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Abstract

The evolutionary selection of outcomes (modelled using the replicator dynamics) in games

with costless communication depends crucially on the structural assumptions made on the

underlying population. (1) In conflicts between two interacting populations, common interest

implies that the set of efficient outcomes is the unique evolutionarily stable set. Lack of common

interest prevents sets with minimal stability properties to exist. (2) For conflicts within one

population, inefficient evolutionarily stable strategies may exist independent of whether there is

common interest or not. This is no longer true when there is a dominant strategy, in this case the

efficiency result of the two population setup is recovered. 
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0. Introduction

The object of the paper will be to investigate the effect of pre-play communication on the

evolution of strategies for playing a given game.

Communication is modelled as cheap talk: before the game is played, the players

simultaneously exchange messages from some finite set of messages. There is no cost to

exchanging these messages and hence "talk is cheap". 

Evolution is a dynamic concept and as such we will explicitly specify a dynamic process

and analyze dynamic stability. We select two versions of the continuous replicator dynamics

(Taylor and Jonker [1978], Taylor [1979]) for our analysis, among other reasons because both of

these dynamics have lately turned out to be the approximations of various individual learning

models (see Binmore, Gale and Samuelson [1993], Börgers and Sarin [1993], Cabrales [1993],

Schlag [1994b]). 

The basic story behind these two dynamics is the same, a large number of agents are

matched, receive a payoff (or fitness) according to an underlying game and then adapt their

strategies (or reproduce) according to a given dynamic process in which growth rates are

proportional to relative performance of a strategy. The difference lies in the population structure.

In the version of Taylor and Jonker [1978] all agents belong to the same population (referred to

as the one population setting) whereas the version of Taylor [1979] considers a conflict between

two disjoint populations (which we refer to as the two population setting). 

There are various (more or less) static models of cheap talk that each point to the fact that

communication in an evolutionary environment will select against inefficient outcomes. The object

of this paper will be to pursue this stylized fact in an explicit dynamic analysis. It turns out that the

modelling of the population structure and the associated matching and reproduction (learning)

dynamics has a drasitc influence on the results of the analysis. In the two population setting

common interest among the agents that are matched is necessary and sufficient for efficient

outcomes to evolve. Moreover, without common interest, sets with minimal stability properties in

the dynamic process fail to exist. In the one population setting common interest only determines

whether or not efficient outcomes are stable. The existence of stable sets is independent of

common interest. Especially, inefficient evolutionarily stable strategies may exist in the game with
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cheap talk.

Due to the numerous papers in this research area we now give a brief overview of the

related literature.

0.1 The literature

Matsui [1989, 1991] was the first to analyze the effect of cheap talk in a dynamic related

setting. They considered games of common interest with two strategies for each player in the two

population scenario described above. A game has common interest if both players only

simultaneously receive their maximal outcome. Matsui [1991] shows that cheap talk leads to

efficiency in cyclically stable sets, a solution concept derived from the best response dynamics.

Robson [1990] introduces a closely related model with mutants that are able to perform

secret handshakes. It is assumed that a mutant can recognize when he is matched against another

mutant but the rest of the population cannot distinguish them other than through the strategies

they play. Robson [1990] shows for two by two unanimity games (a unanimity game is a

symmetric game in which the payoffs are positive and the same for both players on the main

diagonal and zero otherwise) that an evolutionarily stable strategy (ESS) must achieve the

maximal payoff.

Wärneryd [1991] shows for symmetric two by two unanimity games with cheap talk that a

pure strategy is a neutrally stable if and only if it achieves the maximal payoff. We will see that the

restriction to pure strategies is crucial for this to be true.

Bhaskar [1992] analyzes neutral stability when the population game is modelled as a truly

asymmetric contest. Here players in the population are a priori identical, however when two

players are matched a random draw determines which of the two players will be in the role of

player one and who will be in the role of player two. Bhaskar [1992] considers an infinite message

space and perturbs the communication game. 
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Kim and Sobel [1991] look for sets that are equilibrium evolutionarily stable (EES) in

games with cheap talk. For games that have both common interest and equilibrium common

interest they essentially show that the set of efficient outcomes is the unique set that is equilibrium

evolutionarily stable. They also point out that their results depend crucially on the fact that they

consider the two population setting. 

In a later version Kim and Sobel [1994] drastically revise this paper and consider a finite

population matched to play a tournament (every one plays with everyone) and adapting according

to a stochastic dynamic process. In this model cheap talk leads to efficiency in both the one and

the two population settings under common interest. Here the efficiency for the one population

setting relies on the fact that there are more messages than individuals in the population. 

Our paper generalizes the results of an earlier version (Schlag [1993]) that analyzed the

one population dynamic setting in a restricted class of games. The only other explicit dynamic

analysis of cheap talk in this setup (players exchange messages simultaneously) is the recent model

of Kim and Sobel [1994] mentioned above. In related models of communication, dynamics have

been explicitly investigated too. Nachbar [1993] considers a situation in which sending signals is

costly, Nöldeke and Samuelson [1992] consider sender-receiver games.

In section 5 the above literature is examined in more detail.

0.2 The replicator dynamics

In their biological interpretation, the replicator dynamics is the approximation of the

following discrete time process defined in a large population of subjects or agents, each playing a

pure strategy. In each period agents are pairwise randomly matched to play a game and receive a

reproductive fitness. Agents then reproduce at a rate that is proportional to the difference

between the payoff they achieved and the average payoff in the population. After that they die.

These are the replicator dynamics in the one population setting (see Taylor and Jonker [1978]).

This scenario can also be applied to the two population setting where the contest takes place
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between two disjoint populations, one associated to each player in the underlying game. As

before, agents play pure strategies. In the two population setting agents of opposite populations

are matched but then breeding is true, i.e. it takes place among agents of the same population. As

before the reproduction (in each population) is proportional to the difference between the

achieved payoff and the average payoff in the respective population. This leads to the version of

the replicator dynamics for the two population setting due to Taylor [1979]. 

The version of the replicator dynamics we consider have independently been shown to

approximate the dynamic behavior of various models of adapting individuals. In the following

model of Schlag [1994b] the dynamics have unique properties since here individual behavior is

determined endogenously. In the two population setting agents of opposite populations are

repeatedly randomly matched. Between matching rounds each agent randomly samples the

strategy and payoff of another agent in the same population. Any given agent imitates the strategy

of the sampled agent only if this agent achieved a higher payoff in which case imitation occurs

with probability proportional to the difference in the achieved payoffs. In large populations this

behavior is approximated by the version of the replicator dynamics due to Taylor [1979]. It is

easily shown that in the one population setting the dynamics are approximated by the version of

Taylor and Jonker [1978]. 

0.3 Solution concept

We will search for a subspace in the set of all population configurations in which the

population subject to very rare mutations will be absorbed. The relevant concept is that of a

minimal attracting set. Starting at a population distribution in such a closed set, after a one time

mutation of sufficiently small size the population will eventually evolve to a distribution close to

the set again. A concept demanding stronger stability characteristics is that of an asymptotically

stable set. Trajectories starting close to such a set will stay close to the initial starting point and

eventually converge to an element in the set. 

Various static concepts are related to dynamic stability properties of the replicator

dynamics. In the one population setting, Thomas [1985] introduces the notion of an evolutionarily
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stable set (short, ES Set) to generalize the well known concept of an evolutionarily stable strategy

(short ESS, Maynard Smith and Price [1973]). Thomas [1985] shows that each ES Set is also

asymptotically stable but that the converse is not true. For the two population setting Balkenborg

and Schlag [1994] show that the analog of an ES Set is a Strict Equilibrium Set (concept due to

Balkenborg [1994]). Analog to the one population setting, Balkenborg [1994] shows that each

Strict Equilibrium Set is an asymptotically stable set in the asymmetric replicator dynamics of

Taylor [1979].

0.4 Cheap talk

The object of this paper is to analyze the effect of costless communication in the form of

cheap talk on the outcomes of the evolutionary process described above. Before a given game is

played, the players simultaneously exchange messages from some finite set of messages. To keep

the model simple we assume that each player has the same set of messages. A strategy of the

resulting communication game then consists of a message that is sent and a reaction function that,

based on the message received specifies which strategy of the game is played. Object of our

analysis is the replicator dynamics in which each agents is endowed with such a communication

strategy.

0.5 An overview of the analysis

The intuition why communication might improve payoffs in outcomes that are selected by

an evolutionary process is as follows. Consider the situation in which not all messages are sent

during the communication round. Evolutionary drift in the population as to how individuals react

to unsent messages can not be avoided. Especially the situation can arise in which sending a

previously unsent message can strictly improve an individual's payoff. This will enable a mutant

that sends this message to start to take over. Therefore, the only population that can avoid the

invasion of such a mutant is one in which each individual achieves their maximal payoff. The
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situation in which individuals can only simultaneously achieve their maximal payoff will be called a

common interest contest. Of course in order for the above scenario to be feasible there must be

unused messages. Since the message set is finite, this depends on whether or not the population

may drift to a state in which there are unused messages. If such a drift is not possible we speak of

"lock in". 

We show that "lock in" cannot occur in the two population setting. There will always be

extra messages in some outcome of any minimal attracting set. This fact is derived from properties

of the replicator dynamics and relies on the fact that there are no "own population effects" in the

version of Taylor [1979]. Together with the arguments made above it follows that evolution will

lead to efficient payoffs in common interest contests. Moreover we show that a common interest

contest is necessary to ensure a very weak stability property. This is because one population may

drift to an alternative state yielding maximal outcomes to agents in one population that are no

longer maximal for the agents in the other population.

In the one population setting "lock in" can not always be avoided. The reason is that

entering mutants will also be matched against themselves and therefore have less freedom to lead

the population away from a "lock in" situation. However without the existence of unused

messages, the stability and efficiency results of the two population setting no longer hold.

Inefficient evolutionarily stable strategies may exist disregard of whether the contest has common

interest or not. In order to recover the efficiency results of the two population setting the

existence of unused messages must be forced by to the game structure. As an example we show

that analog theorems to the two population setting are recovered for games with a dominant

strategy. 
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1. Preliminaries

1.1 Notation

For a finite set A let )A be the set of probability distributions on A, i.e.,

)A={x 0U  s.t. x$0 and x=1}. Consider a two person game in normal form '(S ,S ,E ,E )N
i i 1 2 1 2

with the pure strategies S ={e , i=1,..,N }, S ={a , j=1,..,N } and the bilinear payoff functions1 1 2 2
i j

E :)S ×)S 6U, i=1,2. '(S ,S ,E ,E ) is called symmetric if S =S  and E (x,y)=E (y,x) for alli 1 2 1 2 1 2 1 2 2 1

x,y0)S  and will be denoted by '(S,E). In this case we will let S=S , E=E  and N=N . 1 1 1 1

For z0)S c)S  let C(z) be the support of z, i.e., C(z)={e0S cS  s.t. z(e)>0}. For1 2 1 2

i0{1,2}, j0{1,2}\{i} and z0)S  let BR (z) be the set of best replies of player i to the strategy z ofj i

player j, i.e., BR (y)=argmax{E (x',y), x'0)S } and BR (x)=argmax{E (x,y'), y'0)S } where1 1 1 2 2 2

(x,y)0)S ×)S . To simplify notation we will not distinguish between the pure strategy e0S  and1 2 i

the distribution on S  that assigns unit probability to e (i.e., S  is embedded in )S), especially,i i

½e +½e0)S  (for N >1). The pair of strategies (x,y)0)S ×)S  is called a Nash equilibrium if1 2
1 1 1 2

x0BR (y) and y0BR (x), it is called a strict (Nash) equilibrium if {x}=BR (y) and {y}=BR (x).1 2 1 2

Finally, e0S  is called a weakly dominant strategy for player one if E (e,y)$E (x,y) for all x0)S1 1 1 1

and y0)S .2

1.2 Dynamic stability concepts

Let X be either )S  or )S ×)S  and consider a dynamic process on X given by the1 1 2

solutions to the differential equation x=f(x) where f:X6X is Lipschitz continuous. A closed and•

non empty set GfX is called attracting if there exists an open neighborhood U of G such that each

trajectory starting in U converges to G (UfX). G is called a minimal attracting set if there is no

set G' that is attracting such that G'fG and G�G'. Following Zorn's lemma a minimal attracting set

always exists. Notice that minimal attracting sets are candidates for the dynamics to get "caught"

if mutations are very rare. A strategy p0)S is called stable if for every open neighborhood U of p
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there exists an open neighborhood V of p s.t. the trajectories starting in V do not leave U

(U,VfX). A set GfX is called an asymptotically stable set (AS Set) if it is attracting and each

x0G is stable. The element of a singleton AS Set is called an asymptotically stable strategy. 

In the following we add some notes on the above definitions. A trajectory starting in W

converges to L (L,WfX) if for any x°0W and (t )  such that t64 when k64 (t 0U) it followsk k0ù k k

that inf{dist( ,z), z0L} 60 as k64 where x  solves x=f(x) starting at x =x°. The above definitiont • 0

of asymptotic stability is slightly stronger than the classical one (see e.g. Bhatia and Szegö

[1970]): in the standard definition additional to attracting the set as a whole must be stable, not

necessarily each point. Finally, w.l.o.g. we also require additionally to the standard definition for

an attracting set to be closed. We find it intuitive to include rest points on the border of an

attracting set into the set. 

Notice that a consequence of our definition of asymptotic stability is that trajectories

starting sufficiently close to such a set will converge to an element of the set (this follows easily

from the pointwise stability condition).

1.3 Evolution and the replicator dynamics in the one population setting

Consider an infinite population randomly matched to play a given symmetric game '(S,E).

Consider some dynamics in which strategies with higher expected payoffs reproduce at a higher

rate. Then the strategy p0)S is called evolutionarily stable (short, ESS, due to Maynard Smith

and Price [1973]) if for any q�p the mutant strategy is driven out of a monomorphic population of

agents playing p after any sufficiently small mutation of agents playing q. Balkenborg and Schlag

[1994] extend this notion to sets. A set Gf)S is called an evolutionarily stable set if for

sufficiently small mutations the following holds: given q0)S and p0G the mutant strategy q can

not spread in a population playing p and is driven out if qóG. This condition is formalized in the

following definition:
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DEFINITION 1.3.1:  

Gf)S is called an evolutionarily stable set (short ES set) if there exists ,>0 such that for

all p0G, q0)S and 0<,'<,, E(p,(1!,')p+,'q)$E(q,(1!,')p+,'q) where the inequality holds strict if

qóG.

In particular, if {p} is an ES Set for p0)S then p is called an evolutionarily stable

strategy.

Balkenborg and Schlag [1994] show that the above intuitive condition is equivalent to the

definition of an ES set by Thomas [1985] and that it can alternatively be characterized as follows:

LEMMA 1.3.1:

Gf)S is an evolutionarily stable set if and only if for all p0G and q0)S one of the

following statements holds:

i) E(p,p)>E(q,p).

ii) E(q,p)=E(p,p) and E(p,q)>E(q,q).

iii) E(q,p)=E(p,p), E(p,q)=E(q,q) and q0G.

The replicator dynamics is an explicit dynamic process related to the above stationary

solution concepts. It describes the evolution over time of the frequencies of the pure strategies S

played the population.

DEFINITION 1.3.2:  (see Taylor and Jonker [1978])

The (symmetric) replicator dynamics of '(S,E) on )S for continuous time and pure

strategy types is defined as follows:

x =x° and x =[E(e ,x )!E(x ,x )]x , i=1,..,N, t$0, (RD)0 • t i t t t t
i i

where x°0)S is the initial state and x  is the frequency of the type using the pure strategy e  att i
i

time t (t$0, e0S).i
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Dynamic stability of the replicator dynamics and evolutionary stability are related in the

following way.

THEOREM 1.3.1: (Thomas [1985])

If Gf)S is an evolutionarily stable set then G is an asymptotically stable set in the

replicator dynamics (RD).

1.4 Evolution in the two population setting

In the asymmetric or two population setting there are two disjoint populations labelled one

and two. Individuals of opposite populations are pairwise randomly matched and then breed

among their own population. In contrast to the one population setting the matching situation is no

longer limited to symmetric games. 

Balkenborg and Schlag [1994] derive the concept of an evolutionarily stable strategy and

evolutionarily stable set analogous to the one population setting. For this they consider mutants

that enter both populations simultaneously in small proportions. Balkenborg and Schlag [1994]

argue that the appropriate definition of an ESS in the two population setting is equivalent to that

of a strict equilibrium and that of an ES set is equivalent to the following definition of a strict

equilibrium set. 

DEFINITION 1.4.1:  (Balkenborg [1994])

Gf)S ×)S  is called a strict equilibrium set if for any (x,y)0G and (x',y')0)S × )S ,1 2 1 2

i) E (x',y)#E (x,y) where equality implies (x',y)0G and1 1

iii) E (x,y')#E (x,y') where equality implies (x,y')0G.2 2

The explicit dynamic process we analyze in the two population setting is the following

version of the replicator dynamics, describing the evolution of the proportion of the strategies
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played in either population.

DEFINITION 1.4.2:  (Taylor [1979])

The (asymmetric) replicator dynamics of '(S ,S ,E ,E ) on )S ×)S  for continuous time1 2 1 2 1 2

and pure strategy types will be defined as follows:

x =x°,  y =y°, 0 0

x =[E (e ,y )!E (x ,y )]x , i=1,..,N ,• t i t t t t
i 1 1 i 1

y =[E (x ,a )!E (x ,y )]y , j=1,..,N , t$0, (RD2)• t t j t t t
j 2 2 j 2

where (x°,y°)0)S ×)S  is the initial state and x  (y ) is the frequency of the type using the pure1 2 i j
t t

strategy e  (a ) at time t (e0S , a0S , t$0). i j i j
1 2

The following theorem is the pendant to theorem 1.3.1 and shows the connection between

the static and the dynamic concepts in the two population setting.

THEOREM 1.4.1: (Balkenborg [1994])

If Gf)S ×)S  is a strict equilibrium set then G is an asymptotically stable set in the1 2

asymmetric replicator dynamics (RD2). 

Given (RD2) consider the evolution of a set as defined by the union of the evolution of

each of its elements. Concerning this evolution of sets the asymmetric replicator dynamics have a

specific property.

THEOREM 1.4.2: (Akin and Eshel [1983])

The flow of the asymmetric replicator dynamics (RD2) in the interior of )S ×)S  is1 2

incompressible, i.e., a properly defined volume is conserved over time.

It follows that (RD2) can not contain an interior asymptotically stable strategy because the
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volume would have to shrink. Pursuing this argument a bit further we obtain the following lemma.

LEMMA 1.4.1:

If Gf)S ×)S  is a minimal attracting set in the asymmetric replicator dynamics (RD2)1 2

then G contains a pure strategy profile, i.e., G1(S ×S )�i.1 2

PROOF:

Assume that G1(S ×S )�i. Choose SEfS , i=1,2 such that 1 2 i i

i) G1()SE ×)SE )�i,1 2

ii) S' �i, S'fSE  and G1()S' ×)SE )�i implies S' =SE ,1 1 1 1 2 1 1

iii) S' �i, S'fSE  and G1()SE ×)S' )�i implies S' =SE .2 2 2 1 2 2 2

Let GE=G1()SE ×)SE ). From the properties of SE  and the fact that G is attracting it1 2 i

follows that there exists Ufint{)SE ×)SE } such that trajectories starting in U converge to GE.1 2

Since the flow in the asymmetric replicator dynamics is incompressible, it follows that

*SE *=*SE *=1. Therefore G1(S ×S )�i. G1 2 1 2
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2. Cheap Talk:

We will now introduce costless communication (commonly referred to as cheap talk, see

Kim and Sobel [1991, 1994]) that will take place before the game ' is actually played. The

enlarged game now consists of two rounds, a signalling round and an action round. In the first or

signalling round the two players simultaneously send a message from a finite set of messages

M={c ,..,c } to the other player. "Talk is cheap" because there is no cost of sending this message.1 n

In the second or action round each player chooses a pure strategy of the game '(S ,S ,E ,E )1 2 1 2

conditioned on the messages sent in the first round. Finally each player receives her payoff E ()c
i

based on the strategy combination played in the second round. Mixed strategies of the enlarged

(or communication) game are just randomizations over the pure strategies described above.

Although formally correct, we do not condition the strategy a player plays in the second round on

the message he sent in the first round. Each player knows which message he sent and there are no

mistakes. Additionally rationalization about why the individual plays a certain strategy does not

arise because each individual is endowed with some fixed type. Adding these reactions leads to

duplification of the present strategy which does not change the results because the notion of an

evolutionarily stable set and that of an asymptotically stable set are clearly independent of

spurious duplification.

DEFINITION 2.1:  (Kim and Sobel [1991])

A communication game '(S ,S ,E ,E ) is defined by the set of pure strategies S =M×Sc c c c c M
1 2 1 2 i i

and the bilinear payoff function E :)S ×)S 6U satisfying E ((m ,f ),(m ,f))=E (f (m ),f (m ))c c c c 1 1 2 2 1 2 2 1
i 1 2 i i

for (m ,f )0S , i,j=1,2.j j c
i

When using the pure strategy (m,f)0S , the message m0M is sent in the signalling roundc
i

and f(m')0S  is the strategy played in the action round after receiving the message m'0M from thei

other player in the signalling round. A mixed strategy for player i is an element of )(M×S ). i
M

Instead of (m,f) we will also write (m;f(c ),..,f(c )) and sometimes we will write F0S  in1 n c
i
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the form " (c ;f ) where "$0, "=1 and f0{)S } . For F0)(M×S ) let BR (F) be the set ofj j j i i i
j j j M M c

best replies to F in the communication game '(S ,S ,E ,E ).c c c c
1 2 1 2

Our goal will be to analyze the replicator dynamics both in the one and in the two

population setting where individuals are matched to play a communication game.
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L R

T 2,2 0,0

B 0,0 1,1

Table I: A pure coordination game.

3. The effects of cheap talk in the two population setting

We will start out by analyzing the two population setting. At first we present an example

to illustrate how cheap talk can destabilize inefficient outcomes.

Example 3.1:

Consider the asymmetric game '(S ,S ,E ,E ) with S ={T,B} and S ={L,R} and payoffs in1 2 1 2 1 2

table I.

Note that (B,R) is a strict equilibrium and hence asymptotically stable in (RD2) when there

is no pre-play communication. Consider now the communication game with M={c ,c }. We will1 2

now show why the play of (B,R) is unstable in the game with cheap talk. Notice that if all agents

in one population play the same strategy then appropriate mutations can lead to all agents in the

other population sending only one message. Moreover, mutations on reactions to messages not

sent can not be punished. Therefore we may assume that the population has drifted to the state

((c ;B,B),(c ;R,L)). Since E ((c ;T,T),(c ;R,L))>E ((c ;B,B),(c ;R,L)), (c ;T,T) can spread in1 1 c 2 1 c 1 1 2

population one which leads to the state ((c ;T,T),(c ;R,L)). Notice that in this state agents in2 1

either population receive their maximal feasible payoff. 



16

L R

T 1,1 1,0

Table II : A simple game.

The next example illustrates how drift can cause instability when both players do not

simultaneously receive their maximal payoff.

Example 3.2:

Consider the following game with S={T}, S ={L,R} and payoffs given in table II.1 2

(T,L) is a strict equilibrium and hence an asymptotically stable strategy of (RD2) in the

game without communication. Moreover each individual obtains her maximal payoff. Now

consider the communication game with message set M={c ,c } and consider a state in which1 2

(T,L) is played. As argued in the above example, the population can drift to ((c ;T,T),(c ;L,L))1 1

which can drift to ((c ;T,T),(c ;L,R)). Moreover since E (T,L)=E (T,R), (c;T,T) can invade1 1 2
1 1

population one and the population can consequently drift to ((c ;T,T),(c ;L,R)). However it is2 1

easy to see that this state is unstable since (c ;L,L) can spread in population two. The relevant1

payoffs for this argument are given in table III, the trajectories are sketched in figure 1.
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 (c ;L,L)1 (c ;L,R)1

(c ;T,T)1 1,1 1,1

(c ;T,T)2 1,1 1,0

Table III : Some payoffs of the
communication game of table II.

Figure 1: Trajectories associated with the strategies
and payoffs in table III. Collections of rest points are

marked with thick lines.

We will see that cheap talk will not lead to instability as in the above example if the

individuals in each population only simultaneously achieve their maximal payoff. Such a situation

will be called a common interest contest. Let B *=max{E (e,e'), e0S , e'0S }, i=1,2.i i 1 2

DEFINITION 3.1:

Given populations one and two matched to play an asymmetric game '(S ,S ,E ,E ) we1 2 1 2

say that the agents are involved in a common interest contest if for each e0S  and e'0S ,1 2
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E (e,e')=B * if and only if E (e,e')=B *.1 1 2 2

In the literature a game satisfying the conditions in the above definition is known as a

game of common interest (see Kim and Sobel [1991, 1994], Matsui [1991]). The reason why we

use a different name for an established concept will become apparent in the next section where we

consider the one population setting.

In the following we will present a minimal stability criterion.

DEFINITION 3.2:

A set Gf)S ×)S  is said to have point stability if each pair of pure strategiesc c
1 2

(e ,e )0G1(S ×S ) is stable.1 2 1 2
c c

The following theorem characterizes the evolutionary outcomes (modelled using the

asymmetric replicator dynamics (RD2)) in communication games. We show that a common

interest contest is necessary and sufficient for the dynamics to satisfy minimal stability conditions.

Moreover, in a common interest the only set with such minimal stability properties is unique and

contains all states in which each agent achieves his maximal payoff. Therefore the effect of cheap

talk is quite drastic, either an unstable situation is created or eventually everyone gets their

maximal payoff.

THEOREM 3.1:

Let '(S ,S ,E ,E ) be a game and M be a finite message space. The following statements1 2 1 2

are equivalent:

i) The agents are involved in a common interest contest. 

ii) There exists a strict equilibrium set G .1

iii) There exists an asymptotically stable set G  of (RD2).2

iv) There exists a minimal attracting set G  of (RD2) with point stability.3

Moreover if one (all) of the above statements is (are) true then
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G =G =G ={(F ,F )0)S ×)S  s.t. E (F ,F )=B *}.1 2 3 1 2 1 2 1 1 2 1
c c c

PROOF:

"i) Y ii) Y iii) Y iv)"

It is easy to show that G ={(F ,F )0)S ×)S  s.t. E (F ,F )=B *} is a strict equilibrium1 1 2 1 2 1 1 2 1
c c c

set if we have a common interest contest. Following the definitions and theorem 1.4.1 the rest

follows immediately.

"iv) Y i)" will be shown in two steps.

Step 1: We will show that there exists (e ,e )0G1(S ×S ) such that E (e ,e )=B *, i=1,2.1 2 1 2 i 1 2 i
c c c

Following lemma 1.4.1, there exists (e ,e )0G1(S ×S ). Let m0M be such that e  does1 2 1 2 1
c c

not send m. Let (a,b)0S ×S  such that E (a,b)=B *. Since m is not sent, player two's response to1 2 1 1

message m does not influence the payoffs obtained in population two. Therefore we may assume

that each individual in population two responds to m by playing b. Let this strategy be denoted by

eE . Let eE 0S  be the strategy of sending m and then always playing a. Given ,>0 consider the2 1 1
c

trajectory starting in ((1!,)e +,eE ,eE ). Since G is point stable it follows that (e ,eE ) is stable1 1 2 1 2

and hence E (e ,e )=E (e ,eE )=B *. Applying the same arguments to population two completesc c
1 1 2 1 1 2 1

step 1.

Step 2: We will now show that the population is involved in a common interest contest.

Since E (eE ,eE )=E (e ,eE ) and G is a minimal attracting set it follows from step 1 thatc c
1 1 2 1 1 2

(eE ,eE )0G. Moreover applying step 1 to (eE ,eE ) it follows that E (eE ,eE )=E (a,b)=B *. Since1 2 1 2 2 1 2 2 2
c

(a,b)0S ×S  such that E (a,b)=B * was arbitrary it follows that the population is involved in a1 2 1 1

common interest contest.

In order to show the uniqueness statement it is enough to show that if G  is a minimal3

attracting set with point stability then G =G  where G ={(F ,F )0)S ×)S  s.t. E (F ,F )=B *}.3 1 1 1 2 1 2 1 1 2 1
c c c

We will first show that GfG . From step 1 of "iv) Y i)" it follows that (e ,e )0G 1G .1 3 1 2 1 3

Moreover it is easy to show that G  is a connected set of Nash equilibria. Since a minimal1

attracting set may not have Nash equilibria arbitrarily close to it (Nash equilibria are rest points of
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L N R

T 2,1 0,0 0,0

M 0,0 1,2 0,0

B 0,0 0,0 10,10

Table IV : A game.

RD) that are not in it follows that GfG .1 3

From the fact that G  is a strict equilibrium set, GfG  and the minimality of G it follows1 1 3

that G =G . G3 1

Notice that if agents are involved in a common interest contest then {(x,y)0)S ×)S  s.t.1 2

E (x,y)=B *} is a strict equilibrium set and hence an asymptotically stable set in the game without1 1

cheap talk (see theorem 1.4.1). Hence cheap talk preserves the stability of the efficient set and

disrupts the stability of all other inefficient outcomes that were stable is some sense in the game

without communication (see example 3.1). 

The following example shows how the strength of the theorem 3.1 relies on the properties

of the asymmetric replicator dynamics. 

Example 3.3: (due to Kim and Sobel [1991, 1994]) 

Consider the game with S ={T,M,B} and S ={L,N,R} and payoffs given in table IV as a1 2

communication game with message set M={c ,c }.1 2
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 (c ;N,L)1 (c ;L,N)2

(c ;M,T)1 1,2 2,1

(c ;T,M)2 2,1 1,2

Table V: Some payoffs of the
communication game of table IV.

Following theorem 3.1, {(F ,F )0)S ×)S  s.t. E (F ,F )=(10,10)} is the unique1 2 1 2 1 1 2
c c c

minimal attracting set. Let p =½(c ;M,T)+½(c ;T,M) and p =½(c ;N,L)+½(c;L,N). Kim and1 2
1 2 1 2

Sobel [1991] show that (p ,p ) is equilibrium evolutionarily stable (EES) because ".. players waste1 2

their words over arguing which inefficient equilibrium to play." This does not happen in the

replicator dynamics (RD2) when we consider minimal attracting as a solution concept. Let us

consider the replicator dynamics in this game in more detail to see why (p ,p ) is not contained in1 2

a minimal attracting set. Consider for the moment the case in which population i consists only of

agents using strategies in C(p ), i=1,2. The appropriate payoffs are written in table V. i

If strategies are restricted in this way then (p ,p ) is stable in )C(p )×)C(p ) and the1 2 1 2

trajectories of RD in )C(p )×)C(p ) are closed orbits around (p ,p ) (see Schuster and Sigmund1 2 1 2

[1981]). Therefore the minimal attracting set in )C(p )×)C(p ) is )C(p )×)C(p ) itself.1 2 1 2

Especially, ((c;M,T),(c ;N,L)) is in this set. In this outcome not all messages are sent and1 1

therefore when considering the dynamics on )S ×)S  after entry of a specific sequence ofc c
1 2

mutants the dynamics will evolve to the efficient set (see proof of theorem 3.1).
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 (c ;B,T)1 (c ;T,B)2

(c ;B,T)1 1,1 2,2

(c ;T,B)2 2,2 1,1

Table VI : Some payoffs generated by
the communication game of table I.

4. Cheap talk in the one population setting

We will now consider the impact of cheap talk on evolution in one the one population

setting. Consequently our analysis is now restricted to symmetric games. Let E=E , E =E , S=S1 1 1
c c

and S =S . It turns out that in the one population setting cheap talk is no longer able to eliminatec c
1

the multiplicity of evolutionarily stable sets. 

Example 4.1:

Consider the game in example 3.1 as a symmetric game with T identified with L and B

with R, hence S={T,B}. Now consider the communication with message set M={c ,c }.1 2

Straightforward calculation shows that the efficient set G={F0)S  s.t. E (F,F)=2} is an ES Set.c c

However there is also an inefficient singleton ES Set of the communication game corresponding

to the ESS p=½(c ;B,T)+½(c ;T,B). Notice that the strategy p is an ESS since BR (p)=C(p) and1 2 c

all mutants with support in C(p) are driven out (see table VI). 

When playing p there are no unused messages ("lock in"). Moreover, without unused

messages cheap talk can not enforce efficiency. Consequently a pendant to theorem 3.1 does not

exist for the one population setting and we must state a much weaker version. Especially p is
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mixed and hence this does not contradict the result of Wärneryd [1991] that a pure strategy ESS

must be efficient. Notice that the set G is not convex. Communication games are simple class of

examples in which non convex ES sets arise quite naturally. 

Agents are involved in a common interest contest if they only simultaneously achieve their

maximal payoff. In the one population setting we must therefore add to the condition of common

interest from the two population setting (see definition 3.1) the condition that the maximal payoff

can be achieved in a symmetric outcome. Let B*=B *=max{E(e,e'), e,e'0S}.1

DEFINITION 4.1:  

Given a population of identical agents matched to play a symmetric game '(S,E) we say

that the agents are involved in a common interest contest if B*=max{E(e,e), e0S} and for each

e,e'0S, E(e,e')=B* implies E(e',e)=B*.

We now come to a characterization of the relationship of cheap talk and efficiency. In

contrast to the two population setting, here in the one population setting common interest is only

necessary and sufficient for the set of efficient outcomes to have minimal stability properties. As

seen in example 4.1 in efficient ES sets may exist, however the set can not have unused messages.

DEFINITION 4.2:  

We say that the set Gf)(M×S ) has unused messages if there exists F0G and m0M suchM

that (m',f)0C(F) implies m�m' (m'0M, f0)(M×S )).M

THEOREM 4.1:

Let '(S,E) be a symmetric game and let M be a finite message space. Then the following

statements are equivalent.

i) The agents are involved in a common interest contest. 
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ii) There exists a connected ES Set G  with unused messages.1

iii) There exists an asymptotically stable set G  of (RD) with unused messages.2

iv) There exists a minimal attracting set G  of (RD) with point stability that contains an element in3

which all agents receive their maximal payoff, i.e., �P0G  such that E (P,P)=B*.3
c

Moreover if one (all) of the above statements is (are) true then

G =G =G ={F0)(M×S ) s.t. E (F,F)=B*}.1 2 3
M c

PROOF:

"i) Y ii)" is an easy exercise, "ii) Y iii)" follows from theorem 1.3.1 and "iii) Y iv)" follows from

the definitions. 

"iii) Y i)" follows from the proof of theorem 3.1 except that step 1 is slightly changed.

Step 1': Assume that P0G  is such that player one does not use message m0M. We will show that2

E (P,P)=B*. c

Let (a,b)0S×S such that E(a,b)=B*. As in the proof of theorem 3.1 we may assume that P

responds to m by playing b. Let e0S  be the strategy of sending m and then always playing a. Itc

follows that B*=E (e,P)$E (P,P). On the other hand, since P is an element of an AS Set, (P,P) isc c

a Nash equilibrium (see Bomze [1986]). Hence B*=E (e,P)#E (P,P) and step 1' is complete.c c

"iv Y iii)" follows immediately since iv) implies that the statement in step 1' above is true. G

Notice in comparison to theorem 3.1 that part iv) of theorem 4.1 contains the additional

condition that �P0G  such that E (P,P)=B*. This was not needed in theorem 3.1 because lemma3
c

1.4.1 implies that G  must contain a pure strategy which has the same effect regarding the proof3

of the theorem as this additional condition. 

Example 4.1 shows that multiple ES sets may exist in common interest contests, of course

the ones containing inefficient payoffs can not have unused messages. Moreover ES Sets without

unused messages can also exist when there is no common interest contest as shown in the next

example.
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T B

T 0,0 1,2

B 2,1 !1,!1

Table VII : A game showing that ESS
can exist without common interest.

Example 4.2:

Consider the symmetric game with S={T,B} and payoffs given in table VII.

The only minimal attracting set in the above game is associated to the ESS ½T+½B which

gives an expected payoff of ½ to each individual. Consider now the communication game with

message set M={c ,c }. Although the population is not involved in a common interest contest, the1 2

communication game has two evolutionarily stable strategies 0.25(c ;v,T)+0.75(c ;B,v) and1 2

0.75(c ;v,B)+0.25(c ;T,v) where v=½T+½B. The associated payoffs are 7/8. Especially payoffs in1 2

any ESS are higher in the communication game.

In the following we will see that the efficiency result of the two population setting can be

recovered in games with a weakly dominant strategy.

COROLLARY 4.1:

Let '(S,E) be a symmetric game with a weakly dominant strategy. Then there exists a

minimal attracting set of (RD) with point stability if and only if the population is involved in a

common interest contest.
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PROOF:

The "if" statement follows directly from theorem 4.1.

"only if": Let T0S be a weakly dominant strategy. Let A be a minimal attracting set with point

stability. For c0M the strategy (c ;T,T) dominates any other strategy (c ;x,y). Consequently thei i i

growth rate of (c ;T,T) will be larger than that of (c ;x,y). Considering a sequence of mutations ofi i

(c ;T,T) it follows that there exists F'0A such that (c;x,y)óC(F'). Repeating this argument for alli i

c0M it follows that there exists F0A such that C(F)f{(c ;T,T),..,(c ;T,T)}=Q. Moreover alli 1 m

strategies in Q are payoff equivalent and hence any strategy with support in Q is a rest point,

especially (c;T,T)0A. Now it is easy to show that point stability implies E(T,T)=B* and hence1

the population is involved in a common interest contest (follow arguments as in the proof of

theorem 3.1 and 4.1). G

We are not able to provide a complete characterization of the class of games in which

cheap talk does not destroy stability. However it is easy to see that this class contains all

partnership games. Partnership games are two person games in which both players necessarily

receive the same payoff. Schlag [1994a] shows that each partnership game has an ES Set and

since the communication game of a partnership game is again a partnership game the claim

follows. Clearly the class of games in which cheap talk does not destroy stability is larger than just

partnership games (see example 4.2).
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5. Literature and Discussion

An alternative static solution concept to that of an ES Set (and ESS) is that of an

Equilibrium Evolutionarily Stable Set (short EES set), introduced by Swinkels [1992]. Mutations

are sophisticated in the sense that a mutant will only enter if it foresees that it is will be a best

reply to the population mean once it has entered the population. Schlag [1994a] shows that each

connected evolutionarily stable set is EES, both in the one and in the two population setting. 

Kim and Sobel [1991] (abbreviated below by KS) search for EES in communication

games. They essentially show that in a game with both common interest and equilibrium common

interest that the only set that is EES in the communication game is the efficient set. A game has

equilibrium common interest if each player has the same ranking over the Nash equilibria. KS also

present an example (the same as example 4.1) showing that their result no longer holds when EES

is applied to a one the one population setting.

The major difference to our analysis is that EES is an intuitive concept that is not related

to any specific dynamic process. The results of our analysis differ from those of KS in various

respects. KS need an extra assumption, namely equilibrium common interest, in order to ensure

that cheap talk leads to efficiency (see example 3.2) in each set that is EES. On the other hand in

our analysis common interest is necessary to ensure stability in the two population setting in our

model. In contrast, it is easy to verify that in a prisoners' dilemma with cheap talk the set of

strategies that lead to the play of ("defect","defect") is EES. Players in the model of KS are

smarter in that they do not coordinate on unstable outcomes. This makes stable situations more

likely. The results of our paper for two specie populations trivially fall together with those of KS

if we restrict attention to partnership games. Partnership games have both equilibrium common

interest and common interest. Moreover, the concept of minimal attracting set, strict equilibrium

set and EES are equivalent in partnership game (see Schlag [1994a]). 

How do the proofs in these two alternative models compare? As in our paper the proof of

the results of KS contains two parts. First it is shown that a set that is EES will have unused

messages. This they show using equilibrium common interest. We obtain the same result without

additional assumptions using the fact that the flow of the asymmetric replicator dynamics is

incompressible. The second step is to show that unused messages give the opportunity to
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coordinate on the efficient outcome. In KS, players do not necessarily punish the sending of an

unused message and hence mutants can employ a secret handshake. Mutants copy the play of

some other individual in the population unless they meet a mutant in which case they coordinate

on the efficient outcome. In our case, the play in the population drifts to the situation where

players of one population "offer" the maximal payoff to the other population upon receiving an

unused message. Therefore mutants sending an unused message start to take over without using

any secret handshake. 

In their revised version, Kim and Sobel [1994] specify an explicit stochastic dynamic

adjustment process. Each players plays against each other player and switches to strategies that

performed equally well or better with positive probability. The intuition leading to the existence of

unused messages now relies on individuals in one population updating while the ones in other do

not. The reasons for the emergence of efficient outcomes when there are unused messages is

similar to our model. Moreover, in this new framework communication strategies leading to the

play of ("defect","defect") are no longer absorbing in the prisoners' dilemma. 

Besides the rationality of the individuals, our model differs from the newer version of Kim

and Sobel [1994] in the size of population that is analyzed. The assumption of tournament

matching in Kim and Sobel [1994] is more plausible in small populations. Moreover their proof

relies on events that occur with probability converging to zero as the population gets large. As the

size of the population gets large, whether mutations are able to lead to efficiency seems

questionable when looking at example 3.2. In contrast, our model is only applicable to large

populations (see Schlag [1994b]) and the efficiency results rely on drift due to mutation. Similarly,

the assumption that there are more messages than players (an assumption in Kim and Sobel

[1994]) is more intuitive in small populations. 

Both our model and that of Kim and Sobel [1994] show that unused messages are

necessary for the population to evolve to efficient outcomes. Clearly our inefficiency result seems

most intuitive when there is not a lot of time to exchange messages and the message space is

restricted. The exposition of the inefficiency result is not meant to describe the most common

situation but more as a reminder or caution that cheap talk with finitely many messages alone is

not enough to explain the emergence of efficient outcomes.



29

The strong conclusions in theorem 3.1 rely on the specific version of the asymmetric

replicator dynamics used. An alternative version frequent in the population genetics literature but

not yet related to any individual learning model, requires for the right hand sides in definition

1.4.2 to be divided by the mean payoffs in each population (i.e., divide by E (x ,y ) in the equationi
t t

of population i, i=1,2). These dynamics were introduced by Maynard Smith [1982] and analyzed

in Hofbauer [1985]). Example 3.2 can be used to show that theorem 3.1 can not be extended to

this alternative version of the asymmetric replicator dynamics. It can be shown that the set

{(p,p)}, which is EES and yields inefficient payoffs, is an asymptotically stable set in these

alternative dynamics. However this in turn depends on the assumption that agents only play pure

strategies. If agents are also able to play mixed strategies then clearly strict equilibrium set is a

weaker concept than that of an asymptotically stable set. Especially, {(p,p)} will no longer be

asymptotically stable.

Evolutionary stability in asymmetric games is often undertaken via the analysis of the

(truly) asymmetric contest (e.g. Bhaskar [1992]). The asymmetric contest is a transformation of

the game into a symmetric game. Each agent has a strategy he will play in the role of player one

and a strategy he will play in the role of player two. Before playing the game nature determines

which agent is in which role. Payoffs in the asymmetric contest are then the expected payoffs of

this enlarged symmetric game.  Given this symmetrization the evolutionary stability concepts of

the one population setting can then be applied. Bhaskar [1992] shows that neutrally stable

strategies of the asymmetric contest of the communication game must not be efficient. For

example ((c ;B,B),(c ;R,R)) is neutrally stable in the asymmetric contest of the communication1 1

game of table I with message set M={c , c }. Balkenborg and Schlag [1994] show that1 2

evolutionarily stable sets in the asymmetric contest are equivalent to strict equilibrium sets.

Therefore the efficiency and stability results of cheap talk apply via theorem 3.1 to the

evolutionarily stable sets of the asymmetric contest. The difference to the results of Bhaskar

[1994] is that an evolutionarily stable set is a set of neutrally stable strategies with additional

properties. We may thus conclude this paper by noticing that whether or not costless pre-play

communication leads to efficiency in evolutionarily stable sets depends on whether or not there is

role identification.
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