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This paper deals with the general partitioned linear regression model where the regressor matrix

X = (X1 X2 ) may be de�cient in column rank, the dispersion matrix V is possibly singular,
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the set of GLS selections for �2 under the original full model. The results obtained in [2] and [1]

for the unrestricted standard (full rank) regression model are reobtained as special cases.

1. Introduction

Let IRn, IRn;m, and Pn;n denote the set of n-dimensional real column vectors, the set of

n�m real matrices, and the set of real nonnegative de�nite (nnd) and symmetric n � n matrices,

respectively. Given A 2 IRn;m, let At, Ay, R(A), N (A), and rank(A) denote the transpose, the

Moore-Penrose inverse, the range space (or column space), the null space, and the rank, respectively,

of A. In addition, let A� denote an arbitrary g-inverse of A satisfying AA�A = A; denote the set

of all g-inverses of A by fA�g. Further, let I and 0, respectively, stand for the identity and zero

matrix of whatever size is appropriate to the context.
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Consider the Gau�-Markov model

L(R) := (y; X1�1 +X2�2; V j � 2 R)

in which y is an observable random vector with expectation X1�1 + X2�2 and dispersion V ; the

vector � := ( �t1 �t2 )
t of unknown regression coe�cients satis�es the a priori restriction � 2 R; R

is of one of the following cases:

� R = Re := f� j R� = rg (equality constrained case),

� R = Ri := f� j R� � rg (inequality constrained case),

� R = Ru := IRm, m := m1 +m2 (unconstrained case);

and the model matrices X1 (n �m1), X2 (n � m2), V , R (p � m), r 2 IRp are �xed and known.

There are no rank assumptions on X := (X1 X2 ) and V . However, for R = (R1 R2 ) being

partitioned according to X = (X1 X2 ) we assume throughout that R1 = 0 and rank(R) = p. In

addition, we require that the conditions

R(X) � R(V ) (1:1)

and

R(X1) \R(X2) = f0g (1:2)

are always satis�ed.

For each a 2 fe; i; ug: let La briey denote the model L(Ra). Note that, under the assumption

(1.1),

y 2 R(V ) (almost surely), (1:3)

irrespective of under which of the three models y is observed. Due to invariance (cf. Theorem 2.3

in [4]), an arbitrary g-inverse V � of V can be used to de�ne a norm

kxkV� := (xtV �x)
1

2

on R(V ). The mathematical programming problem

minimize ky �Xbk2V � subject to b 2 Ra (1:4)

is hence well de�ned for each realization y 2 R(V ). Any optimal solution to this convex-quadratic

optimization program, that is, any vector from

argminb2Ra

ky �Xbk2V � (1:5)

is called a GLS solution (for �) under model La. Although (1.4) possesses an optimal solution for

each y 2 R(V ), (1.5) need not be a singleton. In which case there do exist many di�erent functions

f with f(y) representing a GLS solution for each y 2 R(V ). As in [4] we call any such function a

GLS selection for � under La; notice that it seems reasonable to reserve the term `GLS estimator'

for exactly those situations where there does exist only one GLS selection on R(V ). The set of all

GLS selections for � under model La will be denoted by ~�(La).
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Next, let M1 := I � X1X
y
1 . Observe that M1 coincides with the orthogonal projector (with

respect to the standard inner product) onto N (Xt
1), that is, M1 = PN (Xt

1
); cf. Section 2 in [4].

Hence, in particular, M1X1 = 0, and for each a 2 fe; i; ug it is clear that model

Ma := (M1y; M1X2�2; M1VM1 j � 2 Ra)

can be obtained from model La by premultiplying y by M1. Besides these correctly transformed

models Ma, a 2 fe; i; ug, the reduced models

Na := (M1y; M1X2�2; V j � 2 Ra); a 2 fe; i; ug;

are also of interest to us in this paper. Unlike Ma in Na the dispersion of M1y is de�ned to be V .

For each a 2 fe; i; ug: let ~�2(Ma) and ~�2(Na) stand for the set of all GLS selections for �2 under

Ma and under Na, respectively.

For convenience, we further introduce

J1 :=

�
I

0

�
and J2 :=

�
0
I

�

such that X1 = XJ1 and X2 = XJ2. For each a 2 fe; i; ug, we de�ne ~�2(La) := J t2
~�(La); that is,

~�2(La) denotes the set of all GLS selections for �2 under the full model La.

This paper is organized as follows. The main results are established in Section 3. There we

prove that for each a 2 fe; i; ug we have ~�2(La) = ~�2(Ma). In addition, we show that ~�2(La) =
~�2(Na) holds if VR(X1) � R(X1) or, equivalently, VN (Xt

1) � N (Xt
1) is satis�ed. Recently (see

[4]) we have derived some interesting representations relating the GLS selections of an equality

or inequality constrained model to the GLS selections of the associated unconstrained model. In

Section 2, some of these results, playing a key role in Section 3, are restated in the framework of

our particular models.

2. Preliminary Results

For the sake of clarity we begin this section with quoting the following known result; see

Theorem 2.4 and Theorem 2.10 (ii) in [4].

Theorem 2.1. For given A 2 IRn;m and W 2 Pn;n, let G(A j W ) denote the set of all those

matrices G 2 IRm;n which satisfy

G 2 fA�g and WN (At) � N (AG): (2:1)

Then G(A j W ) is nonempty. Moreover, if A is of full column rank, then GWGt is nnd and invariant

for any choice of G 2 G(A jW ).

Since R(X) � R(V ) [see (1.1)], Theorem 2.3 in [4] tells us that

�L := XtV �X (2:2)

is nnd as well as invariant for any choice of V �. Consider the restrictor matrix R = ( 0 R2 ) from

Section 1. Because �L 2 Pm;m , and since R is assumed to be of full row rank, it follows from
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Theorem 2.1 that (RQ)t�LR
Q is nnd and invariant for any choice of (RQ)t 2 G(Rt j �L); call this

unique matrix 
L. Likewise it can be seen that

�M := (M1X2)
t(M1VM1)

�(M1X2) 2 P
m2;m2 (2:3)

and

�N := (M1X2)
tV �(M1X2) 2 P

m2;m2 ; (2:4)

are, respectively, invariant for any choice of (M1VM1)
� and V �. In other words, �M and �N are

also well and uniquely de�ned nnd matrices. Since R2 is of full row rank and as �M is nnd, it again

follows from Theorem 2.1 that (RQ
2 )

t�MR
Q
2 is nnd and invariant for any choice of (RQ

2 )
t 2 G(Rt

2 j

�M); call this matrix 
M. And �nally, on similar lines we obtain that (RQ
2 )

t�NR
Q
2 , henceforth

denoted by 
N , is nnd and invariant for any choice of (RQ
2 )

t 2 G(Rt
2 j �N ).

Next, let A 2 fL;M;Ng. Choose any selection �̂2 2 ~�2(Au), and de�ne �̂A := R2�̂2 � r. For

each realization y 2 R(V ) (that is, for each realization �̂A) it then follows from [4; see the lines

around (3.18)] that

~MA(y) := argmin��0 k�̂A � �k2
A (2:5)

is nonempty. Let ~MA be pointwise de�ned according to (2.5). It is pertinent to mention here that
~MA is invariant for any choice of �̂2. This happens although �̂A, in general, does not share this

property with ~MA; for more details, we refer to [4].

As announced in Section 1 we next state, for each a 2 fe; i; ug, representations for ~�(La),
~�2(Ma) and ~�2(Na). All these representations are readily obtained as special cases from Theorem

3.2, Theorem 3.3 and Theorem 3.4 in [4]; observe that (1.2) is equivalent to N (M1X2) = N (X2).

Theorem 2.2. Consider Li, Le, and Lu. Let �̂L be an arbitrary but �xed GLS selection for

� under model Lu, and let �L be de�ned as above. If XL and (RQ)t denote arbitrary but �xed

matrices from G(X j V ) and G(Rt j �L), respectively, then we have

~�(Li) = fRQ(r + ~�) + (I � RQR)�̂L + PN (X)\N (R)w j ~� 2 ~ML; w arbitraryg; (2:6)

~�(Le) = fRQr + (I � RQR)�̂L + PN (X)\N (R)w j w arbitraryg; (2:7)

~�(Lu) = fXLy + PN (X)w j w arbitraryg; (2:8)

where ~ML is pointwise de�ned according to (2.5), and where PN (X), for instance, denotes as usual

the orthogonal projector onto N (X) [along R(Xt)].

Theorem 2.3. Consider Mi,Me, andMu. Let �̂2;M be an arbitrary but �xed GLS selection

for �2 under modelMu, and let �M be de�ned as above. If (M1X2)
M and (RQ

2 )
t denote arbitrary

but �xed matrices from G(M1X2 jM1VM1) and G(R
t
2 j �M), respectively, then we have

~�2(Mi) = fRQ
2 (r + ~�) + (I � R

Q
2 R2)�̂2;M + PN (X2)\N (R2 )w2 j ~� 2 ~MM; w2 arbitraryg; (2:9)

~�2(Me) = fRQ
2 r + (I � R

Q
2 R2)�̂2;M + PN (X2)\N (R2 )w2 j w2 arbitraryg; (2:10)

~�2(Mu) = f(M1X2)
MM1y + PN (X2)w2 j w2 arbitraryg; (2:11)

where ~MM is pointwise de�ned according to (2.5).
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Theorem 2.4. Consider Ni, Ne, and Nu. Let �̂2;N be an arbitrary but �xed GLS selection

for �2 under Nu, and let �N be de�ned as above. If (M1X2)
N and (RQ

2 )
t denote arbitrary but

�xed matrices from G(M1X2 j V ) and G(R
t
2 j �N ), respectively, then we have

~�2(Ni) = fRQ
2 (r + ~�) + (I �R

Q
2 R2)�̂2;N + PN (X2)\N (R2)w2 j ~� 2 ~MN ; w2 arbitraryg;(2:12)

~�2(Ne) = fRQ
2 r + (I �R

Q
2 R2)�̂2;N + PN (X2)\N (R2)w2 j w2 arbitraryg; (2:13)

~�2(Nu) = f(M1X2)
NM1y + PN (X2)w2 j w2 arbitraryg; (2:14)

where ~MN is pointwise de�ned according to (2.5).

3. Main Results

We formulate our main theorem as follows.

Theorem 3.1. For the linear models introduced in Section 1 we have:

(i) ~�2(La) = ~�2(Ma) for each a 2 fi; e; ug.

(ii) If VR(X1) � R(X1), then ~�2(La) = ~�2(Na) for each a 2 fi; e; ug.

For proving this theorem we need some further auxiliary results.

Theorem 3.2. Let (1.2) be satis�ed for the block partitioned matrixX = (X1 X2 ) 2 IRn;m,

and let V 2 Pn;n. Moreover, let M1, J1, and J2 be all de�ned as before. If XL 2 G(X j V ), then

J t2X
L 2 G(M1X2 j M1V M1). In addition, X2J

t
2X

LX1 = 0 or, equivalently, J t2X
L(I �M1)z 2

N (X2) for each z 2 IRn.

Proof. Let XL 2 G(X j V ). For i = 1; 2, put XLi := J tiX
L. Then

XL =

�
XL1
XL2

�
:

By de�nition of G(X j V ), XXLX = X and VN (Xt) � N (XXL). In view of (1.2), clearly

XXLX1 = X1 and XXLX2 = X2 i�

XiX
L
i Xj =

�
Xi if i = j

0 if i 6= j,
(3:1)

for all i; j 2 f1; 2g. Therefore X2X
L
2 M1 = X2X

L
2 or, equivalently,X2X

L
2 (I�M1) = 0. This in turn

implies M1X2X
L
2 M1X2 = M1X2X

L
2 X2 = M1X2 so that we also have XL2 2 f(M1X2)

�g. It thus

remains to show that M1V M1N (Xt
2M1) � N (M1X2X

L
2 ). Of course, V M1N (Xt

2M1) = VN (Xt);

for recall that M1 represents the orthogonal projector onto N (Xt
1) along R(X1). From (1.2) it

further follows that

N (XXL) = N (X1X
L
1 ) \N (X2X

L
2 ): (3:2)

But then

M1X2X
L
2 (M1V M1)N (Xt

2M1) =M1X2X
L
2 VN (Xt) = f0g;

since VN (Xt) � N (XXL) and since X2X
L
2 M1 = X2X

L
2 . This completes the proof.

Theorem 3.3. Let V 2 Pn;n, and let (1.1) and (1.2) be satis�ed for the block partitioned

matrix X = (X1 X2 ) 2 IRn;m. Further, let M1, J1, J2, �L and �M be all de�ned as before. For

5



convenience, put �ij := J ti�LJj, i; j 2 f1; 2g. As usual, let [�L=�11] denote the (generalized) Schur

complement of �11 in �L, that is, let [�L=�11] = �22��21�
�
11�12. Then [�L=�11] = �M. Moreover,

J t2�
�
LJ2 2 f[�L=�11]

�g, irrespective of ��L . Hence, in particular, J t2�
�
LJ2 2 f�

�
Mg.

Proof. First notice that (1.1) holds i� for i = 1; 2 we have R(Xi) � R(V ) or, equivalently,

N (V ) � N (Xt
i ). Next observe that V �V is a projector along N (V ); cf. Section 2 in [4]. Conse-

quently, Xt
iV

�V = Xt
i , for i = 1; 2. Since R(X1) � R(V ), (2.6) in [4] gives us

R(V ) = R(X1)� VN (Xt
1)

with� indicating direct sum. In view ofR(X2) � R(V ), it should now be clear that there (uniquely)

exist two matrices, say Z1 and Z2, such that R(Z1) � R(X1), R(Z2) � R(V M1) = VN (Xt
1) and

X2 = Z1 + Z2. Since P1 := X1(X
t
1V

�X1)
�Xt

1V
� is a (generally oblique) projector onto R(X1)

with VN (Xt
1) � N (P1) (compare Theorem 2.5 in [4]), on the one hand (I � P1)X2 = Z2. On

the other hand we also get VM1(M1VM1)
�M1X2 = Z2 because V M1(M1VM1)

�M1 is a projector

ontoR(V M1) satisfying VM1(M1V M1)
�M1X1 = 0. Consequently [I�X1(X

t
1V

�X1)
�Xt

1V
�]X2 =

VM1(M1V M1)
�M1X2. Combining all these observations results in

[�L=�11] = �22 � �21�
�
11�12

= Xt
2V

�X2 �Xt
2V

�X1(X1V
�X1)

�Xt
1V

�X2

= Xt
2V

�[I �X1(X
t
1V

�X1)
�Xt

1V
�]X2

= Xt
2V

�V M1(M1VM1)
�M1X2

= Xt
2M1(M1VM1)

�M1X2;

= �M:

As is well known (cf. [3], p. 46), J t2�
�
LJ2 2 f[�L=�11]

�g. Therefore J t2�
�
LJ2 2 f�

�
Mg, and the proof

is complete.

Theorem 3.4. Consider the models Li and Mi, and let M1, J1, J2, �L, �M, 
L and 
M be

all de�ned as before. For each matrix (RQ)t 2 G(Rt j �L) we then have

(RQ)tJ2 2 G(R
t
2 j �M) (3:3)

and

(RQ)t�LR
Q = (RQ)tJ2�MJ t2R

Q: (3:4)

Therefore 
L = 
M.

Proof. Let (RQ)t 2 G(Rt j �L). Then, by de�nition of G(Rt j �L),

RQ 2 fR�g and (RQR)t�LN (R) = f0g: (3:5a-b)

Since Rt is of full column rank, (3.5 b) happens i�

(RQ)t�LN (R) = f0g: (3:6)

As R = ( 0 R2 ), N (R) = IRm1 � N (R2) where `�' indicates a cartesian product. But now it is

evident that (3.6) is equivalent to

(RQ)t�LJ1 = 0; (RQ)t�LJ2N (R2) = f0g: (3:7a-b)
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For convenience we put �ij := J ti�LJj and R
Q
i := J tiR

Q (i; j = 1; 2). Then

�L =

�
�11 �12
�21 �22

�
and RQ =

�
R
Q
1

R
Q
2

�
:

By means of this notation, (3.7) can be rewritten as

(RQ
1 )

t�11 + (RQ
2 )

t�21 = 0; [(RQ
1 )

t�12 + (RQ
2 )

t�22]N (R2) = f0g: (3:8a-b)

Since �L := XtV �X is nnd, R(�12) � R(�11) [cf. [3], p. 71] or, equivalently, �11�
�
11�12 = �12.

Postmultiplication of (3.8 a) by ��11�12 therefore yields

(RQ
1 )

t�12 = �(RQ
2 )

t�21�
�
11�12: (3:9)

Hence (RQ
1 )

t�12 + (RQ
2 )

t�22 = (RQ
2 )

t[�L=�11] = (RQ)tJ2�M (observe Theorem 3.3), that is, we

have

(RQ)t�LJ2 = (RQ)tJ2�M: (3:10)

(3.7 a) and (3.10) can be written as

(RQ)t�L = ( 0 (RQ)tJ2�M ) ; (3:11)

whence we get

(RQ)t�LR
Q = (RQ)tJ2�MJ t2R

Q;

this is (3.4). In view of (3.11) and f0g � N (R2) � N (R), we further get

(RQ)tJ2�MN (R2) = f0g

directly from (3.6). Since R = ( 0 R2 ), R
Q
2 2 fR

�
2 g follows from (3.5 a). But now it is clear that

(3.3) holds. From (3.3) and (3.4) we also get 
L = 
M; notice the lines directly following Theorem

2.1. This completes the proof.

Theorem 3.5. Consider the linear models introduced in Section 1, and let

VR(X1) � R(X1) or, equivalently, VN (Xt
1) � N (Xt

1)

be satis�ed. Moreover, let M1, J1, J2, �M, �N , 
M and 
N be all de�ned as before. For each

XL 2 G(X j V ), we then have J t2X
L 2 G(M1X2 j V ). In addition, we get �N = �M, and therefore

G(Rt
2 j �N ) = G(Rt

2 j �M) as well as 
N = 
M.

Proof. Because M1 = PN (Xt

1
) and since VN (Xt

1) � N (Xt
1), clearly M1VM1 = VM1. Since

(M1VM1)
t =M1V M1, therefore M1V M1 = VM1 = M1V . Consequently

(M1VM1)V
�(M1V M1) = M1V V

�V M1 = M1VM1;

that is, fV �g � f(M1VM1)
�g. But now trivially �M = �N and G(Rt

2 j �M) = G(Rt
2 j �N ). Next,

let XL 2 G(X j V ) be arbitrary but �xed. Put XLi := J tiX
L for i = 1; 2. Then

XL =

�
XL1
XL2

�
:
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By Theorem 3.2, XL2 2 G(M1X2 jM1VM1). Hence, in particular, XL2 2 f(M1X2)
�g. So it remains

to show that M1X2X
L
2 VN (Xt

2M1) = f0g is also satis�ed. Clearly, VN (Xt
2M1) = V [R(X1) �

N (Xt)] = VR(X1)+V N (Xt). Since VR(X1) � R(X1), it follows in view of (3.1) that VR(X1) �

N (M1X2X
L
2 ). In the proof of Theorem 3.2 we have already seen that VN (Xt) � N (M1X2X

L
2 ).

This completes the proof.

Now we are in the position to prove Theorem 3.1

Proof of Theorem 3.1 (i). First, we wish to establish ~�2(Lu) = ~�2(Mu), that is, J
t
2
~�(Lu) =

~�2(Mu) where J2 is de�ned as before. To that end, consider representation (2.8) for ~�(Lu) with

an arbitrary but �xed XL 2 G(X j V ). Observe that it su�ces to show that J t2
~�(Lu) is of the form

(2.11). As (1.2) is equivalent to N (X) = N (X1)� N (X2), clearly

PN (X) =

�
PN (X1) 0

0 PN (X2)

�
:

If we now partition wt = (wt
1 wt

2 ) appropriately, then J t2PN (X)w = PN (X2)w2. From Theorem

3.2 we further know that J t2X
L 2 G(M1X2 j M1V M1) and that (for each possible realization y)

J t2X
Ly can be written alternatively in the form J t2X

Ly = J t2X
LM1y + z for some suitably chosen

z 2 N (X2). With these observations in mind, the claimed result is obvious.

Next, we prove ~�2(Le) = ~�2(Me). Consider representation (2.7) for ~�(Le) with an arbitrary

but �xed (RQ)t 2 G(Rt j �L). In view of R = ( 0 R2 ) and (1.2), clearly N (X) \ N (R) =

N (X1) � [N (X2) \N (R2)]. As above we therefore get J t2PN (X)\N (R)w = PN (X2)\N (R2)w2 where

w2 = J t2w. Theorem 3.4 tells us that (J t2(R
Q))t 2 G(Rt

2 j �M). In addition, we get J t2(I�R
QR)�̂L =

(I � J t2R
QR2)J

t
2�̂L as R = ( 0 R2 ). From the previous step we know that J t2�̂L 2

~�2(Mu). In

view of all these observations it is now clear that J t2
~�(Le) is a representation for ~�(Me); see (2.10).

In order to prove ~�2(Li) = ~�2(Mi), consider representation (2.6) for ~�(Li). In the light of

(2.6), (2.7), (2.9), (2.10) and the foregoing step it su�ces to show that ~ML = ~MM. But by Theorem

3.4, 
L = 
M. Hence ~ML = ~MM as ~�2(Lu) = ~�2(Mu).

Proof of Theorem 3.1 (ii). Let VR(X1) � R(X1). Then, by Theorem 3.5, J t2X
L 2

G(M1X2 j V ) for each XL 2 G(X j V ). By the same theorem, G(Rt
2 j �N ) = G(Rt

2 j �M) Therefore,

in view of (3.3), (RQ)tJ2 2 G(R
t
2 j �N ) for each (RQ)t 2 G(Rt j �L). As in the proof of part (i), we

therefore get ~�2(Lu) := J t2
~�(Lu) = ~�2(Nu) and ~�2(Le) := J t2

~�(Le) = ~�2(Ne) by means of Theorem

2.2 and Theorem 2.4. By Theorem 3.5, 
M = 
N . Since ~�2(Lu) = ~�2(Mu) = ~�2(Nu), therefore
~MM = ~MN . But then ~�2(Li) := J t2

~�(Li) = ~�2(Ni), and the proof is complete.

We conclude this paper with mentioning that if X and V are both of full column rank then all

the GLS selections considered in this paper are unique, that is, the corresponding GLS estimators

do exist. Notice that in such a situation the GLS estimator for �2 under each of our models is the

BLUE for �2 in that model. The unrestricted full rank case (that is, the case where we have no a

priori restrictions and where X and V are both of full column rank) has already been investigated

recently in [2] and [1, p. 970].

References

[1] D. J. Aigner and P. Balestra. Optimal experimental design for error components models.

Econometrica, 56: 955{971 (1988).

8



[2] M. Nurhonen and S. Puntanen. A property of partitioned generalized regression. Commun.

Statist.-Theory Meth., 21(6): 1579{1583 (1992).

[3] R. M. Pringle and A. A. Rayner. Generalized Inverse Matrices with Applications to Statis-

tics. Gri�n, London, 1971.

[4] H. J. Werner and C. Yapar. On inequality constrained generalized least squares selections

in the general possibly singular Gau�-Markov model: a projector theoretical approach.

Linear Algebra Appl. (1995, to appear; Fifth Special Issue devoted to Linear Algebra

and Statistics).

9


