2
!1

EES set of the symmetrized game.
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Together with theorems 5.1 and 5.2 we are now able to state an equivalence theorem

analog to theorem 4.2 for the case where an asymmetric game is symmetrized.

THEOREM 5.4:

Let '(S ,S ,E ,E ) be a partnership game and let Gf)S ×)S  be non empty. Then the1 2 1 2 1 2

following statements are equivalent:

i) G is a connected strict equilibrium set (SE set).

ii) r (G) is a minimal attracting set of (RD) in the symmetrized game.!1

iii) G is an equilibrium evolutionarily stable set (EES set).

In particular argmax{E (x,y), (x,y)0)S ×)S } is a strict equilibrium set.1 1 2

The proof follows directly from theorems 3.2, 5.2 and 5.3 and from the note made after

the proof of theorem 5.3.
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6. Evolution in the Asymmetric Two Population Setting

In this section we consider an asymmetric game as a contest between two separate

populations. In the biological context, we are considering the case where there are two

populations that are matched against each other and breed among themselves. In contrast to the

symmetric case games must no longer be symmetric. In this section we will introduce the relevant

evolutionary solution concepts.

Evolutionary stability is a very stringent concept in the two population setting. Balkenborg

and Schlag [1994] show that the derivation of an evolutionarily stable set for this asymmetric

setup leads to the same definition as that of a strict equilibrium set (SE set), due to Balkenborg

[1994]. 

Concerning the replicator dynamics there are two common versions in the asymmetric

setup, here distinguished by adding "w/D" and "w/oD".

DEFINITION 6.1:  

The replicator dynamics RDw/oD of '(S ,S ,E ,E ) on )S ×)S  for continuous time and1 2 1 2 1 2

pure strategy types is defined as follows (see Taylor [1979]):

x =x, y =y,0 ! 0 !

x=[E (e ,y)!E (x,y)]x , i=1,..,N ,C i
i 1 1 i 1

y=[E (x,a )!E (x,y)]y , j=1,..,N ; t$0. (RDw/oD)C j
j 2 2 j 2

The replicator dynamics RDw/D of '(S ,S ,E ,E ) on )S ×)S  for continuous time, pure1 2 1 2 1 2

strategy types and strictly positive payoffs is defined as follows (see Maynard Smith [1982]):

x =x, y =y,0 ! 0 !

x= , i=1,..,N ,C

i 1
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y= , i=1,..,N ; t$0. (RDw/D)C

j 2

The pendant to theorem 2.2 showing the connection between evolutionary stability and

asymptotic stability only exists for RDw/oD.

THEOREM 6.1:  (Balkenborg [1994])

If Gf)S ×)S  is a strict equilibrium set then G is an asymptotically stable set w.r.t. the1 2

replicator dynamics (RDw/oD).

The pendant to the fundamental theorem of natural selection is easily obtained for two

species (compare to part ii) of theorem 4.1).

THEOREM 6.2:  

In either replicator dynamics (RDw/D) or (RDw/oD) of a partnership game, the average

payoff in the population strictly increases over time if the trajectory is not at a rest point.

PROOF: this is an easy exercise. It uses the following trick, here illustrated for RDw/oD:

E (x,y)= E (e ,y) x+ E (x,e ) y1 1 i 1 j
i j

= E (e ,y)[E (e ,y)!E (x,y)]x + E (x,e )[E (x,e )!E (x,y)]y1 1 1 i 1 2 2 j
i i j j

= [E (e ,y)!E (x,y)] x+ [E (x,e )!E (x,y)][E (x,e )!E (x,y)]y . G1 1 i 1 1 2 2 j
i 2 j j



      Statements concerning RDw/D are only valid for E >0 and E >0.1
1 2
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We are now able to state the analog equivalence result to theorems 4.2 and 5.4 for

asymmetric partnership games in the two population setting.

DEFINITION 6.4:

A set Gf)S ×)S  is called locally efficient if there exists an open neighborhood1 2

Uf)S ×)S  of G such that for (x,y),(w,z)0G and (u,v)0U\G, E (u,v)<E (x,y)=E(w,z).1 2 1 1 1

THEOREM 6.3:

Let '(S ,S ,E ,E ) be a partnership game and let Gf)S ×)S  be non empty. Then the1 2 1 2 1 2

following statements are equivalent:

i) G is a connected strict equilibrium set (SE set).

ii) G is a connected asymptotically stable set of RDw/D1 and RDw/oD.

iii) G is a minimal attracting set of RDw/D  and RDw/oD.1

iv) G is an equilibrium evolutionarily stable set (EES set).

v) G is connected and locally efficient.

In particular argmax{E (x,y), (x,y)0)S ×)S } is a strict equilibrium set.1 1 2

PROOF: 

"i) ] iv)" is stated in theorem 5.4.

"i) ] v)": It is easy to verify that G is locally efficient if and only if r (G) is locally efficient in the!1

symmetrized game. The rest then follows directly from theorem 5.4 together with theorem 4.2.

"i) Y ii)": The statement for RDw/oD is stated in theorem 6.1. Especially it follows that G has no

arbitrarily close rest points of RDw/oD. Following theorem 6.2 E (x,y) increases when (x,y) is not1

a rest point. With v) we obtain that G maximizes E (x,y) in a neighborhood of G. Therefore1

asymptotically stability of G follows if we show that G has no close rest points with respect to

RDw/D. However since RDw/D and RDw/oD have the same rest points the claim follows.
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"ii) Y iii)" follows from the definitions.

"iii) Y v)" follows as in the symmetric case using theorem 6.2. G
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7. Generalization of results to other games 

In this section we utilize the invariance of the presented evolutionary concepts and of the

trajectories of RD and RDw/oD to translations in the payoff functions. This fact implies that our

equivalence theorems in sections 4-6 (limited to RDw/oD) apply to a wider class of games,

namely to the games that can be translated into partnership games. Of course, local efficiency

properties and the fundamental theorems of natural selection must no longer hold. 

DEFINITION 7.1:

We will call the asymmetric game '(S ,S ,E ,E ) a transformed partnership game if there1 2 1 2

exist {" , 1#i#N } and {$ , 1#j#N } such that '(S ,S ,EE ,EE ) is a partnership game wherei 1 j 2 1 2 1 2

EE (e ,y)=E (e ,y)+"  and EE (x,a )=E (x,a )+$  for 1#i#N , 1#j#N , x0)S  and y0)S .1 1 i 2 2 j 1 2 1 2
i i j j

We will call the symmetric game '(S,E) a transformed partnership game if '(S,S,E,E) is a

transformed partnership game where "=$  for 1#i#N.i i

Notice that every symmetric game with *S*=2 is a transformed partnership game. The

following lemma states the invariance of the concepts needed in theorems 4.2, 5.4 and 6.3 to

translations. The proof is an easy exercise.

LEMMA 7.1:

Given '(S,E) the trajectories of RD and the concepts ES set and (symmetric) EES are

invariant to a translation of the payoff function E (as given in definition 7.1).

Given '(S ,S ,E ,E ), the trajectories of RDw/oD and the concepts SE set and EES are1 2 1 2

invariant to a translation of the payoff functions E  and E  (as given in definition 7.1).1 2

We now come to the final result.
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COROLLARY 7.1:

Theorem 4.2 without part v) and theorem 5.4 without part holds for symmetric

transformed partnership games. Theorem 5.3 applied to RDw/oD omitting part v) holds for

transformed partnership games.

Combining the note made after definition 5.1 with the above corollary it follows that in

symmetric games with two strategies for each player the presented evolutionary solution concepts

are equivalent.
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