
Projektbereich B

Discussion Paper No. B{300

On Inequality Constrained Generalized Least

Squares Selections in the General Possibly

Singular Gau�-Markov Model:

A Projector Theoretical Approach

Hans Joachim WERNER�, Bonn, Germany

and

Cemil YAPAR, Trabzon, Turkey

1994

This paper appears in: Linear Algebra Appl. (5th Special Issue devoted to Statistics, in

press for publication in 1995).

* Financial support by Deutsche Forschungsgemeinschaft, Sonderforschungs-

bereich 303 at the University of Bonn, is gratefully acknowledged.

i



On Inequality Constrained Generalized Least Squares Selections in

the General Possibly Singular Gau�-Markov Model: A Projector The-

oretical Approach

H. J. Werner 1

Institute for Econometrics and Operations Research

Econometrics Unit, University of Bonn

D-53113 Bonn, Germany

C. Yapar

Karadeniz Technical University

Faculty of Arts and Sciences, Dept. of Stat. & Comp. Sci.

61080 Trabzon, Turkey

Abstract

This paper deals with the general possibly singular linear model. It is assumed that in addition to

the sample information we have some nonstochastic prior information concerning the unknown

regression coe�cients that can be expressed in form of linear independent inequality constraints.

Since these constraints are part and parcel of the model the inequality constrained generalized

least squares (ICGLS) problem arises that contains some unknown aspects up to now. Based on

a projector theoretical approach we show in this paper how the set of ICGLS selections under

the constrained model is related to the set of GLS selections under the associated unconstrained

model. As a by-product we obtain an interesting method for determining an ICGLS selection

from a GLS selection. The insights gained from our considerations might also be useful in a

future study of the statistical properties of ICGLS estimators. Certain special model cases are

also considered. Some of the results discussed in [29] and [7] are reobtained.

Keywords: Gau�-Markov model, singular model, perfect multicollinearity, linear inequality con-

straints, inequality constrained generalized least squares problem, oblique projectors, generalized

inverses.

JEL-Classi�cation: C20.

1
Financial support by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303 at the University of

Bonn, is gratefully acknowledged.

ii



On Inequality Constrained Generalized Least Squares Selections in

the General Possibly Singular Gau�-Markov Model: A Projector The-

oretical Approach

H. J. Werner 1

Institute for Econometrics and Operations Research

Econometrics Unit, University of Bonn

D-53113 Bonn, Germany

C. Yapar

Karadeniz Technical University

Faculty of Arts and Sciences, Dept. of Stat. & Comp. Sci.

61080 Trabzon, Turkey

Abstract

This paper deals with the general possibly singular linear model. It is assumed that in addition to

the sample information we have some nonstochastic prior information concerning the unknown

regression coe�cients that can be expressed in form of linear independent inequality constraints.

Since these constraints are part and parcel of the model the inequality constrained generalized

least squares (ICGLS) problem arises that contains some unknown aspects up to now. Based on

a projector theoretical approach we show in this paper how the set of ICGLS selections under

the constrained model is related to the set of GLS selections under the associated unconstrained

model. As a by-product we obtain an interesting method for determining an ICGLS selection

from a GLS selection. The insights gained from our considerations might also be useful in a
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1. Introduction

Let IRn, IRn;m, and Pn;n denote the set of n-dimensional real column vectors, the set of

n � m real matrices, and the set of real nonnegative de�nite and symmetric n � n matrices

(nnds), respectively. Given A 2 IRn;m, the symbols At, R(A), N (A), and rank(A) will denote

the transpose, the range space, the null space, and the rank, respectively, of A. In addition,
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let A� denote an arbitrary generalized inverse of A satisfying AA�A = A. Further, I and 0,

respectively, will stand for the identity matrix and the zero matrix of whatever size is appropriate

to the context.

Consider the following restricted Gau�-Markov model

Lr := (y; X�; V j R� � r); (1:1)

in which y is an observable random vector with expectation X� and dispersion V ; the vector

� of unknown regression coe�cients satis�es the a priori constraints R� � r; X 2 IRn;m and

V 2 Pn;n are known model matrices that need not be of full column rank as in [29] and [7];

R 2 IRp;m and r 2 R(R) are also known; and R has full row rank p. Only for the sake of

simplicity, it is further assumed throughout this paper that

R(X) � R(V ): (1:2)

Restrictions in the form of inequalities frequently arise on the unknown parameters as work

with disequilibriummodels [1, 10], simultaneous Tobit and Probit models [21], and other related

models has shown. Although models like Lr are thus of growing interest, they contain some

unknown aspects up to now. Unfortunately, inequality constraints pose statistical problems, and

so there has been a subsequent lag in the determination of the statistical properties of estimators

in such models. Much of the existing literature has avoided these problems by assuming that

X, V and R are all of a very particular structure; see Section 1 in [29] for more details in this

respect. If the matrices X and V in model Lr are both of full column rank, then some closed

form expressions for the (highly nonlinear) ICGLS estimator of � can be found in [29]. The

main purpose of this paper is to drop these restrictive rank assumptions.

In the sequel it is convenient to denote by

Lu := (y; X�; V ) (1:3)

the model that is obtained from Lr by ignoring the inequality restrictions R� � r. Note that,

under the assumption (1.2),

y 2 R(V ) (a.s.); (1:4)

irrespective of under which of the two models y is observed. By Theorem 2.3, due to invariance,

an arbitrary generalized inverse V � of V can be used to de�ne a norm

kxkV� := (xtV �x)
1

2

on R(V ). The mathematical programming problem

minimize ky �Xbk2V � subject to Rb � r (1:5)

is hence well de�ned for each y 2 R(V ). Any optimal solution to this convex-quadratic opti-

mization problem, that is any vector from

argminRb�r ky �Xbk2V � (1:6)
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is called an ICGLS solution (for �) and is henceforth denoted by ~�(y). Although (1.5) possesses

an optimal solution for each y 2 R(V ), (1.6) need not be a singleton. In which case there do

exist many di�erent functions f with f(y) representing an ICGLS solution for each y 2 R(V ).

It seems reasonable to call any such function an ICGLS selection for � and to reserve the term

ICGLS estimator for exactly those situations where there does exist only one ICGLS selection

on R(V ). The set of all ICGLS selections will be denoted by f~�(�)g.

The paper is organized as follows. Section 2 consists of some miscellaneous results on

generalized inverses and (generally oblique) projectors, which are important in this text. Section

3 and Section 4 deal with the ICGLS problem. In particular, it is shown there how the ICGLS

selections for � under model Lr are related to the GLS selections for � under the associated

unconstrained model Lu. A nice method for determining an ICGLS selection from a GLS

selection is obtained as a bonus. Two spcecial (extreme) model cases where either

R(Rt) � R(Xt) (1:7)

or

R(Rt) \R(Xt) = f0g: (1:8)

is assumed in addition to (1.2) are also investigated in detail. Many of the results obtained in

this paper appear to be new. Some of the results in [29] and [7] are reobtained.

It is interesting to mention here that (1.7) is a necessary and su�cient condition for R� to

be linearly unbiasedly estimable under model Lu; cf. [19] or [23]. If the matrices X and R satisfy

(1.8) they are called weakly complementary to one another; see Section 2. It is well-known that

the set of GLS solutions for � under model Lu is not a singleton whenever X is de�cient in

column rank; see also (3.13). As in �xed e�ects models with balanced data, constraints in the

form of linear equations on the regression coe�cents are then frequently arti�cially introduced

for the sole purpose of reducing the original set of GLS solutions. Notice that it is essential for

such a restrictor matrix to be weakly complementary to the regressor matrix (compare [5], [8], [9],

[25]; see also Theorem 3.9). These imposed constraints which are carefully to be distinguished

from restrictions considered as an integral part of the underlying model have a long history; cf.

[30], [14], [20], [5], [15], [8], [9], and [25].

2. G-Inverses and Projectors

LetM and N be linear subspaces in the n-dimensional real space IRn. ThenM? will stand

for the orthogonal complement of M in IRn (with respect to the usual inner product), and if

M\N = f0g, then M�N will denote the direct sum of M and N . Next, if N is a direct

complement ofM (i.e. IRn =M�N ), then PM;N will denote the well-de�ned (generally oblique)

projector onM along N , and if N =M?, then PM will denote the corresponding (orthogonal)

projector. Notice that PM;N may be de�ned by PM;Nu = u if u 2 M and PM;Nu = 0 if u 2 N

(see, e.g., [16, pp. 106{113]). Observe that the relations

R(At)? = N (A) and N (At)? = R(A) (2:1)

hold for each matrix A 2 IRn;m. Recall that any projector PM;N is an idempotent matrix,

i.e. P 2
M;N = PM;N , and that conversely every idempotent matrix P is a projector, namely
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P = PR(P );N (P ). If P
2 = P , then (I � P )2 = I � P and (P t)2 = P t. Check that

I � PM;N = PN ;M: (2:2)

In view of (2.1) it is further clear that

(PM;N )
t = PN?;M? : (2:3)

For given A 2 IRn;m and M;N � IRm, it is convenient to denote by M + N , AM, Nc(A),

and Rc(A), respectively, the Minkowski sum of M and N , the image of M under A, the set

of all direct complements of N (A), and the set of all direct complements of R(A). Recall that

(M +N )? = M? \N? and (M\N )? = M? +N?. Also notice that N? �M? whenever

M� N .

Now let A 2 IRn;m, let M2 Nc(A), and let S 2 Rc(A): Consider the matrix equations

(G1) AXA = A;

(G2) XAX = X;

(GM) XA = PM;N (A);

(GS) AX = PR(A);S :
(2:4)

Suppose that ; 6= � � f1; 2;M;Sg. Then let A� denote the set of all those matrices X which

satisfy equations (Gi) for all i 2 �. Any X 2 A� is called an �-inverse of A, and is also denoted

by A� . f1g-inverses are usually called generalized inverses or g-inverses and are also denoted

by A�. For an extensive discussion of the theory of g-inversion, we refer, e.g., to the books by

Ben-Israel and Greville [2], Hartung and Werner [9], Pringle and Rayner [15], Rao and Mitra

[16]; for a geometric approach, to Werner [24, chapter 1] and Rao and Yanai [17]; and for a

projector theoretical one, e.g., to the paper by Langenhop [11]. Only for the sake of clarity and

for easier reference, a few basic results are summarized in Theorem 2.1 (cf. [24], see also [27]).

Theorem 2.1.

(i) The f2;M;Sg-inverse of A exists uniquely. The f2;R(At);N (At)g-inverse of A coincides

with the Moore-Penrose inverse of A and is usually denoted by Ay: Hence, (Ay)y = A.

(ii) Any fMg-inverse of A and likewise any fSg-inverse of A is always a f1g-inverse of A.

Conversely, for each f1g-inverse of A there uniquely exist anM2 Nc(A) and an S 2 Rc(A)

such that X 2 AfM;Sg. Moreover, if X 2 AfM;Sg, then XAX = Af2;M;Sg:

(iii) If X 2 AfM;Sg; then M = R(XA) � R(X), and N (X) � S = N (AX). In particular,

XS � N (A). Moreover, X = Af2;M;Sg i� R(X) = M and N (X) = S: Furthermore,

Af1g = Af1; 2g i� A is of full column rank and/or A is of full row rank. In particular,

A�A = I i� A is of full column rank. Likewise, AA� = I i� A is of full row rank.

(iv) If X 2 AfM;Sg, then Xt 2 AtfS?;M?g. Hence (At)y = (Ay)t.

(v) If A is nonsingular, then its f1g-inverses all coincide with its regular inverse, i.e. Af1g =

fA�1g.

Next, let A and B be two real matrices, both of the same column number. From Werner

[27] we have the following de�nitions:

(a) B is said to be weakly complementary to A, if R(At) \R(Bt) = f0g.
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(b) B is said to be weakly bicomplementary to A, if B and Bt are weakly complementary to A

and At, respectively.

A pair of weakly bicomplementary matrices is also often said to be a pair of disjoint matrices

(also written A+B = A�B), cf. [13]. The connections between these concepts and the concept

of generalized inversion are discussed in detail in [27]. Here we only cite the following important

result.

Theorem 2.2. For given A; B 2 IRn;m, the following conditions are equivalent:

(i) A+ B = A� B;

(ii) (A +B)f1g � Af1g;

(iii) (A+B)fM;Sg � BfM\N (A);S �R(A)g for each M2 Nc(A+B) and S 2 Rc(A+B).

In which case, in particular,

B(A +B)�A = 0; (2:5)

irrespective of the choice of (A +B)�.

Although the following invariance property is known (cf. [16]), a simple illustrative proof

is given.

Theorem 2.3. Let A 2 IRn;m and W 2 Pn;n. If R(A) � R(W ), then

(i) AtW�A is invariant for any choice of W�;

(ii) AtW�A 2 Pm;m;

(iii) R(AtW�A) = R(At) and N (AtW�A) = N (A).

Proof: If R(A) � R(W ), then clearly A = WZ for some matrix Z. Consequently

AtW�A = ZtWW�WZ = ZtWZ, and the results are all plain because W is nnds.

We are now in the position to derive some interesting results on (generally oblique) projec-

tors and associated g-inverses that will play a key role in Section 3. To that end, let W 2 Pn;n

and A 2 IRn;m be given matrices. Then we have the following direct-sum decomposition

R(A;W ) = R(A) �WN (At) (2:6)

for the range space of the block partitioned matrix (A;W ) (cf. Lemma 3.2 in [26]). It is

convenient to denote by P(A j W ) the set of all those projectors P 2 IRn;n which satisfy

R(P ) = R(A) and WN (At) � N (P ): (2:7a-b)

That such a projector does always exist is evident from (2.6). A general e�cient representation

for P(A jW ) is given by

P(A jW ) = fPR(A);WN (At)�T j T 2 Rc(A;W )g; (2:8)

that is, there is a one-to-one correspondence between P 2 P(A j W ) and T 2 Rc(A;W ). (2.8)

tells us that P(A jW ) is a singleton i� R(A;W ) = IRn. Clearly, on account of (2.7a), for each

P 2 P(A jW ), there exists a matrix, say AP , such that

P = AAP : (2:9)
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From the de�ntion of �-inversion we further know that

AAP = PR(A);WN (At)�T i� AP 2 AfWN (At)� T g:

In other words, only particular g-inverses of A can serve as AP in (2.9). For convenience we

denote the set of all these g-inverses by the symbol G(A jW ). Evidently,

G(A jW ) =
[

T 2Rc(A;W )

AfWN (At)� T g:

Although Theorem 2.1 (iii) tells us something about the geometry of these inverses, a natural

question is: Given W and A, how can we explicitly compute such an inverse in terms of W and

A? A satisfactory answer is given in the next three theorems.

Theorem 2.4. For given W 2 Pn;n and A 2 IRn;m, let P(A j W ) be de�ned as before.

Then

P(A jW ) = fA
�
At(W +AAt)�A

��
At(W +AAt)� j (�)� 2 (�)f1gg:

In particular,

A
�
At(W + AAt)�A

��
At(W + AAt)fT g = PR(A);WN (At)�T ;

for each T 2 Rc(A;W ).

Proof: Since W +AAt 2 Pn;n and R(A) � R(W +AAt), we know from Theorem 2.3 that

H := At(W + AAt)�A is a matrix being nnds and invariant for any choice of (W + AAt)�.

In addition, also by Theorem 2.3, R(H) = R(At) and N (H) = N (A). Next consider an

arbitrary but �xed g-inverse (W + AAt)� of W + AAt. In view of Theorem 2.1 (ii), clearly

(W + AAt)� = (W + AAt)fT g for some T 2 Rc(W + AAt) = Rc(A;W ). Observing N (W +

AAt) = N (W ) \ N (At) yields At(W + AAt)fT gT = f0g according to Theorem 2.1 (iii). Since

(W + AAt)fT g(W + AAt) is a projector along N (W + AAt) = N (W ) \N (At), we further get

At(W +AAt)fT g(W +AAt) = At and hence At(W +AAt)fT gWN (At) = At(W +AAt)fT g(W +

AAt)N (At) = AtN (At) = f0g. So we arrive at

At(W + AAt)fT g[WN (At)� T ] = f0g; (2:10)

which implies AH�At(W + AAt)fT g[WN (At) � T ] = f0g: Since H�H is a projector along

N (H) = N (A), we further have A = AH�H = AH�At(W + AAt)fT gA. Combining all

observations results in AH�At(W +AAt)fT g = PR(A);WN (At)�T , and the proof is complete.

It is no surprise that somewhat simpler representations for P(A jW ) can be obtained under

additional assumptions relating A and W . Below we consider only two extreme situations.

Theorem 2.5. For given W 2 Pn;n and A 2 IRn;m, let P(A j W ) be de�ned as before. If

R(A) � R(W ), then R(A;W ) = R(W ) and

P(A jW ) = fA(AtW�A)�AtW� jW� 2 Wf1gg:

In particular,

A(AtW�A)�AtW fT g = PR(A);WN (At)�T ;
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for each T 2 Rc(W ).

Proof: The proof follows similar to the previous one. Since the required modi�cations are

obvious, details are left to the reader.

Theorem 2.6. For given W 2 Pn;n and A 2 IRn;m, let P(A j W ) be de�ned as before. If

R(A)\R(W ) = f0g, that is, ifAt is weakly complementary toW , thenR(A;W ) = R(A)�R(W )

and

P(A jW ) = fAAt(W +AAt)� j (W + AAt)� 2 (W +AAt)f1gg:

In particular,

AAt(W +AAt)fT g = PR(A);R(W )�T ;

for each T 2 Rc(A;W ).

Proof: Let R(A) \ R(W ) = f0g. Then R(A;W ) = R(A) � R(W ), and it is obvious

that W is weakly bicomplementary to AAt. That AAt(W +AAt)� is a projector onto R(AAt)

thus follows from Theorem 2.2. Clearly R(AAt) = R(A). Therefore AAt(W + AAt)�A = A.

Moreover, as in the proof of Theorem 2.4 [see (2.10)], (W + AAt)� = (W + AAt)fT g for some

T 2 Rc(A;W ), and At(W +AAt)fT g[WN (At)�T ] = f0g. Since WN (At) = R(W ), the proof

is complete.

We conclude this section with proving in addition to Theorem 2.3 some further interesting

invariance properties.

Theorem 2.7. For given A 2 IRn;m and W 2 Pn;n, let P(A j W ) be de�ned as before.

Then we have:

(i) PW and (I �P )W are invariant for any choice of P 2 P(A jW ). In particular, R(PW ) =

R(A) \R(W ) and R((I � P )W ) =WN (At).

(ii) WP tW�(I � P )W = 0 for each P 2 P(A jW ), irrespective of the choice of W�.

(iii) PW (I � P )t = 0 for each P 2 P(A jW ).

Proof: Notice that (2.6) impliesR(W ) = [R(W )\R(A)]�WN (At). Therefore W = T+U

for some unique matrices T , U with R(T ) = R(W ) \ R(A) and R(U ) = WN (At). But then,

in view of (2.8), PW = T and (I � P )W = U , irrespective of the choice of P 2 P(A jW ), and

the proof of (i) is done. In view of (i), PW = WZ1 for some matrix Z1, and (I � P )W = WZ2

for some matrix Z2 with R(Z2) � N (At). Because N (At)? = R(A) [see (2.1b)], and since

R(PW ) � R(A), we now also get WP tW�(I�P )W = Zt
1WW�WZ2 = Zt

1WZ2 = (PW )tZ2 =

0, that is, we arrive at (ii). In order to prove (iii), observe that R((I � P )t) = N (At) follows

from (2.8) by means of (2.2) and (2.3). But WN (At) � N (P ), so that PW (I � P )t = 0 is

obvious. This completes the proof.

Theorem 2.8. For given A 2 IRn;m and W 2 Pn;n, let P(A j W ) and G(A jW ) be de�ned

as before. Then we have:

(i) If R(A) � R(W ), then GWGt 2 (AtW�A)f1g for each matrix G 2 G(A jW ).

(ii) If R(A) \R(W ) = f0g, then PW = 0 for each projector P 2 P(A jW ).

Proof: Suppose �rst that R(A) � R(W ). Recall that AtW�A is invariant for any choice

of W�; see Theorem 2.3. Let G 2 G(A jW ) be arbitrary but �xed. Then AG 2 P(A jW ). We
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have to show that (AtW�A)(GWGt)(AtW�A) = (AtW�A). Put P := AG. By Theorem 2.7

(iii), PWP t = PW . Because ofR(A) � R(W ) we further haveWW�A = A. TriviallyPA = A.

Hence (AtW�A)(GWGt)(AtW�A) = AtW�PWP tW�A = AtW�PWW�A = AtW�PA =

AtW�A, and the proof of (i) is complete. Claim (ii) follows directly from Theorem 2.7 (i).

This theorem admits the following corollary.

Corollary 2.9. For given A 2 IRn;m and W 2 Pn;n, let P(A jW ) and G(A jW ) be de�ned

as before. In addition, let A be of full column rank. Then we have:

(i) If R(A) � R(W ), then GWGt = (AtW�A)�1, irrespective of the choice of G 2 G(A jW ).

(ii) If R(A)\R(W ) = f0g, then GW = 0 and hence GWGt = 0 for each matrix G 2 G(A jW ).

Proof: We �rst consider the case where R(A) � R(W ). Since A is of full column rank,

N (A) = f0g. Therefore, in virtue of Theorem 2.3 (iii), AtW�A is nonsingular. But then

(AtW�A)f1g = f(AtW�A)�1g, and (i) follows from Theorem 2.8 (i). Next, let R(A)\R(W ) =

f0g. Since rank(A) = m, clearly AGW = 0 i� GW = 0. As a consequence of Theorem 2.8 (ii)

we now get (ii).

Theorem 2.10. For given A 2 IRn;m and W 2 Pn;n, let P(A j W ) and G(A j W ) be

de�ned as before. In addition, let A be of full column rank. Then we have:

(i) GW is invariant for any choice of G 2 G(A jW ).

(ii) GWGt is invariant for any choice of G 2 G(A jW ).

(iii) For each G 2 G(A j W ): GWGt 2 Pm;m, N (GWGt) = AtN (W ), and R(GWGt) = fx j

Ax 2 R(A) \R(W )g.

(iv) For each G 2 G(A jW ), GWGt is nonsingular i� R(A) � R(W ).

(v) For each G 2 G(A jW ), GWGt = 0 i� R(A) \R(W ) = f0g.

Proof: From Theorem 2.7 (i) we get (i) because A is of full column rank. WritingGWGt =

G(GW )t shows that (ii) follows from (i). For proving (iii), let G 2 G(A j W ) be arbitrary but

�xed. Put P := AG. SinceW is nnds, triviallyGWGt 2 Pm;m andN (GWGt) = N (WGt). But

N (WGt) = AtN (WGtAt) = AtN (WP t). In view of (2.1a),N (WP t) = R(PW )?. By Theorem

2.7 (i), R(PW ) = R(A) \ R(W ). Consequently N (WP t) = N (At) + N (W ). Combining

observations now results in N (GWGt) = AtN (W ). Since A is of full column rank, we further

get R(GW ) = fx j Ax 2 R(A) \ R(W )g directly from R(PW ) = R(A) \ R(W ). Observing

that R(GWGt) = R(GW ) completes the proof of (iii). To establish (iv) observe that, in

view of (iii), GWGt is nonsingular i� AtN (W ) = f0g, that is, i� N (W ) � N (At). Since the

latter condition is equivalent to R(A) � R(W ) [note (2.1)]), the desired result emerges. That

R(A) \ R(W ) is a su�cient condition for GWGt = 0 to hold is the result of Corollary 2.9

(ii). Necessity is seen as follows. Let GWGt = 0. Then N (GWGt) = IRm and hence, by (iii),

AtN (W ) = IRm or, equivalently, N (W ) +N (At) = IRn. This condition, however, is equivalent

to R(A) \R(W ) = f0g.

Theorem 2.11. For given A 2 IRn;m and W 2 Pn;n, let G(A j W ) be de�ned as before.

Further let A be of full column rank, and put H := At(W + AAt)�A. Then we have:

(i) GWGt = H�1 � I, irrespective of the choice of G 2 G(A jW ).
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(ii) R(A) � R(W ) i� H�1 � I is nonsingular. In which case

H�1 � (AtW�A)�1 = I: (2:11)

(iii) R(A) \R(W ) = f0g i� H = I.

Proof: That GWGt is invariant for any choice of G 2 G(A j W ) is the statement of

Theorem 2.10 (ii). Because R(A) � R(W +AAt), and since A is of full column rank, it follows

from Theorem 2.3 that H is nonsingular, whence we get H�1At(W +AAt)y 2 G(A jW ) in view

of Theorem 2.4 and Theorem 2.1. Making use of Theorem 2.1 and Theorem 2.3, we now obtain

GWGt = H�1At(W +AAt)yW (W +AAt)yAH�1 = H�1At(W +AAt)y[(W +AAt)�AAt](W +

AAt)yAH�1 = H�1(H �H2)H�1 = H�1 � I, and the proof of (i) is complete. Combining (i)

with Corollary 2.9 (i) and Theorem 2.10 (iv) results in (ii). Finally we get (iii) from (i) and

Theorem 2.10 (v).

3. ICGLS-Problem: General Model

In this section we consider the restricted model Lr [see (1.1)] under the assumption that

R(X) � R(V ): (1:2)

Throughout we further assume that the matrix R is of full row rank. As preannounced, our

aim here is to exhibit how the ICGLS selections for � under this model are related to the GLS

selections for � under the associated unconstrained model Lu [see (1.3)].

It is pertinent to begin this section with characterizing the feasible solutions of the ICGLS

optimization program (1.5).

Theorem 3.1. Let R 2 IRp;m be of rank p and let r 2 IRp. Then b is a solution of Rb � r

i�

Rb = r + � for some � � 0 (3:1)

or, equivalently,

b = R�(r + �) + z for some pair � � 0; z 2 N (R): (3:2)

Since Theorem 3.1 can be established similar to Lemma 3.1 in [29], its proof is omitted. It

should be emphasized that the previous characterizations rely heavily on the assumption that

R is of full row rank. For recall that this rank condition is necessary and su�cient for RR� = I

to hold; see Theorem 2.1 (iii). If, on the other hand, R is not of full row rank, then condition

(3.2), although still necessary, need not be su�cient for b to be a solution of Rb � r. A set of

necessary as well as su�cient conditions in this more general situation consists of (3.2) and

RR�(r + �) = r + �: (3:3)

If R is of full row rank, then condition (3.3) is fortunately automatically satis�ed, so that we

have the possibilty to represent the general feasible solution of (1.5) in the form (3.2), where �

is free to vary in IRp and where z is free to vary in N (R). In context with Theorem 3.1, it is

also worth mentioning that if R is of full row rank, then b satis�es

Rb = r i� b = R�r + z for some vector z 2 N (R): (3:4)
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Note that characterization (3.4) remains true even when R is not of full row rank provided

r 2 R(R); cf. [2].

For convenience, we introduce the matrix

� := XtV �X: (3:5)

Because of R(X) � R(V ) it follows from Theorem 2.3 that � is a nonnegative de�nite and

symmetric matrix, is invariant for any choice of V � 2 V f1g, and satis�es

R(�) = R(Xt) as well as N (�) = N (X): (3:6a-b)

Since V and � are nnds, we further know from Section 2 that

P(X j V ) := fPR(X);VN (Xt)�T j T 2 Rc(X;V )g (3:7)

and

P(Rt j �) := fPR(Rt);�N (R)�U j U 2 Rc(R
t;�)g (3:8)

are well-de�ned classes of (generally oblique) projectors. In the sequel, let XP 2 G(X j V ) and

(RQ)t 2 G(Rt j �) be arbitrary but �xed matrices. Then we have

P := XXP 2 P(X j V ) and Qt := (RQR)t 2 P(Rt j �): (3:9)

De�ne the matrix


 := (RQ)t�RQ: (3:10)

As Rt is of full column rank, it follows from Theorem 2.10 that 
 is not only nnds but in addition

even invariant for any choice of (RQ)t 2 G(Rt j �). On this occasion we mention already here

that

N (
) = RN (X); (3:11)

this identity is a consequence of Theorem 2.10 (iii) by observing (3.6b).

On account of Theorem 2.7 (ii), V P tV �(I � P )V = 0. Trivially PX = X and hence

(I � P )X = 0. In view of R(X) � R(V ) [see (1.2)], we therefore get for each realization

y 2 R(V ):

ky �Xbk2V � = kP (y �Xb) + (I � P )(y �Xb)k2V �

= kP (y �Xb)k2V � + k(I � P )(y �Xb)k2V �

= kPy �Xbk2V � + k(I � P )yk2V �

= kX(XP y � b)k2V� + k(I � P )yk2V �

= kXP y � bk2� + k(I � P )yk2V � : (3:12)

From (3.12) it is seen that the set of ordinary GLS-solutions for � under the unconstrained

model Lu, that is, f�̂u(y)g := argmin
b2IRm ky �Xbk2V � , is representable in the form

f�̂u(y)g = fXP y + PN (X)w(y) j w(y) arbitraryg (3:13)
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(compare [22]); notice (3.6b). In what follows, let �̂u = �̂u(y) denote an arbitrary but �xed GLS

solution for � under model Lu. Put

�̂ = �̂(�̂u) := R�̂u � r: (3:14)

In the decomposition given below observe that according to Theorem 2.7 (iii), Qt�(I �Q) = 0.

Also recall that RQ is a particular g-inverse of R, so that I �RQR is a projector onto N (R). In

addition, notice that RRQ = I; see Theorem 2.1 (iii). By considering only feasible solutions to

(1.5), we can express b alternatively in the form (3.2) where R� can be replaced by RQ. Doing

so, (3.12) can be rewritten step by step as follows:

ky �Xbk2V � = k�̂u � bk2� + k(I � P )yk2V�

= kQ(�̂u � b) + (I � Q)(�̂u � b)k2� + k(I � P )yk2V �

= kQ(�̂u � b)k2� + k(I � Q)(�̂u � b)k2� + k(I � P )yk2V �

= kRQ(R�̂u � Rb)k2� + k(I � RQR)(�̂u � b)k2� + k(I � P )yk2V �

= kR�̂u �Rbk2
 + k(I �RQR)(�̂u � b)k2� + k(I � P )yk2V �

= kR�̂u � r � �k2
 + k(I �RQR)�̂u � zk2� + k(I � P )yk2V �

� k�̂� ~�k2
 + k(I � P )yk2V � ; (3:15)

where ~� = ~�(y) denotes any vector contained in

~M (y) := argmin��0 k�̂� �k2
: (3:16)

Note that 0 is the optimal value of program

minz2N (R) k(I � RQR)�̂u � zk2�: (3:17)

As 
 is nnds, the objective function of the optimization program

min��0 k�̂� �k2
 (3:18)

is convex-quadratic. The feasible region of program (3.18) is the closed convex nonnegative

orthant. (3.18) is thus a very particular convex program. That (3.18) has at least one optimal

solution can now easily be seen by means of the Weierstrass theorem; cf. [4]; see also the proof

of Theorem 3.6. In other words, ~M (y) is nonempty.

It is interesting to mention here that ~M (y) is always invariant for any choice of �̂u 2 f�̂u(y)g.

That the objective function of program (3.18) has this property follows by means of (3.11) and

(3.13). It is evident that ~M (y) inherits this property. Using (3.6b), (3.11) and (3.13), it can be

seen that the program minz2N (R) k(I �RQR)�̂u � zk2� possesses the same property. Evidently

argminz2N (R) k(I�R
QR)�̂u�zk = f(I�RQR)�̂u+PN (R)\N (X)w(y) j w(y) arbitraryg; (3:19)

and it is clear that this set is also invariant for any choice of �̂u.

The following theorem relating the set f�̂u(�)g of GLS-selections under model Lu to the set

f~�(�)g of ICGLS-selections under model Lr is now an easy consequence of all these observations.
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Clearly, instead of minimizing (1.5) subject to fb j Rb � rg we can just as well determine (3.16)

and (3.19); (3.2) does tell us how the optimal solutions of program (1.5) are related to the

optimal solutions of the auxiliary programs (3.18) and (3.17).

Theorem 3.2. Consider model Lr under (1.2), and let R be of full row rank. Further, let

� be de�ned by (3.5), and let �̂u denote an arbitrary but �xed GLS selection for � under model

Lu. Finally, let XP and RQ, respectively, stand for an arbitrary but �xed g-inverse of X and

R with XXP 2 P(X j V ) and (RQR)t 2 P(Rt j �). The complete set of ICGLS selections for

� under model Lr can then be represented as

f~�(�)g = fRQ(r + ~�) + (I �RQR)�̂u + PN (R)\N (X)w(�) j ~� 2 ~M (�); w(�) arbitraryg; (3:20)

where ~M (�) is pointwise de�ned by (3.16). The set of GLS selections for � under model Lu is

given by

f�̂u(�)g = fXP y + PN (X)w(�) j w(�) arbitraryg: (3:21)

In context with Theorem 3.2 it is pertinent to mention that the ECGLS (equality con-

strained GLS) selections for � under the related model

Le := (y; X�; V j R� = r) (3:22)

can be represented similarly.

Theorem 3.3. Consider model Le under (1.2), and let R be of full row rank. Further, let

�, RQ, and �̂u be as in the preceding theorem. The complete set f�̂e(�)g of ECGLS selections

for � under model Le can then be represented as

f�̂e(�)g = fRQr + (I � RQR)�̂u + PN (X)\N (R)w(�) j w(�) arbitraryg: (3:23)

Proof: Using characterization (3.4), this result can be established step by step similar to

the preceding theorem; the required modi�cations are obvious.

We mention that representation (3.23) remains true even when R is not of full row rank pro-

vided r 2 R(R). Combining (3.23) with (3.20) results in the following alternative representation

for f~�(�)g.

Theorem 3.4. Consider model Lr under (1.2), and let R be of full row rank. Further,

let RQ and ~M (�) be as in Theorem 3.2. Finally, let �̂e stand for an arbitrary but �xed ECGLS

selection for � under the associated model Le. Then

f~�(�)g = fRQ~�+ �̂e + PN (X)\N (R)w(�) j ~� 2 ~M(�); w(�) arbitraryg: (3:24)

When glancing at (3.24) one could be tempted to believe that, contrary to (3.20), in this al-

ternative representation it is not necessary to know a GLS selection �̂u. Unfortunately, however,

this is not the case because for determining ~M(�) we still need a selection �̂ = R�̂u � r.

From Theorem 3.2 we single out the following corollary. Observing RRQ = I the claims

are straightforward consequences of (3.20) and (3.24).
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Corollary 3.5. Consider the models Lr, Lu and Le under (1.2), and let R be of full row

rank. Denote the selections for � under the di�erent models as before. Further, let RQ be such

that (RQR)t 2 P(Rt j �), and let ~M (�) be pointwise de�ned according to (3.16). Then we have

R~� � r 2 ~M(�) (3:25)

for each ICGLS selection ~�. In addition we can �nd for each mixed pair of selections, ( ~�; �̂u), a

selection w(�) such that

(I � RQR)( ~� � �̂u) = PN (X)\N (R)w(�): (3:26)

Therefore (I � RQR) ~� = (I � RQR)�̂u, irrespective of the choice of ( ~�; �̂u), i�

N (X) \N (R) = f0g or, equivalently, R(Xt) +R(Rt) = IRm: (3:27)

In which case, (I � RQR) ~� is invariant for any choice of ~�. Analogous results are obtained by

replacing the GLS selections �̂u by ECGLS selections �̂e.

Note that C� is linearly unbiasedly estimable in model Le i� R(C
t) � R(Xt) +R(Rt); cf.

[19], [22], [23]. Condition (3.27) therefore means that all parametric functions of the formC� are

linearly unbiasedly estimable in model Le. It is interesting to mention here that (I�RQR)�̂u =

(I � RQR)�̂e also holds, irrespective of the choice of (�̂u; �̂e), i� N (X) \ N (R) = f0g. In

general, however, we only have (I � RQR)f~�(�)g = (I � RQR)f�̂e(�)g = (I � RQR)f�̂u(�)g;

compare (3.20), (3.24) and (3.22).

Next, let us ask for a necessary and/or su�cient condition under which ~M(�) is a singleton.

The answer is given in our next theorem.

Theorem 3.6. Consider model Lr under (1.2), and let R be of full row rank. Further,

let ~M (�) be pointwise de�ned according to (3.16), where 
 is given by (3.10). The following

conditions are then equivalent:

(i) R(Rt) � R(Xt), this is inclusion (1.7);

(ii) 
 is nonsingular;

(iii) ~M (�) is a singleton.

In which case

R~�(�)� r = ~�(�) (3:28)

holds for each ICGLS selection ~�(�); ~�(�) stands for the unique element of ~M (�).

Proof: Suppose �rst that R(Rt) � R(Xt). Since N (
) = RN (X) [see (3.11)], 
 is

nonsingular i� N (X) � N (R). But this condition is equivalent to R(Rt) � R(Rt), and so we

have (i),(ii). Next, let 
 be nonsingular, and consider program (3.18) for an arbitrary but

�xed realization y 2 R(V ). Theorem 2.10 then tells us that 
 is a positive de�nite matrix. The

objective function of program (3.18) is hence not only convex-quadratic but even strictly convex;

cf. [4]. Also observe that the feasible region of this program is a closed convex set. Programs

with a convex objective function and a convex feasible region are called convex programs. Such

programs have amazing properties. One property is that each local optimal solution is a global
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optimal solution. A further property is that there is at most one optimal solution whenever the

objective function is strictly convex. Since from the lines directly following (3.18) we already

know that (3.18) has at least one optimal solution, it is now clear that ~M (y) is a singleton for

each given y 2 R(V ). But then ~M(�) is a singleton, and the proof of (ii))(iii) is complete. For

proving the converse, let us suppose that ~M (�) is a singleton but 
 is singular. Of course, ~M (�)

can be a singleton only if ~M (y) is a singleton for each choice of y 2 R(V ). Let v 6= 0 be such that


v = 0; the existence of such a vector is guaranteed by the singularity of 
. Further, let XP be

as in (3.21). Since XP is a g-inverse of X, R(XPX) 2 Nc(X), that is, R(XPX)�N (X) = IRm.

In view of (1.2), therefore IRm = R(XPV ) +N (X), whence we get

[
y2R(V )

f�̂u(y)g = IRm

by means of (3.21). Since R is of full row rank, it is now evident that we can �nd a vector

in R(V ), say y0, such that �̂ := R�̂u � r is componentwise positive for some GLS solution

�̂u 2 f�̂u(y0)g. Then trivially �̂ 2 ~M (y0). But in addition we also have �̂ + �v 2 ~M (y0) for

some � 6= 0, a contradiction. This completes the proof.

Remark 3.7. Consider model Lr under (1.2), and let R of full row rank be such that

inclusion (1.7) or, equivalently, N (X) � N (R) is satis�ed. Then we know that the parametric

function R� is linearly unbiasedly estimable under Lu. From the famous (generalized) Gau�-

Markov Theorem (cf. [22]) it then follows that R�̂u, being unique for all GLS selections �̂u, is

the BLUE of R�. So its expectation is R� [see also (3.13)], and it is clear that �̂ = R�̂u � r

is unique and has expectation � := R� � r. It further follows from Theorem 2.8 (i) that the

dispersion ofXP y is a particular �xed g-inverse of �, say ��, where � is de�ned by (3.5). In view

of (3.21) the dispersion of R�̂u � r therefore coincides with R��Rt. It is interesting to remark

that this expression, in view of (1.7) and (3.6a), is even invariant for any choice of �� 2 �f1g;

this follows by means of Theorem 2.3 (i). Moreover, since Rt is of full column rank, R��Rt

is nonsingular, in virtue of Theorem 2.3 (iii). Finally observe that � satis�es the inequality

constraints R� � r i� � � 0. Therefore it is natural to compare model Lr with the transformed

model

Lt := (�̂; �; R��Rt j � � 0): (3:29)

From Corollary 2.9 (i) we know that


 := (RQ)t�RQ = (R��Rt)�1 (3:30)

holds, irrespective of the choice of RQ. Because of (3.10) it is now clear that the set of ICGLS

selections for � under the transformed model Lt coincides with the set ~M (�) introduced earlier.

In other words, when considering model Lr under (1.7), then it turns out that the set ~M (�) is

nothing else but the complete set of ICGLS selections for � in the transformed model Lt. At

this point it should be emphasized once more that (3.25) tells us something about how this set

is related to the set of ICGLS selections for � in the original model Lr. We mention that (3.28)

has already been obtained recently by Firoozi [7]. He used a di�erent approach and considered

only the full rank case, that is, the case where V and X are both of full column rank. Whereas

Firoozi, in the framework of his particular model, was primarily interested in �nding relation
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(3.28), our concern here goes beyond that aim. Note that our projector theoretical approach

detects in addition to (3.25) the more informative relation (3.20) [or (3.32)] that shows how an

ICGLS selection for � in (our more general) model Lr can be constructed from ~� 2 ~M (�) and

�̂u 2 f�̂u(�)g.

The following result is a consequence of (3.20) and Theorem 3.6. It gives a necessary and

su�cient condition for the uniqueness of ICGLS selections.

Theorem 3.8. Consider model Lr under (1.2), and let R be of full row rank. Then f~�(�)g

is a singleton i� X is of full column rank. In which case the ICGLS estimator of � exists.

Theorem 3.6 dealt with model Lr under the additional assumption that R(Rt) � R(Xt) is

satis�ed. Our next theorem is devoted to the other extreme model case where the range space

of Rt has only the origin in common with the range space of Xt.

Theorem 3.9. Consider model Lr under (1.2), and let R be of full row rank. Further,

let ~M (�) be pointwise de�ned according to (3.16), where 
 is given by (3.10). The following

conditions are then equivalent:

(i) R(Rt) \R(Xt) = f0g, this is (1.8);

(ii) 
 = 0;

(iii) ~M (y) = f� j � � 0g for each y 2 R(V ).

In which case we have

f�̂e(�)g � f~�(�)g � f�̂u(�)g; (3:31)

where f�̂u(�)g, f�̂e(�)g, and f~�(�)g are de�ned as before. All inclusions in (3.31) are proper.

Proof: Because R is of full row rank, and since by (3.11) N (
) = RN (X), we get 
 =

0 , N (
) = IRp , RN (X) = IRp , N (X) + N (R) = IRm , R(Xt) \ R(Rt) = f0g.

So we have (i),(ii) [see also Theorem 2.11]. That (ii) implies (iii) is obvious. If (iii) holds,

then necessarily 
� = 0 for each � � 0 [compare also (3.37)]. But his happens only if 
 = 0,

and so we have (ii). Inclusion f�̂e(�)g � f~�(�)g follows directly from (3.20) and (3.21) because

0 2 ~M (�) [see (iii)]. To establish f~�(�)g � f�̂u(�)g, rewrite the general ICGLS selection for �

given in (3.20) as follows:

~�(�) = �̂u �RQ(�̂ � ~�) + PN (R)\N (X)w(�); ~� 2 ~M(�); w(�) arbitrary; (3:32)

where �̂u is an arbitrary but �xed GLS selection for � under Lu and �̂ := R�̂u � r. Notice that

(1.8) is equivalent to �N (R) = R(Xt) because of (3.6). Since Rt(RQ)t 2 P(Rt j �) [see (3.9)

and (3.8)], clearly �N (R) = R(Xt) i� Rt(RQ)tXt = 0. But the latter condition is equivalent to

(RQ)tXt = 0 as Rt is of full column rank. Therefore XRQ = 0 or, equivalently,R(RQ) � N (X).

With this in mind, the desired inclusion follows by comparing (3.32) with (3.21).

In the previous proof we have actually deduced a little bit more. Namely, that (1.8) is not

only a su�cient but also a necessary condition for f~�(�)g � f�̂u(�)g or f�̂e(�)g � f�̂u(�)g to

hold. This means that whenever linear inequality constraints (or linear equality constraints) are

arti�cially introduced to Lu for the sole purpose of reducing the set of GLS selections f�̂u(�)g,

then it is indeed essential that the restrictor matrix R is weakly complementary to the regressor

matrix X; compare Section 1.
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Next we consider model Lr under (1.2), and we assume that R is of full row rank. Procedure

3.10 for computing an ICGLS solution for � under model Lr from a GLS solution for � under

model Lu [given a realization y 2 R(V )] follows directly from representation (3.32). In this

context recall that XP y is a particular GLS solution for � under model Lu; see (3.21). It is also

pertinent to mention here that we know from Theorem 2.5 and Theorem 2.4, respectively, that

XP and RQ can be chosen as

XP = ��XtV � and RQ = (� +RtR)�Rt
�
R(� +RtR)�Rt

��1
;

where � = XtV �X. Needless to say that Moore-Penrose inversions can be used in these

expressions. Finally notice that in our general model framework it follows from Theorem 2.11

that 
 being de�ned in (3.10) can be written as


 =
�
R(� + RtR)�Rt

��1
� I; (3:33)

that is, in terms of the model matrices X, V and R. With all these observations in mind,

Procedure 3.10 will be easy to understand.

Procedure 3.10 (Method for computing an ICGLS solution for � in model Lr under (1.2)).

STEP 1. Compute an ordinary GLS solution �̂u := �̂u(y) in the associated unconstrained model

Lu. Compute �̂ := R�̂u � r. If �̂ � 0, then

�̂u(y) 2 f~�(y)g:

Else, GOTO STEP 2.

STEP 2. Compute � = XtV �X and 
 = [R(� +RtR)�Rt]
�1
� I. Determine any vector ~� such

that

~� 2 ~M (y) := argmin��0 k�̂� �k2
:

Compute RQ = (� +RtR)�Rt [R(� +RtR)�Rt]
�1
. Then

�̂u(y) �RQ(�̂ � ~�) 2 f~�(y)g:

Evidently the crucial point when using this procedure is STEP 2 where we have to determine

an optimal solution of the convex-quadratic auxiliary program (3.18). Of course, when 
 is

nonsingular, which according to Theorem 3.6 is the case i� R(Rt) � R(Xt), then we can apply

Procedure 4.1 in [29] for determining the unique optimal solution of (3.18). In order to generalize

that procedure to situations where 
 is singular, it is pertinent to proceed to characterizing the

optimal solutions of program (3.18). To this end we need some further notation as well as a

theorem representing the complete set of g-inverses for a particular block partitioned matrix.

For given 
 2 Pp;p and � � f1; 2; � � �; pg, we de�ne the matix 
� according to

(
�)i :=

�

i if i 62 �;
�ei if i 2 �;

where (
�)i, 
i, and ei denote, respectively, the ith column vector of 
�, the ith column vector

of 
, and the ith standard unit vector of IRp.
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Theorem 3.11. Consider the following block-partitioned matrix

A =

�
�I B

0 C

�
;

where C and B are such that R(Bt) � R(Ct) or, equivalently, N (C) � N (B) is satis�ed. Then

G 2 Af1g i�

G =

�
�I BC� + U (I �CC�)

(I � C�C)Z C�

�

for some C� 2 Cf1g and for some conformable matrices U and Z.

Proof: Let

G =

�
E F

M N

�

be such that AGA and EIE do exist. Using N (C) � N (B) or, equivalently, B(I �C�C) = 0,

it is not di�cult to see that AGA = A does hold i� the subblocks in G are as claimed.

Theorem 3.12. Consider the convex-quadratic program min��0 k�̂��k
2

, where 
 2 P

p;p

and �̂ 2 IRp are given.

(i) If 
�̂ � 0, then ~� is an optimal solution i� ~� � 0 and ~� 2 N (
). Note that 0 is a particular

optimal solution in this case.

(ii) If 
�̂ 6� 0, then ~� is an optimal solution i� we can �nd a subset � of f1; 2; � � �; pg and a

particular g-inverse of 
�, say G, such that

G
�̂ � 0 (3:34)

and

~�i =
n
(G
�̂)i if i 62 �,
0 if i 2 �.

(3:35)

Proof: From the literature we know (see Lemma 2.2 in [3] or Theorem 1.7.1 in [18]; compare

also [22]) that ~� is an optimal solution of our convex-quadratic program i�

~� � 0; 8� � 0 : (�̂ � ~�)t
(~�� �) � 0: (3:36a-b)

By substituting 0 as well as 2~� for � in (3.36b), it is seen that the conditions (3.36) are equivalent

to the following set of conditions:

~� � 0; 
(�̂ � ~�) � 0; ~�t
(�̂� ~�) = 0: (3:37a-c)

It therefore su�ces to show that the claimed conditions are equivalent to these conditions.

First, let 
�̂ � 0. Condition (3.37c) can be written as ~�t
�̂ = ~�t
~�. On the one hand,

clearly ~�t
~� � 0 as 
 is nnds. On the other hand, ~�t
�̂ � 0 for each ~� � 0 as 
�̂ � 0.

Consequently ~�t
~� = 0 or, equivalently, 
~� = 0, and claim (i) is obvious.

Next, let us consider the alternative case. That is, let � := 
�̂ 6� 0. We prove the `only if'

part �rst. For that purpose, let ~� be an optimal solution. We then know that the conditions
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(3.37) are all satis�ed for ~�. In order to keep notation simple, let us further assume that ~� can

be partitioned as

~� =

�
~�1
~�2

�
;

where ~�1 = 0 and ~�2 is componentwise positive. This can be assumed without loss of generality

because by means of a suitable permutation it is always possible to arrive at such a partitioning.

Notice that we interpret ~�2 as absent if ~� = 0. Let


 =

�

11 
12


21 
22

�
; �̂ =

�
�̂1
�̂2

�
and � =

�
�1
�2

�

be all partitioned according to ~�. From (3.37) we obtain

�1 � 
12~�2 � 0 and �2 � 
22~�2 = 0: (3:38a-b)

We next show that �2 6= 0. For proving this, suppose �2 = 0. Then 
22~�2 = 0, in view of

(3.38b). Since 
 is nnds, N (
22) � N (
12). Therefore 
12~�2 = 0. Consequently ~� 2 N (
).

But then in view of (3.37b) � � 0, a contradiction. So we have �2 6= 0. From Section 2 [observe

Theorem 2.1 and (2.4)] it now follows that there exists a g-inverse of 
22, say G, such that

~�2 = G�2: (3:39)

As usual, let [
=
22] := 
11 � 
12

�
22
21 denote the (generalized) Schur complement of the

block 
22 in 
 (cf. [6]); notice that this Schur complement is invariant for any choice of 
�22.

Inserting expression (3.39) for ~�2 in (3.38a) readily results in

[
=
22]�̂1 � 0:

Letting � be the set of all subscripts of components of ~�1, clearly


� =

�
�I 
12

0 
22

�
:

By Theorem 3.11 we know that the matrix

�
�I 
12


�
22 + U (I �
22


�
22)

(I �
�22
22)Z 
�22

�
; (3:40)

where U; Z, and 
�22 can be chosen arbitrarily, represents the general g-inverse of 
�. By

varying (
�)
� in 
�f1g, (
�)

�
�̂ hence attains any vector of the form

�
�[
=
22]�̂1

(I � 
�22
22)Z�1 +
�22�2

�
; 
�22 and Z both arbitrary: (3:41)

Comparing (3.41) with (3.39) shows that there is a g-inverse (
�)
� (choose 
�22 = G and Z = 0)

such that

(
�)
�
�̂ =

�
�[
=
22]�̂1

~�2

�
:
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Combining observations now completes the proof of the `only if' part. To prove the converse,

let ~� be such that (3.34) and (3.35) are satis�ed for some � � f1; 2; � � �; pg and some associated

particular g-inverse of 
�, say G. Without loss of generality, let us again assume that � consists

of leading and adjacent elements from f1; 2; � � � ; pg. Moreover, as above let us partition ~�, �̂ and


, here and now according to �. Finally, let K 2 
22f1g and Z denote those matrices which,

according to (3.40), belong to that particular g-inverse G. By hypothesis, clearly ~�1 = 0 and

~�2 � 0. Observing (3.41), we further get [
=
22]�̂1 � 0 and 0 � ~�2 = (I �K
22)Z�1 +K�2,

where �1 and �2 are de�ned as in the `only if' part. By arguments already used, it is now not

di�cult to see that


(�̂ � ~�) =

�
[
=
22]�̂1

0

�
� 0 (3:42)

and ~�t
(�̂ � ~�) = 0. Since the conditions (3.37) are hence all satis�ed, ~� indeed turns out to

be an optimal solution of our convex-quadratic program. This completes the proof.

At this point it should be stressed that we did not make use of 
�̂ 6� 0 when proving the

`if part' of Theorem 3.12 (ii). Clearly, 
�̂ � 0 i� �I
�̂ � 0. Choosing � = f1; 2; � � � ; pg in such

a case trivially leads to (
�)
�1
�̂ = �I
�̂ � 0. This in turn shows that the criterion under

statement (ii) [that is, (3.34) along with (3.35)] is even then able to �nd a particular optimal

solution of program min��0 k�̂ � �k2
, namely 0. For later use it is pertinent to mention here

that 0 is an optimal solution i� 
�̂ � 0; this is an easy consequence of the optimality conditions

(3.37). Theorem 3.12 indicates the following procedure for determining an optimal solution of

this program.

Procedure 3.13.

STEP 1. Compute 
�̂. If 
�̂ � 0, then ~� = 0 is an optimal solution. Else, choose a subset

� � f1; 2; � � �; pg and GOTO STEP 2.

STEP 2. Check the nonsingularity of 
�. If 
� is nonsingular, then GOTO STEP 3. Else,

GOTO STEP 4.

STEP 3. Compute (
�)
�1
�̂. If (
�)

�1
�̂ 6� 0, then GOTO STEP 4. Else, compute ~�

according to

~�i =

�
((
�)

�1
�̂)i if i 62 �;
0 if i 2 �;

~� is an optimal solution of program min��0 k�̂� �k2
.

STEP 4. Modify � and GOTO STEP 2.

Proof of Procedure 3.13: We prove that this procedure does �nd an optimal solution

after a �nite number of di�erent steps. As we know from the lines introducing this method,

~� = 0 is an optimal solution whenever 
�̂ � 0. In which case we even know that this particular

optimal solution can be detected by the criterion in STEP 3. Next, consider the alternative

case, that is, let 
�̂ 6� 0. In view of the preceding theorem, it su�ces to show that we can �nd

an optimal solution which ful�lls the criterion in STEP 3. To this end, let ~� be an arbitrary

but �xed optimal solution. Note that we can assume that 0 � ~� 6= 0, for otherwise we would

be back in the case where 
�̂ � 0. Without loss of generality we can further adopt the same

conventions and assumptions as in the proof of the `only if' part of Theorem 3.12 (ii). Then we
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have: ~�1 = 0, ~�2 is componentwise positive, � consists of the subscripts in vector ~�1, G
�̂ � 0

for some g-inverse G of 
�, and ~� is related to G
�̂ according to (3.35). Note that 
� is

nonsingular i� 
22 is nonsingular; in which case the proof is complete. If 
22 is singular, then

we construct a di�erent optimal solution, say ��, which possesses fewer positive entries than ~�.

For that purpose, choose any vector 0 6= v2 2 N (
22). Since ~�2 is componentwise positive, it is

possible to �nd a scalar � 6= 0 such that ~�2+�v2 is componentwise nonnegative but has at least

one zero entry. Bordering v2 by a zero vector of appropriate size results in v = (0t; vt2)
t 2 IRp.

Put �� := ~� + �v. That �� is a feasible solution is obvious. But it is also an optimal solution;

for it follows from N (
22) � N (
12) that the objective function attains the same (optimal)

value at ~� and at ��. Clearly, the proof is now complete when either �� = 0 or �
22 (by which we

denote the principal submatrix of 
 that corresponds to the positive entries of ��) is nonsingular.

Otherwise, we proceed with �� as above with ~�. Doing this repeatedly results in a sequence of

di�erent optimal solutions. It is clear that after a �nite number of iterations we must arrive at an

optimal solution which can be detected by our procedure. This happens because by construction

the number of positive entries in that sequence always goes strictly down.

Combining the observations gained in the preceding proof with Theorem 3.12 even results

in the following representation for the set of optimal solutions of program min��0 k�̂� �k2
.

Theorem 3.14. For given 
 2 IRp;p and �̂ 2 IRp, consider program min��0 k�̂� �k2
. Let

f~�1; ~�2; � � � ; ~�kg consist of all those feasible solution vectors ~� for which (3.34) and (3.35) hold

true for some nonsingular G. Then

argmin��0 k�̂� �k2
 = P + K;

where K := f� � 0 j 
� = 0g and P denotes the convex hull of f~�1; ~�2; � � � ; ~�kg.

From the proof of Procedure 3.13 we single out the following interesting remark concerning

Procedure 3.10 and our original ICGLS problem.

Remark 3.15. Consider Procedure 3.10. Observe that 
�̂, in contrast to �̂ := R�̂u � r,

is always invariant for any choice of �̂u 2 f�̂u(y)g. This follows from representation (3.21) in

view of N (
) = RN (X) [see (3.11)]. Recall that we have a similar result for �̂ i� inclusion (1.7)

holds true. As we have already seen, 0 2 ~M(y) i� 
�̂ � 0. In which case, in accordance with

Theorem 3.14, ~M (y) = f� � 0 j 
� = 0g =: K, showing that ~M(y) is a singleton i� K = f0g.

Nevertheless, if (1.7) is not satis�ed, then there do exist, even when K = f0g, realizations

y 2 R(V ) for which ~M (y) is not a singleton. For recognize carefully that, according to Theorem

3.6, ~M (�) is a singleton i� inclusion (1.7) holds true.

4. ICGLS-Problem: Special Model

In this section, we consider model Lr under (1.2) and (1.7). As in Section 3, it is further

assumed that R is of full row rank. Let � be de�ned by (3.5), that is, let � = XtV �X. From

Theorem 3.6 we then know that 
 := (RQ)t�RQ is nonsingular and ~M (�) is a singleton. We

denote the unique element of ~M (�) by ~�(�). Representation (3.20) for the set of ICGLS selections

for � obviously reduces to

f~�(�)g = fRQ(r + ~�) + (I �RQR)�̂u + PN (X)w(�) j w(�) arbitraryg
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or, equivalently,

f~�(�)g = f�̂u � RQ(�̂� ~�) + PN (X)w(�) j w(�) arbitraryg;

where �̂u stands for an arbitrary but �xed GLS selection for � under model Lu and where

�̂ := R�̂u � r. Recall that XP y with XP = ��XtV � can be chosen as �̂u. By means of

Theorem 2.11 and (3.33) [compare also (3.30) in Remark 3.7] it is seen that 
 can be written as


 = (R��Rt)�1:

Because of (3.6) it follows from Theorem 2.5 that RQ can be chosen as

RQ = ��Rt
: (4:1)

By combining Procedure 3.9 with Procedure 3.13, it is now seen that for given y 2 R(V )

the complete set of ICGLS solutions for � can be determined by the following procedure.

Procedure 4.1.

STEP 1. Compute �̂u = ��XtV �y, �̂ = R�̂u � r, 
 = (R��Rt)�1 and RQ = ��Rt
. Choose

a subset � of the set f1; 2; � � �; pg.

STEP 2. Compute (
�)
�1
�̂.

STEP 3. If (
�)
�1
�̂ � 0, GOTO STEP 4. Else, modify � and GOTO STEP 2.

STEP 4. Set up ~� according to

(~�)i =

��
(
�)

�1
�̂
�
i

if i 62 �,
0 if i 2 �.

(4:2)

The set of ICGLS solutions for � is then given by

f~�(y)g = f�̂u � RQ(�̂� ~�) + PN (X)w j w 2 IRmg: (4:3)

After a �nite number of di�erent steps this method will �nd the complete set of ICGLS

solutions. It should be mentioned that ~� = 0 i� 
�̂ � 0 [compare Remark 3.15]. Moreover,

by comparing (4.3) with (3.21), it is seen that f~�(y)g = f�̂u(y)g i� �̂ � 0, where according to

our conventions the complete set of GLS solutions for � under Lu (given y) is again denoted by

f�̂u(y)g.

Next let us assume, without loss of generality, that � in STEP 4 consists of leading and

adjacent elements from f1; 2; � � �; pg. The vector ~� in STEP 4 can then be partitioned as follows

~� =

�
~�1
~�2

�
;

where the set of subscripts in ~�1 coincides with �. Of course, ~�1 = 0. Let

�̂ =

�
�̂1
�̂2

�
; 
 =

�

11 
12


21 
22

�
; R =

�
R1

R2

�
; r =

�
r1
r2

�
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be all partitioned according to ~�. We then know from (3.42) that


(�̂ � ~�) =

�
[
=
22]�̂1

0

�
;

where [
=
22] stands for the Schur complement of the block 
22 in 
. From the well-known

Schur idendity for partitioned positive de�nite matrices (cf. [15, p. 45]; see also Theorem 1.23

in [6]) it follows that

[
=
22] =
�
R1�

�Rt
1

��1
:

For RQ = ��Rt
 [see (4.1)], we hence get

RQ(�̂� ~�) = R
Q
1 �̂1;

where RQ
1 := ��Rt

1 (R1�
�Rt

1)
�1
. Evidently (RQ

1 )
t 2 G(Rt

1 j �), that is, (R
Q
1 R1)

t 2 P(Rt
1 j �).

But now it is also clear that f~�(y)g coincides for that realization y with the complete set of

ECGLS solutions for � under model (y; X�; V j R1� = r1). This observation proves Theorem

4.2 given below. In the theorem some further notation is used. For given A 2 IRp;q and

� � f1; 2; � � �; pg, it is convenient to write Ar� for the submatrix of A that contains the ith row

vector of A if i 2 �. For given y 2 R(V ), the set of all ECGLS solutions for � under model

L� := (y; X�; V j Rr�� = rr�)

is denoted by f�̂�(y)g. If � = ;, we interpret Ar� as absent.

Theorem 4.2. Consider model Lr under (1.2) and (1.7), and let R be of full row rank.

Moreover, for given y 2 R(V ), let ~� be determined by Procedure 4.1, and let � be a subset of

f1; 2; � � � ; pg being associated with ~� according to (4.2) in STEP 4. Then

f~�(y)g = f�̂�(y)g;

and the general ICGLS solution can be represented as follows

~�(y) = �̂u � ��(Rr�)
t
�
Rr��

�(Rr�)
t
��1

(Rr��̂u � rr�) + PN (X)w; (4:4)

where w is arbitrary, � is de�ned as before, and �̂u, standing for an arbitrary but �xed GLS

solution under Lu, can especially be chosen as �̂u = ��XtV �y.

Representation (4.4) was established in [29, p.385] for the `full rank' model Lr (that is,

model Lr with X and V both of full column rank). Notice that the ICGLS estimator of � does

exist in such a model; see Theorem 3.8. We mention that an alternative method for determining

this estimator is discussed in [29]. Comparing both procedures it turns out that Procedure 4.1

is easier to follow and to compute. One reason is that an explicitly known basis for the null

space of R is not required in the above procedure. A further reason is that the matrices we have

to g-invert are generally smaller in size than in Procedure 3.3 in [29].

We now conclude this paper with stating two simple versions of Procedure 4.1 in case we

have only one restriction (that is, p = 1) or the restrictions are such that 
 is a positive diagonal
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matrix. If p = 1, then the ICGLS solutions for � can be obtained according to the following

procedure.

Procedure 4.3 (Two-step procedure).

STEP 1. Compute a GLS solution for � under Lu, for instance �̂u = ��XtV �y, where � =

XtV �X. If R�̂u � r, then f~�(y)g = f�̂u+ PN (X)w j w 2 IRmg. Else, GOTO STEP 2.

STEP 2. Compute RQ = ��Rt(R��Rt)�1. The set of ICGLS solutions coincides with the set

of ECGLS solutions under Le, that is,

f~�(y)g = fRQr + (I � RQR)�̂u + PN (X)w j w 2 IRmg:

If X is of full column rank, then the estimator obtained by this method is often called the

two-step estimator (see, e.g, [29] and [12]). Procedure 4.3 is an extension of Procedure 5.1 in

[29]. This procedure is readily obtained from Procedure 4.1 by observing Theorem 4.2 as well

as the representations (3.21) and (3.23) in Section 3.

The following extended two-step procedure is a direct consequence of Procedure 4.1 and

holds true for each y 2 R(V ) whenever 
 = (R��Rt)�1 is a (positive) diagonal matrix. We

mention that Procedure 5.2 in [29] can be reobtained as special case.

Procedure 4.4 (Extended two-step procedure).

STEP 1. Compute a GLS solution for � under Lu, for instance �̂u = ��XtV �y, where � =

XtV �X. If R�̂u � r, then f~�(y)g = f�̂u+ PN (X)w j w 2 IRmg. Else, GOTO STEP 2.

STEP 2. Let � := fi j (R�̂u � r)i < 0g. Compute (Rr�)
Q := ��(Rr�)

t [Rr��
�(Rr�)

t]
�1
.

Then

f~�(y)g = f(Rr�)
Qrr� +

�
I � (Rr�)

QRr�

�
�̂u + PN (X)w j w 2 IRmg:

The authors would like to thank a referee for his comments on this paper.
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