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Abstract

The rational expectations hypothesis is supported if rational expectations are

stable with respect to reasonable learning procedures. We consider the Stochas-

tic Gradient{Algorithm as a boundedly rational learning procedure in an uni-

variate ARX{Model with forecast feedback. We prove that whenever there

exists a stable rational expectations equilibrium and the inuence of the fore-

cast feedback is limited the learning agents cannot destabilize the model and

learn to form rational expectations with probability one.
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Chapter 1

Introduction

In many economic models the agents' expectations matter and are an important

source for the model dynamics. But since expectations are generally unobserv-

able one has to complete models in which expectations matter by introducing an

expectations formation scheme. Clearly, any particular choice of such an expec-

tations formation scheme is ad-hoc and open to criticism. In his famous paper

Muth (1961) introduced the rational expectations hypothesis (REH) which

suggests that the agents' expectations of a variable coincide with the mathe-

matical conditional distribution of that variable given the observable history of

the model.

In spite of many attractive features the REH has a few substantial short-

comings. First of all it is extremely demanding in view of the agents' knowledge

and understanding of their economic surrounding. In order to calculate ratio-

nal expectations the agents have to know not only the reduced form of the

model but also the exact values of its reduced form parameters. To support

the REH it was argued that agents may learn somehow to form rational ex-

pectations by repeatedly observing their economic environment and collecting

information. Thus rational expectations could be understood as limit outcomes

of some `reasonable' learning procedure.

Although this idea is simple and intuitively appealing its formalization and

analytical study is quite di�cult. Leaving aside the problem of forming ex-

pectations about other agents' expectations and the resulting in�nite regress

of expectations the problem of learning to become rational can be formulated

as the problem of consistency of certain parameter estimates. Because of the

e�ect of forecast feedback, i.e., the e�ect that agents' expectations inuence

via their economic actions the time series they use for their estimation, the

convergence results of the classical statistical theory cannot be applied directly

since, at least, some of the time series involved become non-stationary during

the period of learning.

The �rst analytical study of the ordinary least squares (OLS)-learning pro-

cedure was carried out by M. Bray (1982), followed by Bray/Savin (1986),

Fourgeaud et al. (1986), Marcet/Sargent (1989a,b,c), Mohr (1990),

Kottmann (1990) and others. Apart fromMarcet/Sargent all studies con-

�ned themselves to the (simpler) case that the agents' expectations are based
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only on exogenous variables. For this case, �nally, Kottmann and Mohr de-

veloped a complete and satisfactory theory based on stochastic approximation

results by Walk (1985).

The more di�cult case when agents' expectations are also based on lagged

endogenous variables was �rst considered by Cyert/DeGroot (1974) in a

Monte-Carlo study. The �rst analytical results were achieved byMarcet/Sar-

gent (1989a,b,c). Their analysis is based on the ordinary di�erential equation

(ODE) approach developed by Ljung (1977) within the theory on recursive

identi�cation. Nevertheless, the results of Marcet/Sargent are not fully

satisfactory. Firstly, the analysis of Ljung is not always convincing in the light

of rigorous mathematical standards (although we believe that his results are

correct). Secondly, the ODE approach, which suggests that a trajectory of a

recursive estimation procedure can be approximated in a suitable manner by

a trajectory of an ordinary di�erential equation, is basically a local concept

since the approximation is only valid in the neighborhood of the equilibrium

value. To obtain global convergence results Ljung uses a certain technical trick,

called `projection facility', which is appropriate in an engineering context but

not necessarily in the context of learning procedures in economics. Without

this feature the analysis of Marcet/Sargent remains a local analysis and

the scope of a local convergence analysis is always limited. In addition, the

ODE approach relies crucially on some stability assumption for the endogenous

variable which is often not ful�lled by economic models.

In this paper we study the general case which covers the case of lagged

endogenous variables among the variables used by agents for their predictions

(the autoregressive case). We adopt a martingale based approach developed

in Zenner (1992b) and Zenner (1994) to prove consistency of a recursive

estimation procedure known as the Stochastic Gradient (SG)-Algorithm. This

algorithm possesses a recursive structure similar to the one of the well-known

OLS-algorithm and can be understood as a prediction error based learning

procedure.

We will show that the SG-algorithm estimates converge with probability one

to the rational expectations parameters under mild assumptions which stipu-

late that the inuence of the agents' predictions is not too strong and that the

rational expectations equilibrium (REE) is a stable process. If the REE is an

unstable process then we can show that in some cases at least some components

of the estimates converge to the respective components or the rational expec-

tations parameter. These results are completey new and have no counterpart

in the literature.

For the non-autoregressive case, the case that agents' expectations are based

only on exogenous variables, we obtain a convergence result which relies on as-

sumptions slightly weaker than the assumptions usually employed and therefore

covers a broader class of exogenous processes.

The paper is arranged as follows. Chapter 2 presents the model setup and

the assumptions our analysis is based upon. In Chapter 3 we develop our

convergence analysis. The main convergence result will be formulated in terms

of the order of the maximum and minimum eigenvalue of the matrix of moments
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which are endogenously given in the autoregressive case. In Chapter 4 we

determine the order of the eigenvalues for the autoregressive case. We will

show that the process of the endogenous variables will be stable whenever the

REE is a stable autoregressive process. In Chapter 5 we show some convergence

results. As an application we �nally present a simple economic example which

shows that the existence of learning agents in economic models can have a

stabilizing inuence.



Chapter 2

The Model

The model we consider is given by its reduced form equation

yt+1 = �0zt + ayet+1 + wt+1; t � 0;(2.1)

where

� yt is the time t endogenous variable which we assume to be real valued,

� zt is an n-dimensional random vector1 which may contain as well lagged

endogenous variables as exogenous variables, i.e., z0t = (y0t;x
0
t) with y

0
t =

(yt; : : : ; yt�p+1), x
0
t = (xt;1; : : : ; xt;q), p � 0; q � 0, and n = p+ q,

� y0; : : : ; y1�p are the initial values of the endogenous variable,

� wt is the time t disturbance term,

� yet is the aggregate or market prediction of yt made by agents at time

t� 1, and

� � 2 IRn and a 2 IR are model parameters.

We call such a model an ARX model with additive forecasts or an ARX model

with linear forecast feedback.

Before we introduce further assumptions we want to explain the main idea

underlying models with forecast feedback. Possibly, this is best done giving a

simple example.

Example 2.1: (Muth (1961), Cyert/DeGroot (1974))

Consider the model of an isolated market with a �xed production lag of a

commodity which cannot be stored. The market equations take the form

Ct = d1 � �pt (Demand)

Pt = d2 + pet + ut (Supply)(2.2)

Pt = Ct (Market equilibrium)

where
1Throughout this paper vectors and matrices will be denoted by boldface letters.
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� Pt represents the number of units produced in a period lasting as long as

the production lag,

� Ct is the amount consumed,

� pt is the market price in period t,

� pet is the market price expected to prevail during period t on the basis of

information available through the period t� 1,

� ut is an error term { representing, say, variations in yields due to weather,

and

� d1 � d2 > 0,  > 0, � > 0 are �xed parameters.

Eliminating the quantity variables leads to the reduced form equation

pt =
d1 � d2

�
�


�
pet �

1

�
ut(2.3)

which is of the form of (2.1) with yt = pt, zt = 1, and wt = ��1ut. 2

In this example the agents (or �rms) are required to make a production

decision in each period. Since pt, the market price in period t, is not known in

period t�1 they face a decision problem under uncertainty. In Example 2.1 it is

assumed implicitly that agents solve this problem by maximizing their expected

pro�t under a quadratic cost function. This leads to the supply function in (2.2).

But in order to maximize the expected pro�t agents must have expectations of

the outcome of pt. This motivates the following general setting.

Expectations and Predictions

We suppose that in period t agents have expectations of the unknown value of

yt+1, and we believe that, at least for rational agents, these expectations are

best modelled by probability distributions. On the other hand, expectations

are generally based on experience, i.e. on previously collected information.

Therefore we assume that the history of the system (2.1) is observable by agents

and that their expectations are based on the information set2.

It := fyt; yt�1; : : : ; y1�p; xt;1; : : : ; xt;q; : : : ; x0;1; : : : ; x0;qg:(2.4)

We thus model expectations by conditional probability distributions. Formally,

we assume that there exist random variables ~yt+1 and a (subjective) proba-

bility measure ~P such that the agents' expectations of yt+1 can be written as

2Nevertheless, another choice of the information set is as well possible within this frame-

work. For example, It can contain some additional sun-spot variables, or it can contain only

sun-spot variables. Generally, by the choice of the information set It it is possible to model

the degree of understanding of the agents. If agents are sophisticated their information set

contains all the relevant variables while the one of less clever agents, such as noise-traders,

contains only part of it.
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~P[~yt+1jIt]. (The variables ~yt+1 are only auxiliary mathematical objects and do

not have to correspond with any observable quantity in the economic system.)

Since agents, as part of their economic surrounding, are required to take

one speci�c action every period it is necessary for them to derive a single de-

cision criterion from their expectations. We assume that they use the most

common criterion, the mean value of their expectations, or, mathematically

speaking, the expectation of their conditional probability distribution. We call

this (mathematical) expectation3 prediction or forecast and denote it by yet+1.

Hence

yet+1 =
~E[~yt+1jIt]:(2.5)

Following these lines common assumptions on the behaviour of agents, like

pro�t maximizing as in Example 2.1, often lead to a reduced form equation of

the form of (2.1).

The Rational Expectations Hypothesis

Up to now we have made no speci�c assumptions on the expectations of agents.

They could be arbitrary conditional probability distributions. Muth (1961,

p. 316), in his famous article, suggests that \expectations, since they are in-

formed predictions of future events, are essentially the same as the predictions

of the relevant theory", and he calls this kind of expectations `rational expecta-

tions'. More exactly, he suggests that \expectations of �rms (or, more generally,

the subjective probability distributions of outcomes) tend to be distributed, for

the same information set, about the prediction of the theory (or the \objective"

probability distributions of outcomes)". Within our model this means that

~P[~yt+1jIt] = P[yt+1jIt] a.s.(2.6)

We will call expectations which ful�ll (2.6) strongly rational expectations. The

probability distribution on the left-hand side is the so-called subjective distri-

bution of outcomes and the one on the right-hand side the so-called objective

distribution of outcomes. Expectations which ful�ll the weaker requirement

~E[~yt+1jIt] = E[yt+1jIt] a.s.(2.7)

will be called weakly rational expectations or simply rational expectations4.

Notice that the so-called objective probability of outcomes on the right-hand

side of (2.6) and its mathematical expectation on the right-hand side of (2.7)

3The ambiguity of the term `expectation' has caused some confusion in the literature on

rational expectations. Muth (1961), for example, speeks of agents' expectations in terms

of probability distributions but uses exclusively mathematical expectations in his analysis

without quoting that there exists a di�erence.

To avoid this confusion we distinguish strictly between the expectations of agents, which

are conditional probability distributions, and the predictions or forecasts of agents, which are
the mathematical expectation of their expectations.

4In Zenner (1994) we called strongly rational expectations also `rational expectations in

the sense of Muth' but since it is not clear that Muth was aware of the di�erence between
strongly and weakly rational expectations we omit this here.
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depends on the agents' expectations in the model. Therefore, as long as agents

might have arbitrary expectations, rational expectations characterized by (2.6)

or (2.7) have a meaning only for an outside observer. To have a meaning also

inside the model one has to claim that (2.6) and (2.7) hold when agents have

already rational expectations. Hence, rational expectations are solutions of a

�xed point problem and, consequently, the economic system in which agents

have rational expectations is called to be in a rational expectations equilibrium

(REE).

In our model the agents' expectations of yt+1 are rational expectations when-

ever they induce

yet+1 = �0zt + ayet+1 a.s.(2.8)

provided that E[wt+1jIt] = 0 a.s., and it is immediate that

yet+1 =
1

1� a
�0zt a.s.(2.9)

whenever a 6= 1.

Rational Expectations and Learning Procedures

The rational expectations hypothesis (REH) of Muth (1961) suggests that

agents have rational expectations, more exactly, it suggests that the average or

market expectation is rational. Although this hypothesis is superior to every

ad-hoc assumption concerning expectations since it incorporates two main con-

cepts of economic theory, namely the concept of rationality and the concept of

equilibrium, it is appropriate to ask how plausible it is. In our model the REH

implies that the agents' predictions are given by (2.9). If agents know equation

(2.1) and the parameters a and � they could calculate these rational expecta-

tions and the system described by (2.1) and (2.9) is in a rational expectations

equilibrium. But in general neither (2.1) nor the parameters a and � will be

known exactly by the agents, hence their expectations will not be rational, at

least on the short-run.

But what happens on the long-run? Is it possible that agents learn to form

rational expectations in following a simple and reasonable learning procedure

based on observations of the history of zt? This is the question we are concerned

with in this paper.

The mathematical modeling of learning processes is a quite complex and

di�cult problem and the subject of current research in economics as well as in

information sciences, psychology, or biology. There exist a wide variety of dif-

ferent approaches (e.g. genetic algorithms, neuronal networks as two prominent

examples in recent research), all of them facing the same problem of �nding a

good compromise between realism and mathematical feasability. The approach

we adopt is quite simple.

As Pesaran (1987, p. 32) points out, \there is no doubt that individuals do

learn from their own experience as well as from the experience of others. Gen-

erally speaking, learning takes place through two separate but closely connected
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mechanisms, namely repetition, and understanding". Therefore we assume that

the agents in our model have in mind a (not necessarily fully speci�ed) model

which they believe to describe the situation they face. We thus assume that

they understand, at least roughly, how the economic system which they are

part of works but are uncertain of the precise system and the exact values of

the parameters. They try to learn these values by repetition, i.e. by a repeated

trial-and-error scheme. We model this `learning by repetition' by a special �rst

order adaptive prediction error mechanism.

Assumption (A.1): (Behavioural Assumption)

The predictions yet+1 made by agents at time t on the basis of the information

set It are given as

yet+1 = �t
0zt; t � 0:(2.10)

The coe�cients �t 2 IRn are given recursively by

�t+1 = �t + r�1t zt(yt+1 � �t
0zt); t � 0;(2.11)

with some initial value �0 which may be random and rt :=
Pt

s=0 z
0
szs. 2

The estimation procedure given by (2.11) is known in the literature on

recursive identi�cation and control as the Stochastic Gradient (SG) Algorithm

for the reason that the time t adjustment

��t+1 := �t+1 � �t = r�1t zt(yt+1 � �t
0zt)(2.12)

is, up to an scaling factor, equal to the negative gradient of the squared predic-

tion error (yt+1��t
0zt)

2. Therefore the SG-algorithm is also known as steepest

descent algorithm since its adjustments are in direction of the steepest descent

of the squared prediction error.

Although the learning procedure proposed by Assumption (A.1) is moti-

vated by its mathematical suitability it is also plausible in view of agents' be-

haviour. Suppose that the agents believe in the auxiliary model

yt+1 = �0zt + et+1(2.13)

with an unknown constant (or slowly varying) parameter � and a zero mean

disturbance term et+1 which is independent from the information set It. If the

(hypothetical) parameter � is known by agents at time t their expectations of

yt+1 will be given as ~P[�0zt+et+1jIt] and, consequently, their prediction will be

yet+1 = ~E[�0zt + et+1jIt] = �0zt a.s.(2.14)

Since the parameter � is not known by agents it is reasonable for them to

estimate its value by a statistical estimation procedure, for instance by an

ordinary least squares (OLS) regression5 or by the SG-algorithm.

5If zt is univariate the OLS-algorithm and the SG-algorithm coincide. Otherwise the OLS-

estimates ful�ll a recursion like (2.11) with r�1t replaced by (
Pt

0
zsz

0

s)
�1.
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Unlike to the OLS-procedure the computation of the SG-algorithm estimates

requires no matrix inversion and could be performed with a simple pocket cal-

culator. In addition, the SG-algorithm formalizes the intuitively appealing idea

of adjusting the estimates recursively in the light of the previous prediction

error, yt+1��t
0zt. Therefore the SG-algorithm can be understood as a stylized

version of real life trial-and-error learning.

Notice that although the agents believe in a generally misspeci�ed model

(the model (2.13) is correctly speci�ed only in the REE) they are quite sophis-

ticated in the sense that their model is based on the correct time series and also

supposes a linear relationship between the variables since under Assumption

(A.1) the true model (2.1) turns out to be

yt+1 = (�+ a�t)
0zt + wt+1:(2.15)

Notice furthermore that agents believing in the model (2.13) neglect the

fact of forecast feedback. They do not care about the other agents' behaviour

and expectations and regard the times series they face as exogenously given.

Therefore these kind of agents are called boundedly rational. The usefulness of

boundedly rational learning models was intensively discussed (see, e.g., Fryd-

man/Phelps (1983) or Pesaran (1987)) and we do not want to go into that

discussion here. We only want to remark that the assumption of boundedly

rational agents reduces the mathematical complexity of the resulting model to

such a degree that proper results can be achieved with some e�ort.

The second assumtion concerns the disturbance terms and the dependence

structure between the variables.

Assumption (A.2): (Stochastic Assumption)

The disturbance terms fwtgt�1 form a martingale di�erence sequence with re-

spect to a �ltration fFtgt�0 such that

E[w2
t+1jFt] � �2 a.s. and sup

t�0

E[jwt+1j
2+�jFt] <1 a.s.(2.16)

with some constants �2 <1, � > 0, and

lim inf
t�0

E[w2
t+1jFt] > 0 a.s.(2.17)

We assume furthermore that xt is Ft�p�1-measurable for all t � p + 1 and

F0-measurable otherwise, and that �0 and y0 are F0-measurable. 2

Assumption (A.2) is standard in modern econometrics. It generalizes the

assumption that fwtg is a white noise sequence with bounded (2 + �)th mo-

ments. The conditions (2.16), (2.17) ensure that the disturbance terms in-

troduce enough but not too much stochastic uctuation into the model. The

measurability conditions ensure that yt and xt are Ft-measurable and, since
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�(It) � Ft, E[wt+1jIt] = 0 a.s. Hence there is no e�ect of the disturbance terms

which is foreseeable by agents.

Notice that, provided that a 6= 1, the rational expectations with respect to

the information set It are uniquely determined as the expectations which give

rise to the predictions

y�t+1 := E[yt+1jIt] =
1

1� a
�0zt:(2.18)

Hence if agents' predictions are given as in Assumption (A.1), thus yet+1 = �t
0zt,

then they are rational if and only if �t = �� := (1 � a)�1�. So the question

whether agents can learn to form rational expectations with the aid of the SG-

algorithm is equivalent to the question whether the estimates �t converge to

the rational expectations parameter ��.

Finally, we want to introduce an assumption concerning the exogenous vari-

ables which is necessary for some results.

Assumption (A.3): (Exogenous Inputs)

The exogenous variables xt = (xt;1; : : : ; xt;q)
0 have the following properties:

tr

 
TX
t=0

xtx
0
t

!
= O(T ) a.s.(2.19)

and

lim inf
T!1

1

T
�min

 
TX
t=0

xtx
0
t

!
> 0 a.s.(2.20)

where tr(A) denotes the trace and �min(A) the minimum eigenvalue (in mod-

ulus) of the matrix A. 2

This assumption holds for a large class of stochastic (as well as deterministic)

processes including all covariance stationary and ergodic processes, such as

stable ARMA-processes, ARCH-processes, i.i.d. sequences, but also some non-

stationary processes. It is more general than the assumptions usually employed

in this context6 which require that 1
T

PT
1 xtx

0
t converges a.s. towards some

positive de�nite limit matrix.

6See, e.g., Bray/Savin (1986), Marcet/Sargent (1989a,b,c), Kottmann (1990),Mohr

(1990), and Chang et al. (1991a,b,c).



Chapter 3

Convergence Analysis

In this chapter we develop our convergence analysis. In a �rst step we use the

almost supermartingale property of the process fk�t � ��k2g to show that f�tg

remains bounded a.s. under certain conditions. This property holds regardless

of any assumptions on the time series fztg but the measurability condition

of Assumption (A.2). Then we show that f�tg converges a.s. towards �� if

the times series fztg has the so-called persistent excitation (PE) property. In

the following chapter we analyse under what conditions the time series fztg

generated by the model (2.1) has this property. If fztg fails to have the (PE)

property then we can show that at least some components of �t converge towards

the respective components of ��.

Our approach is closely related to the martingale di�erence approach of the

modern theory of system identi�cation and control (see, e.g. Lai (1989) and

Chan/Guo (1991)) but due to the forecast feedback in our model we cannot

apply the consistency results of that theory. Rather, we generalize these results

since, letting a = 0, the case of no forecast feedback is a special case in our

theory.

Preliminary Results

The �rst auxiliary result is a simple but very useful lemma. Its �rst part is

known as the Theorem of Abel/Dini, and the second as Theorem of Prings-

heim.

Lemma 3.1: (Knopp (1964))

Let (dt)t�0 be a sequence of non-negative real numbers with d0 > 0 such that

Dt :=
Pt

s=0 ds !1 as t!1. Let � � 0, then

(i)
1X
t=0

dt

D�
t

<1 () � > 1,

(ii)
1X
t=1

dt

DtD
�
t�1

<1 () � > 0.

12
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The second result is the keystone in the martingale di�erence approach, a

kind of deterministic reduction1.

Lemma 3.2: (Chow (1965), Lai/Wei (1982a))

Suppose that fwtg is a martingale di�erence sequence with respect to some �l-

tration fFtg such that supt�0 E[w
2
t+1jFt] < 1 a.s. and futg is a sequence of

Ft-adapted random variables. Then

(i)
TX
t=0

utwt+1 converges a.s. on the event

"
1X
t=0

u2t <1

#
,

(ii)
TX
t=0

utwt+1 = o

 
TX
t=1

u2t

!
a.s. on the event

"
1X
t=0

u2t =1

#
,

(iii)
TX
t=0

jutjw
2
t+1 = O

 
TX
t=0

jutj

!
a.s. on

"
sup
t�0

jutj <1

#
.

If fwtg ful�lls also supt�0 E[jwt+1j
2+�jFt] <1 a.s. for some � > 0 then

(iv)
1

T

TX
t=0

�
w2
t+1 � E[w2

t+1jFt]
�
= O(T�) a.s. for all  2

�
0; �

2+�

�
.

If, in addition, E[w2
t+1jFt] = �2 > 0 a.s. holds, then

(v) lim
T!1

1

T

TX
t=0

u2t = 0 a.s. on the event

"
lim
T!1

1

T

TX
t=0

u2tw
2
t+1 = 0; sup

t�0

jutj <1

#
.

With the following result we formalize the idea that the disturbance terms

introduce persistent stochastic uctuation into the model.

Lemma 3.3:

Suppose that (A.1) and (A.2) hold. Then

lim inf
T!1

1

T

TX
t=1

y2t > 0 a.s.(3.1)

1As Ren (1991, p. 5) points out \in the stochastic adaptive system theory (...) the key

concern is to deal with stochastically modeled disturbances and signals. However, it is possible

to fully dispense with all probabilistic assumptions and adopt a completely deterministic model

of such signals and disturbances. (...) Thus, instead of starting with a probabilistic set of

assumptions, one could forego all stochastic assumptions and simply suppose that the noise

has the properties (a{e)". The properties (a{e) of Ren are just the properties (i){(v) of

Lemma 3.2.
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Proof:

According to (2.15) we have

y2t = [(�+ a�t�1)
0zt�1]

2 + 2(�+ a�t�1)
0zt�1wt + w2

t ;(3.2)

hence

TX
t=1

y2t =
TX
t=1

[(�+ a�t�1)
0zt�1]

2 +
TX
t=1

(�+ a�t�1)
0zt�1wt +

TX
t=1

w2
t :(3.3)

Since assumption (2.17) implies lim inf 1
T

PT
1 E[w

2
t+1jFt] > 0 a.s. we obtain

with Lemma 3.2 (iv) lim infT!1
1
T

PT
t=1 w

2
t > 0 a.s. Now if the �rst sum on

the right-hand side of (3.3) converges the second sum converges too by Lemma

3.2 (i) and (3.1) follows directly. If the �rst sum diverges then Lemma 3.2 (ii)

gives

TX
t=1

(�+ a�t�1)
0zt�1wt = o

 
TX
t=1

[(�+ a�t�1)
0zt�1]

2

!
a.s.(3.4)

hence
PT

t=1 y
2
t �

PT
t=1 w

2
t a.s. for T su�ciently large and, again, (3.1) follows.

The last auxiliary result is a convergence result for almost supermartingales2

which was already used byKottmann/Kuliberda (1990) and Zenner (1994)

to prove consistency of the OLS-algorithm and other prediction error based

learning procedures in AR(1) models with forecast feedback.

Proposition 3.4: (Robbins/Siegmund (1971))

Suppose that fVtg; f�tg; f�tg, and f�tg are sequences of non{negative random

variables, adapted to a �ltration fFtg such that for t � 0

E[Vt+1jFt] � (1 + �t)Vt + �t � �t a:s:(3.5)

Then on the event [
P1

t=0 �t <1;
P1

t=0 �t <1] limt!1 Vt exists a.s. and is

�nite a.s. and
P1

t=0 �t <1 a.s.

2This convergence result is the only probabilistic result we use within our analysis. But

we conjecture that it is also possible to derive an equivalent result which does not rely on

any probabilistic assumptions in the sense of the deterministic reduction mentioned in the

preceding footnote.

It is an interesting fact that nearly all techniques sucsessfully employed in the analysis of

forecast feedback models are of a deterministic nature. The analysis of Fourgeaud et al.
(1986) as well as the one of Kottmann (1990) is completely algebraic and applies pathwise

in a stochastic environment, and the approach ofMarcet/Sargent (1989a,b,c) relies on the

idea that the estimation process behaves, pathwise, like a trajectory of an ordinary di�erential
equation.
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Main Results

In the following result we summarize the convergence results we shall need in

the following chapters.

Theorem 3.5:

Suppose that (A.1) and (A.2) hold and a 6= 1. Suppose furthermore that if q � 1

the exogenous varibles xt ful�ll

lim sup
t!1

x0txtPt
s=0 x

0
sxs

< 1 a.s. and
1X
t=0

x0txt =1 a.s.(3.6)

Let �� = (1� a)�1�, rt =
Pt

s=0 z
0
szs, Zt =

Pt
s=0 zsz

0
s, and �t = r�1t z0tzt.

(i) If jaj � 1 then

k�t � ��k2 converges a.s.,(3.7)

TX
t=0

[z0t(�t �
��)]2

rt
<1 a.s., and(3.8)

�t �! �� a.s. on

�
�max(Zt)

�min(Zt)
= O(1)

�
;(3.9)

where �max(Zt) and �min(Zt) denote the maximum and minimum eigen-

value of the matrix Zt.

(ii) If a < �1 then (3.7){(3.9) hold on the event where

lim sup
t!1

�t <
2

1� a
:(3.10)

Proof:

The estimates �t are given recursively as

�t+1 = �t + r�1t zt(yt+1 � �t
0zt)

= �t + r�1t ztz
0
t(�+ a�t � �t) + r�1t ztwt+1(3.11)

= �t + r�1t ztz
0
t(�� (1� a)�t) + r�1t ztwt+1;

hence, since � = (1� a)��,

�t+1 � �� = �t � �� � (1� a)r�1t ztz
0
t(�t �

��) + r�1t ztwt+1:(3.12)

De�ne the matrix At by At = I � (1�a)r�1t ztz
0
t and set Vt = k�t� ��k2. Then

E[Vt+1jFt] = kAt(�t � ��)k2 +
z0tzt

r2t
E[w2

t+1jFt](3.13)
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with

kAt(�t � ��)k2 = k�t � ��k2 � 2(1� a)r�1t (�t � ��)0ztz
0
t(�t �

��)

+(1� a)2r�2t (�t � ��)0ztz
0
tztz

0
t(�t �

��)(3.14)

= k�t � ��k2 �
h
2(1� a)� (1� a)2�t

i [z0t(�t � ��)]2

rt
:

De�ne furthermore

~�t = [2(1� a)� (1� a)2�t]
[z0t(�t �

��)]2

rt
;

�t = ~�t1[~�t�0];(3.15)

�t = �2
z0tzt

r2t
� ~�t1[~�t<0]:

Then we have

E[Vt+1jFt] � Vt + �t � �t a.s.(3.16)

Now we want to apply Proposition 3.4. Since 0 � �t � 1 and

2(1� a)� (1� a)2�t � 0 () �t �
2

1� a
;(3.17)

provided that a < 1, it is obvious that ~�t � 0 for all t � 0 if jaj � 1, and ~�t � 0

for all but �nitely many t � 0 on the event (3.10) if a < �1. Hence

1X
t=0

�t = O

 
1X
t=0

z0tzt

r2t

!
<1 a.s. on (3.10)(3.18)

by Lemma 3.1. (To avoid the distinction between jaj � 1 and a < �1 we

formulate in the sequel all results on the event (3.10) since this event is equal

to 
 if jaj � 1.) Then Proposition 3.4 implies that k�t � ��k2 converges a.s. on

the event (3.10).

To show (3.8) we establish �rst that

2(1� a)� (1� a)2�t � �(3.19)

holds pathwise a.s. for some su�ciently small � = �(!) > 0. Notice that, if

a < 1 (3.19) is equivalent to �t � (2� �)=(1� a).

If jaj < 1 we can choose some constant � > 0 such that (3.19) holds for

all t � 0 since 0 � �t � 1. If a = �1 then we can use the fact that �t
is bounded a.s. to infer that �t is (pathwise) bounded away from one. This

follows by (3.6) and the fact that for the autoregressive process fytg the quotient

y2t =
Pt

0 y
2
s can approach one only if the parameters of the autoregressive part

grow beyond every boundary. But since �t is bounded a.s. this is impossible

with probability one. Thus we can �nd some � = �(!) > 0 such that (3.19)

holds for all but �nitely many t � 0 for almost every ! 2 
.

If a < �1 we can infer in the same way that some � = �(!) > 0 exists such

that (3.19) holds for all but �nitely many t � 0 on the event (3.10).



17

Now Proposition 3.4 implies that
P1

0 �t <1 a.s. on the event (3.10). Since

� > 0 this implies that

1X
t=0

[z0t(�t �
��)]2

rt
<1 a.s. on (3.10);(3.20)

hence (3.8) and its analogon in (ii) are shown.

Before we show (3.9) we want to remark that, again, the following consid-

erations are all of a pathwise nature and hold on the event (3.10). Therefore

we omit from now on the additional term \on (3.10)" in the formulae. With

the aid of the Kronecker Lemma we can conclude that

TX
t=0

[z0t(�t �
��)]2 = o(rT ) a.s.(3.21)

By the Cauchy Schwarz inequality we obtain

 1

rT

TX
t=0

ztz
0
t(�t �

��)


2

�

 
1

rT

TX
t=0

kztkjz
0
t(�t �

��)j

!2

�

 
1

rT

TX
t=0

z0tzt

! 
1

rT

TX
t=0

[z0t(�t �
��)]2

!
(3.22)

= o(1):

Now consider the process fZT (�T � ��)g. Firstly, notice that, since Zt�Zt�1 =

ztz
0
t, we have

TX
t=0

Z t(�t+1 � �t) = ZT (�T+1 � ��)�
TX
t=1

ztz
0
t(�t �

��)�Z0(�0 � ��):(3.23)

Hence by (3.22)

kZT (�T+1 � ��)k �


TX
t=0

Zt(�t+1 � �t)

+


TX
t=1

ztz
0
t(�t �

��) + Z0(�0 � ��)


=


TX
t=0

Zt(�t+1 � �t)

+ o(rT )(3.24)

since we know that rT !1 a.s., either by (3.6) or by Lemma 3.3. On the other

hand the recursion (3.11) leads to

TX
t=0

Z t(�t+1 � �t) = (a� 1)
TX
t=0

1

rt
Ztztz

0
t(�t �

��) +
TX
t=0

1

rt
Ztztwt+1:(3.25)

Hence
TX
t=0

Zt(�t+1 � �t)

 � j1� aj


TX
t=0

~Ztztz
0
t(�t �

��)

+


TX
t=0

~Ztztwt+1

(3.26)
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with ~Zt := r�1t Zt. Since ~Z is bounded because tr( ~Z) = 1 we can conclude by

Lemma 3.2 that
TX
t=0

~Z tztwt+1 = o(rT ) a.s.(3.27)

Replacing ztz
0
t(�t �

��) by ~Ztztz
0
t(�t �

��) in (3.22) leads to

TX
t=0

~Z tztz
0
t(�t �

��) = o(rT ) a.s.;(3.28)

hence, by (3.26) and (3.27)

TX
t=0

Zt(�t+1 � �t) = o(rT ) a.s.(3.29)

and, �nally, by (3.23)

ZT (�T+1 � ��) = o(rT ) a.s.(3.30)

Using the inequalities

kZT (�T+1 � ��)k � �min(ZT )k�T+1 � ��k(3.31)

and

rT = tr(ZT ) � n�max(ZT )(3.32)

we can conclude that

k�t � ��k �! 0 a.s. on

�
lim sup
t!1

�max(Zt)

�min(Zt)
<1

�
:(3.33)

Hence Theorem 3.5 is proved.

Theorem 3.5 states that if the persistent excitation condition

�max(Zt)

�min(Zt)
= O(1) a.s.(3.34)

holds the SG-algorithm estimates �t are strongly consistent, at least if jaj < 1.

This result is closely related to the respective convergence result for the SG-

algorithm in models without forecast feedback (see, e.g., Ren (1991), Theorem

2.1). Thereby the PE-condition is the usual condition to ensure consistency3.

Now we consider the case that the PE-condition fails to hold. The following

considerations are, again, of algebraic nature, hence we can argue pathwise.

There are di�erent reasons for that the PE-condition can fail to hold. Firstly,

it is possible that although

lim inf
t!1

1

rT

TX
t=0

z2t;i > 0 8i = 1; : : : ; n;(3.35)

3But the PE-condition is not a necessary condition to ensure consistency. Chen/Guo

(1991) show some consistency results without the PE-condition with alternative techniques.

Unfortunately, we see no way to carry over these techniques to models with forecast feedback.
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with zt;i denoting the i'th component of zt, we have �min(Zt) = o(�max(Zt).

Thus all diagonal elements of the `normed' matrix of moments ~Zt = r�1t Zt

remain bounded away from zero uniformly in t the minimum eigenvalue of ~Zt

(which is equal to r�1t times the minimum eigenvalue of Zt) converges to zero.

This is only possible if the vectors ~zi(t) := r�1t (zt;i; : : : ; z0;i)
0, i = 1; : : : ; n, are

asymptotically linear dependent.

Secondly, it is possible that

lim inf
T!1

1

rT

TX
t=0

z2t;i = 0 8i 2 I(3.36)

with some I � f1; : : : ; ng. Thus some diagonal elements of ~Z t converge to

zero. Since ~Zt is positive semide�nite this implies that some rows and columns

completely converge to zero. (Clearly, not all rows can converge to zero since

tr( ~Zt) = 1.) This is the case if some components of zt grow faster than the

others, for example, if zt = (t; 1)0. The following theorem states that in such a

case at least the components of �� related to the fastest growing components of

zt are properly identi�ed by the SG-algorithm.

Theorem 3.6:

Suppose that the assumptions of Theorem 3.5 are ful�lled. Let I be a subset of

f1; : : : ; ng and let B(I) be the event where

lim inf
T!1

1

rT

TX
t=0

z2t;i = 0 8i 2 I:(3.37)

Let Z�
t be the matrix ~Zt with the ith row and ith column deleted for all i 2 I

and let C(I) be the event where

lim inf
t!1

�min(Z
�
t ) > 0 a.s.(3.38)

(i) If jaj < 1 then

�t;i ! ��i a.s. on B(I)\ C(I) 8i 62 I:(3.39)

(ii) If a < �1 then for all i =2 I

�t;i ! ��i a.s. on B(I)\ C(I)\

�
lim sup
t!1

�t <
2

1� a

�
:(3.40)

Proof:

We can follow the lines of the proof of Theorem 3.5 up to (3.30) without any

change. We thus have ~ZT (�T+1 � ��) ! 0 a.s. on (3.10) as T ! 1. On the

event B(I) we have

k ~ZT (�T+1 � ��)k = kZ�
T (�

�
T+1 �

��
�
)k+ o(1)(3.41)
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where ��t ;
��
�
denote the vectors �t; ��, resp., with the ith component removed

for all i 2 I . On the event C(I) we have

kZ�
T (�

�
T+1 �

��
�
)k � �min(Z

�
T )k�

�
T+1 �

��
�
k � �k��T+1 �

��
�
k(3.42)

with some (possibly path-dependent) � > 0 for T su�ciently large. But this

implies k��T+1 �
��
�
k ! 0 as T ! 1.



Chapter 4

Condition Analysis

In this chapter we want to determine the order of �max(Zt) and �min(Zt) and

thus obtain an upper bound for the condition number of the matrix Zt de�ned

as c(Zt) = kZtkkZ
�1
t k � �max(Zt)=�min(Zt). While the order of �max(Zt) is

easily obtained since

�max(Zt) � tr(Zt) � n�max(Zt)(4.1)

the determination of the (minimum) order of �min(Zt) is much more compli-

cated and requires a technical result on asymptotic properties of certain pro-

jections. Of course, only if the model (2.1) is autoregressive, i.e. if p � 1, the

determination of the maximum and minimum eigenvalues causes a problem.

Otherwise the order of the eigenvalues is given exogenously.

Determination of �max( Zt)

Let p � 1 and suppose that the Assumptions (A.1) and (A.2) hold. Using the

equality �+ a�� = �� we can rewrite the model (2.15) as

yt+1 = ��
0
zt + a(�t � ��)0zt + wt+1(4.2)

or, in vector notation,

yt+1 = Ayt +Rt+1(4.3)

with yt = (yt; : : : ; yt�p+1)
0,

Rt+1 =

0
@a(�t � ��)0zt +

qX
j=1

��p+jxt;j + wt+1; 0; : : : ; 0

1
A
0

;(4.4)

and A the companion form matrix

A =

0
BBBB@

��1 � � � ��p�1 ��p
1 0

. ..
...

1 0

1
CCCCA :(4.5)

21
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It is well known that the characteristic polynomial de�ned by

�(y) = yp � ��1y
p�1 � � � � � ��p�1y � ��p(4.6)

plays a central role in the asymptotic behaviour of (constant parameter) au-

toregressive processes. If it possesses roots only inside the unit circle then there

exists some 0 � � < 1 such that kAtk = o(�t) and a constant parameter au-

toregressive process given by (4.3) with Rt = (wt; 0; : : : ; 0)
0 will be stable in

the sense that
PT

1 y
2
t = O(T ) a.s. The following result shows that a similar

property holds also in our model. It is a straightforward extension of Lemma 4

by Lai/Wei (1982b).

Lemma 4.1:

Suppose that (A.1) and (A.2) hold and that the exogenous variables fxtg ful�ll

kxtk
2 = o(t�) a.s.(4.7)

and
TX
t=1

kxtk
2 = O(T ) a.s.(4.8)

for some � � 0;  � 0. Suppose furthermore that the characteristic polynomial

(4.6) possesses only roots inside the unit circle. Then

kytk
2 = o(t�) +O

 
t�1X
s=0

[z0s(�t �
��)]2

!
a.s.(4.9)

for every � such that � � � and � > 1
2+�

, and

TX
t=1

kytk
2 = O(T �) + O

 
T�1X
s=0

[z0s(�t �
��)]2

!
a.s.(4.10)

with � = maxf1; g.

Notice that Lemma 4.1 includes the purely autoregressive case since in that

case we can set � =  = 0.

Proof:

Iteration of (4.3) leads to

yt = Aty0 +
tX

s=1

At�sRs:(4.11)

With the Cr-inequality and the Cauchy Schwarz inequality we obtain

kytk
2 � 2kAtk2ky0k

2 + 2

 
tX

s=1

kAt�skkRsk

!2

� 2kAtk2ky0k
2 + 2

tX
s=1

kAt�sk
tX

s=1

kAt�skkRsk
2:(4.12)
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Since kAtk = o(�t) with some 0 � � < 1 (4.12) implies

kytk
2 = o(1) + O

 
tX

s=1

�t�s
tX

s=1

�t�skRsk
2

!

= O

 
t�1X
s=0

�t�skxsk
2

!
+O

 
t�1X
s=0

�t�s[z0s(�s �
��)]2

!
(4.13)

+O

 
tX

s=1

�t�sw2
s

!

= o(t�) + O

 
t�1X
s=0

[z0s(�s �
��)]2

!
+ o(t�) a.s.

with � > (2 + �)�1. The last line follows by (4.7) and, since

P[jwtj > t�jFt�1] �
1

t�(2+�)
E[jwtj

2+�jFt�1];(4.14)

by the conditional Borel{Cantelli lemma (Stout (1974)) which implies wt =

o(t�) a.s. for all � > (2 + �)�1. Hence (4.9) is shown.

Now summation of (4.12) leads to

TX
t=1

kytk
2 � 2ky0k

2
TX
t=1

kAtk2 + 2
TX
t=1

 
tX

s=1

kAt�sk
tX

s=1

kAt�skkRsk
2

!

= O(1) +O

 
TX
t=1

tX
s=1

�t�s
tX

s=1

�t�skRsk
2

!

= O

  
1X
t=0

�t

!
TX
t=1

tX
s=1

�t�skRsk
2

!
(4.15)

= O

0
@
 
1X
t=0

�t

!2 TX
t=1

kRtk
2

1
A

= O

 
T�1X
t=0

kxtk
2

!
+O

 
T�1X
t=0

[z0t(�t �
��)]2

!
+O

 
TX
t=1

w2
t

!
;

hence also (4.10) is shown.

Under Assumption (A.3) we obtain the following result which determines

the order of �max(Zt) in the stable case.

Theorem 4.2:

Suppose that (A.1), (A.2), and (A.3) hold and a 6= 1. If the characteristic

polynomial (4.6) possesses roots only inside the unit circle then

�max(Zt) = O(t) a.s.(4.16)
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if jaj � 1, and

�max(Zt) = O(t) a.s. on

�
lim sup
t!1

�t <
2

1� a

�
(4.17)

if a < �1.

Proof:

Let jaj � 1. Then by (A.3) and Lemma 4.1 we know that

TX
t=1

kytk
2 = O(T ) + O

 
T�1X
t=0

[z0t(�t �
��)]2

!
a.s.(4.18)

Hence

tr(ZT ) = O(T ) +O

 
T�1X
t=0

[z0t(�t �
��)]2

!
a.s.(4.19)

By Theorem 3.5
TX
t=0

[z0t(�t �
��)]2 = o(tr(ZT )) a.s.(4.20)

hence tr(ZT ) = O(T ) a.s. Using the inequality (4.1) we �nally obtain (4.16).

The proof of (4.17) is completely analogous.

Determination of �min(Z t)

As already mentioned the determination of the minimum order of �min(Zt) is

much more complicated. Lai/Wei (1982b) have the following result.

Lemma 4.3: (Lai/Wei (1982b)

Let Z(t) = (z1(t); : : : ; zn(t)) be a matrix of dimension t� n, then

1

n
min
1�j�n

kzj(t)� ẑj(t)k
2 � �min(Z(t)

0Z(t))(4.21)

� n min
1�j�n

kzj(t)� ẑj(t)k
2

where ẑj(t) denotes the (orthogonal) projection of zj(t) onto the linear space

spanned by z1(t); : : : ; zj�1(t); zj+1(t); : : : ; zn(t).

It is worth noting that all projections appearing in this paper apply point-

wise and should not be confused with the L2{projections usually applied in

the theory of stochastic processes. The following result is the keystone for the

determination of �min(Zt).
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Proposition 4.4: (Lai/Wei (1982b))

Suppose that (A.2) holds. Let ut; vt and zt;1; : : : ; zt;n be Ft�1-measurable random

variables. Let Z(t) = (zij)1�i�t;1�j�n, wt = (w1; : : : ; wt)
0, ut = (u1; : : : ; ut)

0

and vt = (v1; : : : ; vt)
0. Let ŵt; ût; v̂t denote the projections of wt;ut; vt onto

L(Z(t)), the linear space spanned by the column vectors of Z(t). Let ^̂ut denote

the projection of ut onto L(Z(t); vt + wt) and let v�t denote the projection of

vt onto L(Z(t);wt). Suppose that

max

8<
:0; log

0
@ nX
j=1

tX
s=1

z2js +
tX

s=1

u2s

1
A
9=
; = o(t) a.s.(4.22)

Then

kwtk
2 = O(t) a.s. and lim inf

t!1

1

t
kwt � ŵtk

2 > 0 a.s.(4.23)

and

kut � ^̂utk
2 =

 
kvt � v

�
t k

2 + kwt � ŵtk
2

kvt � v̂tk2 + kwt � ŵtk2
+ o(1)

!
kut � ûtk

2 a.s.(4.24)

With the aid of Proposition 4.4 we can prove the following result which

determines the minimum order of the minimum eigenvalue in the stable case.

Theorem 4.5:

Suppose that (A.1),(A.2) and (A.3) hold and a 6= 1. If jaj � 1 and tr(Z t) =

O(t) a.s. then

lim inf
t!1

1

t
�min(Zt) > 0 a.s.(4.25)

If a < �1 then (4.24) holds on the event where

�
tr(Zt) = O(t); lim sup

t!1
�t <

2

1� a

�
:(4.26)

Proof:

We imitate the proof of Corollary 2 in Lai/Wei (1982b). In order to maintain

comparability we try to use their notation wherever possible. De�ne

yt(�) = (yp+1�� ; : : : ; yt��)
0 � = 0; : : : ; 2p;

wt(�) = (wp+1�� ; : : : ; wt��)
0 � = 0; : : : ; p;(4.27)

xt;i(�) = (xp+1��;i; : : : ; xt��;i)
0 � = 1; : : : ; p+ 1; i = 1; : : : ; n

�t(�) = (�p+1�� ; : : : ; �t��)
0 � = 1; : : : ; p+ 1
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with �t�� = a(�t�� � ��)0zt�� . Then (4.2) implies that for all t � p + 1 and

every � = 0; : : : ; p

yt(�) = ��1yt(� + 1) + � � �+ ��pyt(� + p) + ��p+1xt;1(� + 1) + � � �(4.28)

� � �+ ��nxt;q(� + 1) + �t(� + 1) +wt(�):

Notice that yt(�);xt;i(�);�t(�) and wt(�) are all Ft��-measurable. Further-

more we de�ne the matrices X(t) and Z(t) by

X(t) = (xt;1(1); : : : ;xt;q(1))(4.29)

and

Z(t) = (z1(t); : : : ; zn(t)) := (yt(1); : : : ;yt(p);X(t)):(4.30)

Now let jaj � 1. By construction we have Z(t)0Z(t) = Z t�1 � Zp�1. Since

tr(Zt) = O(t) a.s. by assumption and by Theorem 3.5 we can conclude that

tr
�
Z(t)0Z(t)

�
= O(t) a.s. and k�t(�)k

2 = o(t) a.s.(4.31)

We want to show that lim inf t!1
1
t
�min(Z(t)

0Z(t)) > 0 a.s. In view of (4.21)

this is equivalent to show that

lim inf
t!1

1

t
kzj(t)� ẑj(t)k

2 > 0 a.s.(4.32)

for all j = 1; : : : ; n with ẑj(t) the projection of zj(t) onto L
�
j (Z(t)), the linear

space spanned by z1(t); : : : ; zj�1(t); zj+1(t); : : : ; zn(t).

In the sequel we will repeatedly apply Proposition 4.4. Notice that the

assumption tr(Zt) = O(t) implies that condition (4.22) is ful�lled whenever we

apply Proposition 4.4 to the time series of our model.

Step 1: If q � 1, thus if equation (2.1) includes exogenous variables, consider a

column vector ut ofX(t) and denote byX�(t) the matrixX(t) with the vector

ut removed and by ût the projection of ut onto L(X
�(t)). (If q = 0 we can go

directly to Step 2.) By Assumption (A.3) and (4.21) we know that

lim inf
t!1

1

t
kut � ûtk

2 > 0 a.s.(4.33)

Now let ût;p be the projection of ut onto L(X
�(t);yt(p)). By (4.28) with � = p

we can infer that

yt(p) = vt(p) +wt(p)(4.34)

with some vt(p) = (vp+1; : : : ; vt)
0 such that vi is Fi�p�1-measurable for all

i = p+ 1; : : : ; t. By Proposition 4.4 (with ût;p playing the role of ^̂ut in (4.24))

kut� ût;pk
2 �

 
kwt(p)� ŵt(p)k

2

kvt(p)� v̂t(p)k2+ kwt(p)� ŵt(p)k2
+ o(1)

!
kut� ûtk

2 a.s.

(4.35)

with v̂t(p); ŵt(p) the respective projections of vt(p);wt(p) onto L(X
�(t)). Since

kvt(p)k
2 = O(t) a.s. by assumption and lim inf t!1

1
t
kwt(p)� ŵt(t)k

2 > 0 a.s.

by Proposition 4.4 it follows that

lim inf
t!1

1

t
kut � ût;pk

2 > 0 a.s.(4.36)
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Now let ût;p�1 be the projection of ut onto L(X
�(t);yt(p);yt(p� 1)). By a

similar argument as above we then obtain that lim inf t!1
1
t
kut � ût;p�1k

2 > 0

a.s. Proceding inductively in this way we �nally obtain

lim inf
t!1

1

t
kut � ût;1k

2 > 0 a.s.(4.37)

with ût;1 the projection of ut onto L(X�(t);yt(p); : : : ;yt(1)). Hence we have

shown (4.32) for all vectors zj(t) with j � p+ 1.

Step 2: Now (or if equation (2.1) includes no exogenous variables) consider

a column vector yt(�), � = 1; : : : ; p, of Z(t). De�ne the matrices Xt(�) and

Zt(�) by

X t(�) = (xt;1(�); : : : ;xt;q(�);(4.38)

Zt(�) = (yt(� + 1); : : : ;yt(� + p);Xt(� + 1); : : : ;Xt(1)):

Notice that by Assumption (A.2) the matrix Z t(�) is Ft���1-measurable. Then

de�ne the matrix Z�(t) as the matrix Z(t) with the column vector yt(�) re-

moved. Let y�t (�) be the projection of yt(�) onto L(Z�(t)) and ŷt(�) the

projection of yt(�) onto L(yt(1); : : : ;yt(� � 1);Zt(�)). We want to show that

lim inf t!1
1
t
kyt(�) � y�t (�)k

2 > 0 a.s. Since L(Z�(t)) � L(yt(1); : : : ;yt(� �

1);Zt(�)) implies that

kyt(�)� y
�
t (�)k

2 � kyt(�)� ŷt(�)k
2(4.39)

it is su�cient to show that lim inf t!1
1
t
kyt(�)� ŷt(�)k

2 > 0 a.s.

By construction yt(�) is the sum of a linear combination of some column

vectors of Z t(�) and the vector wt(�). Let �0;t be the projection of yt(�) onto

L(Zt(�)) then, since yt(�)� �0;t = wt � ŵt, Proposition 4.4 gives

lim inf
t!1

1

t
kyt(�)� �0;tk

2 > 0 a.s.(4.40)

Now let �1;t be the projection of yt(�) onto L(Zt(�);yt(� � 1)). Since

L(Zt(�);yt(� � 1)) = L(Zt(�); ��1yt(�) + �t(�) +wt(� � 1))(4.41)

and letting vt = ��1yt(�) + �t(�) Proposition 4.4 implies that with probability

one

kyt(�)� �1;tk
2 =

 
kvt � v

�
t k

2 + kwt(� � 1)� ŵt(� � 1)k2

kvt � v̂tk2 + kwt(� � 1)� ŵt(� � 1)k2
+ o(1)

!
�

�kyt(�)� �0;tk
2(4.42)

with v̂t the projection of vt onto L(Zt(�)) and v
�
t the projection of vt onto

L(Zt(�);wt(� � 1)). By assumption we have kvtk
2 = O(t) a.s., hence by

Proposition 4.4

lim inf
t!1

1

t
kyt(�)� �1;tk

2 > 0 a.s.(4.43)
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Proceding inductively in this way we �nally obtain

lim inf
t!1

1

t
kyt(�)� ���1;tk

2 > 0 a.s.(4.44)

with ���1;t the projection of yt(�) onto L(Zt(�);yt(� � 1); : : : ;yt(1)), hence

���1;t = y�t (�) by construction and Theorem 4.5 is shown for jaj � 1.

The proof for the case a < �1 is completely analogous except that all

considerations hold on the event (4.26).



Chapter 5

Convergence Results

Now we can reap the rewards of our work in the preceding chapters and show

some proper convergence results for the SG-algorithm.

Non-Autoregressive Models

For non-autoregressive models, thus if p = 0 holds in our model (2.1), the situa-

tion is quite simple since all assumptions ensuring convergence of the estimates

f�tg can be formulated as exogenous.

Theorem 5.1:

Suppose that for the model (2.1) with p = 0 the assumptions (A.1) and (A.2)

hold. Suppose furthermore that a 6= 1 and

�max(X t)

�min(Xt)
= O(1) a.s. and tr(X t)!1 a.s.(5.1)

with Xt =
PT

t=0xtx
0
t.

(i) If jaj � 1 then �t ! �� a.s.

(ii) If a < �1 then �t ! �� a.s. on the event

lim sup
t!1

x0txt

tr(Xt)
<

2

1� a
a.s.(5.2)

Theorem 5.1 is an immediate consequence of Theorem 3.5, hence we can

omit a proof. As a corollary we get a result which is closely related to the

results of Bray/Savin (1986), Fourgeaud et al. (1986) and Kottmann

(1990) for the OLS-algorithm.

29
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Corollary 5.2:

Suppose that for the model (2.1) with p = 0 the assumptions (A.1) and (A.2)

hold. Suppose furthermore that

1

T

TX
t=0

xtx
0
t �! X a.s.(5.3)

with some a.s. positive de�nite (possibly random) matrix X. Then �t ! �� a.s.

if a < 1.

Proof:

We only have to show that condition (5.2) holds for arbitrary a < 1. This is

equivalent to showing that �t = x0txt=
Pt

0x
0
sxs ! 0 a.s. But since

1� �t =
tr(
Pt�1

s=0 xsx
0
s)

tr(
Pt

s=0 xsx
0
s)

=
t� 1

t

1
t�1

tr(X t�1)
1
t
tr(Xt)

(5.4)

�t ! 0 a.s. is immediate from (5.3).

The condition (5.3) is ful�lled whenever fxtg is a covariance stationary and

ergodic stochastic process with a non-singular covariance matrix, thus for a large

class of stochastic processes. This is the assumption usually employed for the

exogenous variables in models with forecast feedback. But Theorem 5.1 covers

a more general situation since it assumes only that the persistent excitation

condition holds and that the trace of the matrix of moments diverges a.s. to

in�nity.

Thus our result is more general than the results obtained by all other au-

thors analyzing models with forecast feedback. The reason for this is that our

approach does not rely on a law of large numbers while the martingale ap-

proach of Bray/Savin (1986), the ordinary di�erential equation approach of

Marcet/Sargent (1989a,b,c), and the stochastic approximation approach of

Kottmann (1990) do. Only the algebraic approach of Fourgeaud et al.

(1986) relies on assumptions similar to the assumptions of Theorem 5.1 (but it

results in a consistency result only for a < 1=2 whenever xt is multivariate). No-

tice, however, that all these studies are concerned with the OLS-algorithm and

not with the SG-algorithm (which coincides with the OLS-algorithm only if xt
is univariate) hence, basically, we cannot compare the results with our results,

although the OLS-algorithm and the SG-algorithm have a similar structure.

To conclude this section we want to clarify the meaning of condition (5.2).

As shown in the proof of Corollary 5.2 the quotient �t converges towards zero

for all covariance stationary and ergodic processes, hence (5.2) does not imply

any restriction. In general, this does not automatically hold for processes ful�ll-

ing the PE-condition. For example, consider the following univariate unstable

AR(1) process given by

xt+1 = �xt + �t+1(5.5)
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with j�j > 1 and f�tg a martingale di�erence sequence ful�lling an assumption

analogous to (A.2). It is well known (see, e.g., Wei (1987)) that in this case

�t ! (�2 � 1)=�2 a.s. Then condition (5.2) is satis�ed only if

a > �
�2 + 1

�2 � 1
(5.6)

which gives a lower bound for the parameter a. In fact, this lower bound is

sharp and (5.2) turns out to be a necessary condition for convergence as some

computer simulations have shown (see also Zenner (1992)).

Autoregressive Models { The Stable Case

For autoregressive models, thus for the model (2.1) with p � 1, the situation

is more complicated. Since the estimates �t inuence the behaviour of the

endogenous variable yt the PE-condition is an endogenous property which we

have to prove �rstly before applying the convergence results of Chapter 3. We

obtain the following result.

Theorem 5.3:

Suppose that for the model (2.1) the Assumptions (A.1){(A.3) hold and jaj < 1.

If the characteristic polynomial (4.6) possesses roots only inside the unit circle

then �t ! �� a.s.

Proof:

By Theorem 4.2 we have �max(Zt) = O(t) a.s. and by Theorem 4.4 we obtain

lim inf t!1 t�1�min(Zt) > 0 a.s. Hence the PE-condition holds a.s. and by

Theorem 3.5 we obtain �t ! �� a.s.

Theorem 5.3 is a proper result which has no counterpart for the OLS-

algorithm in the literature since none of the employed approaches is able to

handle the simple model (2.1). The reason for this lack of ability can be seen

as follows. We can understand the process fytg as an ARX process with time

varying parameters given by

yt+1 = f(�t)
0zt + wt+1(5.7)

with the feedback function f : IRn ! IRn which maps the em perceived law of

motion, �t, into the actual law of motion, f(�t), of the process fytg. In our

model the feedback function is given as f(�) = � + a�.

This simple linear feedback function looks harmless since it is Lipschitz con-

tinuous and contracting if jaj < 1. Nevertheless, a small change in the argument

of f can imply substantial changes in the qualitative long-term behaviour of the

process fytg since the qualitative long-term behaviour of a (constant parameter)

autoregressive process di�ers drastically depending on whether the character-

istic polynomial possesses roots only inside the unit circle or not. Hence if the



32

range of the feedback function f is not restricted to values that imply a `stable'

characteristic polynomial the qualitative long-term behaviour of fytg is by no

means determined apriori but depends on the evolution of the estimates �t.

Vice versa, the evolution of the estimates depend, sometimes also drastically

via the quotient �t, on the qualitative long-term behaviour of fytg. This kind of

feedback is the reason why the analysis of autoregressive models with forecast

feedback is so di�cult.

The ODE approach of Marcet/Sargent (1989a,b,c) and Chang et al.

(1991a,b,c) tries to avoid this problem by requiring that the range of the feed-

back function is restricted to some kind of `stable region'. Clearly, the feedback

function in our model, f(�) = � + a�, does not ful�ll this assumption. Hence

their approach fails to solve our problem. For this reason the scope of the or-

dinary di�erential equation (ODE) approach of Ljung (1977) on which these

studies rely is limited since, as shown in Chapter 2, even elementary economic

applications do not satisfy this stability assumption. Moreover, we believe that

the question of whether learning agents can destabilize an economic system or

not is the most interesting one. We have shown in this paper that whenever

the REE is stable (i.e., whenever the characteristic polynomial possesses roots

only inside the unit circle) and the inuence of agents' predictions is limited

(i.e. if jaj � 1) then agents learning by the SG-algorithm cannot destabilize the

system and do, in fact, learn to form rational expectations in the sense that

their parameter estimates converge with probability one towards the rational

expectations parameter.

As already mentioned this result is completely new and has, to our knowl-

edge, no counterpart in the literature although Kottmann (1990) has shown

a convergence result for the SG-algorithm in autoregressive models. But he

embeds the consistency problem in a problem of adaptive control of autoregres-

sive processes in a way that the agents' predictions are used (in a very special

way) as control inputs in order to track the process fytg close to some reference

path (see also Bas�ar (1989) for this approach). We believe that this is not

the right way to look at the problem whether agents can learn to form rational

expectations.

Although Theorem 5.3 is a satisfactory convergence result it is natural to

ask whether it is the most we can expect. For example one could ask whether

it is possible to weaken the assumption jaj � 1 such that �t ! �� a.s. still holds.

We claim that this is not possible. As already noticed by Bray/Savin (1986)

in their simulation study of the model (2.1) jointly with the OLS-algorithm a

parameter a > 1 seems to lead with probability one to exploding estimates.

We observed the same behaviour for the SG-estimates in our simulations. Un-

fortunately, we cannot prove this fact analytically, neither can Bray/Savin,

although they give an intuitive explanation for their belief which can be carried

over to the SG-algorithm.

If a < �1 then, in order to apply Theorem 3.5, we have to ensure that

lim inf t!1 �t < 2=(1 � a) a.s. to obtain �t ! �� a.s. But, as our computer

simulations have shown, this is not possible since the asymptotic behaviour of

the quotient �t depends on the asymptotic behaviour of the estimates �t in a
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way that, for example, a large initial value �0 can lead with positive probability

to realizations of the process fytg such that �t > 2=(1 � a) holds for almost

all t � 0, especially if jaj is large. In such a case the estimates �t explode.

This kind of feedback behaviour of autoregressive models was also observed by

Cyert/DeGoot (1974) in a Monte{Carlo study. Again, we cannot prove that

P (k�tk ! 1) > 0 if a < �1 although we believe that it is true.

Autoregressive Models { The Unstable Case

Now we consider the case that the characteristic polynomial possesses also roots

on or outside the unit circle. Since in that case the convergence results which

can be achieved are less satisfactory and additional technical di�culties arise

we omit formal proofs. We only outline briey and sometimes heuristically how

proofs can be given.

Let �1; : : : ; �k denote the roots of the characteristic polynomial (4.6) and

m1; : : : ; mk the respective multiplicities. De�ne

�� = max
1�i�k

j�ij and M = max
j�j j=��

fmjg:(5.8)

Then it is well known (cf. Lai/Wei (1985)) that for the companion formmatrix

A de�ned by (4.5) there exists a positive constant c such that

kAtk � ctM�1��t as t!1:(5.9)

Now suppose that (A.1) and (A.2) hold and jaj � 1. Then it is not di�cult

to show under the assumptions (4.7) and (4.8) of Lemma 4.1

tr(Zt) = O(t�) a.s.(5.10)

for some � � 2 if �� = 1, and

tr(Zt) = O
�
t2(M�1)��2t

�
a.s.(5.11)

if �� > 1. In addition, if �� > 1 it can be shown that the process fytg explodes

geometrically in modulus a.s. If �� = 1 the results of some computer simulations

suggest that 1
t
tr(Zt)!1 a.s. Hence in both cases we obtain 1

t
�max(Zt)! 1

a.s.

Now suppose that the model (2.1) with �� � 1 includes some exogenous

variables for which (A.3) holds. Since

�min(Zt) � �min(Xt) � �max(Xt) � �max(Zt)(5.12)

we face the situation that �min(Zt) and �max(Zt) are of di�erent order and the

PE-condition does not hold. Therefore we cannot apply Theorem 3.5 to show

consistency. Instead we want to apply Theorem 3.6.

Suppose for the moment that p = 1 and a 6= 1. Then the characteristic

polynomial turns out to be

�(y) = y � ��1 =
1

1� a
�1(5.13)
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and possesses only the root y� = (1� a)�1�1. Then Theorem 3.6 implies that

�t;1 ! ��1 a.s. whenever jaj � 1 and �1 � 1� a.

Thus the �rst component of the rational expectations parameter �� will be

identi�ed properly by the SG-algorithm while for the other components we only

know that they remain bounded a.s. Hence the limit expectations of agents can

be non-rational but, since zt;1 dominates the whole vector zt and �t;1 ! ��1
a.s., their predictions �t

0zt are close to the `rational predictions' ��
0
zt in relative

terms, i.e. kztk
�2[(�t � ��)0zt]

2 is small.

Now suppose that p > 1. Then the situation is even more complicated

since we have to verify the condition (3.38) of Theorem 3.6, which requires that

lim inf t!1 �min(Z
�
t ) > 0 a.s., in order to get a convergence result. Generally,

we have Z�
t = r�1t

Pt
0 ysy

0
s, since (3.35) holds for all i = 1; : : : ; p and (3.36) for

i = p+ 1; : : : ; n.

For constant parameter autoregressive processes it is well-known (see, e.g.,

Lai/Wei (1983)) that (3.38) holds only if all the roots of the characteristic

poynomial lie outside the unit circle and have the same absolute value. Other-

wise we have limt!1 �min(Z
�
t ) = 0 a.s. Therefore only in that very special case

the SG-algorithm will generate consistent estimates for the p �rst components

of ��. We believe that the same holds in our model, at least if jaj � 1. Hence,

even consistency of only some components of the SG-algorithm is very unlikely

to occur in the unstable case with p > 1 (more exactly, the set of parame-

ter values a; �1; : : : ; �p which induce consistency of the �rst p components has

Lebesgue measure zero).

Examples

As an application and illustration we want to give two examples. Firstly, we

continue with the example presented in Chapter 2, then we extend the model

of Muth (1961) in order to obtain a non-trivial autoregressive model.

Example 5.4: (Example 2.1, continued)

The reduced form equation of this model is given as (cf. (2.3))

pt+1 =
d1 � d2

�
�



�
pet+1 �

1

�
ut(5.14)

thus is of the form (2.1). We assume futg to be a martingale di�erence sequence

such that Assumption (A.2) is ful�lled. We assume furthermore that the agents

believe in the auxiliary model1

pt+1 = �0zt + wt+1(5.15)

1Of course, this auxiliary model is quite ad hoc and its use in economic theory has to be

rationalized. One argument to support it is the observation that human beings tend to look

always into the past to predict future events, even in situations where it is not appropriate.

However, this model serves us only as an easy to understand application of our model setup.
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with zt = (pt; 1)
0 and � 2 IR2 and form their expectations according to pet+1 =

�0tzt with �t given by the SG{algorithm. The resulting model equation is then

pt+1 =
d1 � d2

�
�



�
�t;2 �



�
�t;1pt �

1

�
ut:(5.16)

Let wt = ���1ut and

a = �


�
and � =

 
0

d1�d2
�

!
:(5.17)

Then (5.15) can be rewritten as

pt+1 = (�+ a�t)
0zt + wt+1:(5.18)

Thus the (unique) rational expectations equilibrium parameter is

�� =

 
0

d1�d2
�+

!
:(5.19)

Clearly, the rational expectations equilibrium is a stable ARX{process (with

non-existing AR{part2) hence, since

jaj � 1 ()  � �;(5.20)

we obtain by Theorem 5.3 that �t ! �� a.s. if  � �. Thus whenever the usual

cobweb stability condition is ful�lled agents learn to form rational expectations.

If  > � then we cannot infer that there is a.s. convergence. In fact,

as our computer simulations of this model have shown there is convergence

only with a positive probability. We observed, for the same initial values, as

well convergent trajectories of f�tg as divergent trajectories, depending only

on the respective trajectories of the disturbance process fwtg. Nevertheless,

the qualitative long-term behaviour of f�tg is not completely random. The

simulation results suggest that the functions

�����
���� 7! P(�t ! ��)(5.21)

k�0 � ��k 7! P(�t ! ��)

are both (monotonically) decreasing3. 2

2Notice that this example does not �t exactely into the setup of Chapter 2 since the

information set the agents' predictions are based upon contains the sun-spot variable yt.

Nevertheless, the analysis of Chapter 3 and 4 holds also for this case.
3We observed convergent trajectories even for the highly unstable market situation rep-

resented by =� = 4. Nevertheless, most of the trajectories diverged with that parameter
con�guration.
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Since Example 5.4 incorporates the somewhat implausible assumption that

the agents believe in an autoregressive model although the REE is an non-

autoregressive process4 we want to give another example in which this assump-

tion is more plausible.

Example 5.5:

We extend the previous model by introducing an additional type of �rms into it.

More precisely, we assume that one fraction, say a2, of the producing �rms are

learning about the unknown hypothetical parameter as before while the other

fraction, say a1, uses the `classical' or `naive' expectations formation scheme

pet+1 = pt. The market expectation is then given as

pmt+1 = a1pt + a2�t
0zt(5.22)

with a1; a2 > 0, a1+ a2 = 1, zt = (pt; 1)
0 and f�tg given by the SG-algorithm5.

For this model the resulting model equation is

pt+1 =
d1 � d2

�
�



�
a2�t;2 �



�
(a1 + a2�t;1)pt �

1

�
ut:(5.23)

Let wt = ���1ut and

a = �a2


�
and � =

 
�a1

�
d1�d2

�

!
:(5.24)

Then (5.23) can be rewritten as (5.18), hence the model �ts into our setup. The

rational expectations equilibrium parameter is easily calculated as

�� =

 
� a1

�+a2
d1�d2
�+a2

!
:(5.25)

In order to derive su�cient conditions for a.s. convergence of f�tg notice

that

jaj � 1 () a2


�
� 1(5.26)

and that the characteristic polynomial possesses only the root �a1=(�+a2).

Since ����� a1

� + a2

���� < 1 () (a1 � a2)


�
< 1(5.27)

and
1

a2
<

1

a1 � a2
() a2 >

1

3
(5.28)

we obtain in view of Theorem 5.3 as su�cient conditions for �t ! �� a.s.



�
� 1 or a2



�
� 1 ^ a2 >

1

3
:(5.29)

4See Bray (1983) for a di�erent treatment of this model.
5Notice that in this model the assumption that agents believe in an autoregressive auxiliary

model is more plausible since the fraction of `classical' �rms establishes an autoregressive
relationship between pt and pt+1.
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Under these conditions the REE is a stable autoregressive process and the SG-

algorithm generates consistent estimates. If

1

a2
�



�
�

1

a1 � a2
(5.30)

then the REE is unstable and we obtain only �t;1 ! ��1 a.s.

These results can be interpreted in the following way. Firstly, under the

usual cobweb stability condition the price process is stable and the �rms fol-

lowing the SG-learning procedure learn to form rational expectations with prob-

ability one.

Secondly, the learning �rms have a stabilizing e�ect in the sense that even

for parameter con�gurations which reect an unstable market situation, i.e.,

if =� > 1, the resulting price process can be a stable autoregressive process.

Therefore it is necessary that, on the one hand, the fraction of learning �rms

is su�ciently small to ensure =� � 1=a2 (so that the estimates converge) and,

on the other hand, that it is su�ciently large to ensure (1� 2a2)

�
< 1 (so that

the REE is stable). Notice that whenever a2 > 1=2, thus whenever the learning

�rms `dominate' the market, the REE is always stable.

But also the `classical' �rms have a stabilizing e�ect. Suppose that � and

 are given such that =� > 1. Then we know by Example 5.4 that without

`classical' �rms in the market the SG-learning procedure does not converge with

probability one. But if there are `classical' �rms in the market in a quantity

such that =� � 1=a2 = 1=(1� a1) and (2a2 � 1) 
�
= (1� 2a2)


�
< 1 holds the

SG-learning procedure converges with probability one.

Finally, we want to remark that in an REE neither the market prediction

nor the predictions of the `classical' �rms are rational, only the predictions of

the learning �rms are rational6. Hence the `classical' �rms do not participate

in the success of learning of the other �rms. 2

6This property seems to contradict the de�nition of the REE in Chapter 2. But we un-

derstand the `classical' �rms as part of the economic surrounding since they are completely

ignorant with repsect to the evolution of the price process and persist robot-like in their

expectations formation scheme.
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