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Abstract

We demonstrate that in a CAPM economy Walras Law and the Tobin
Separation Property characterize market demand on finite sets of prices.
Consequently, for any number n there exist CAPM economies which have
at least n equilibria and hence have n different beta pricing formulas. It
is shown that the lower bound on the number of equilibria, n, is robust
to pertubations of endowments.
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1 Introduction

The Capital Asset Pricing Model ( CAPM ) is a rich source of intuition and the
basis for many practical financial decisions. Being built around the means and
covariances of the payoffs of securities, it finds its roots in Markowitz’s (1952)
description of the mean-variance portfolio selection problem. In its equilibrium
form, the CAPM goes back to Sharpe (1964), Lintner (1965) and Mossin (1966).
Given an assumption of “variance-aversion” on agents’ preferences it can be
shown that, for every announced price system, all agents will be satisfied with
holding shares of the same two funds, the riskless asset and the price system
(Tobin (1958)). At equilibrium the later fund can be replaced by the market
portfolio. From this Mutual Fund property one then deduces a simple and
extremely useful linear pricing relation expressed in terms of betas and rates of
returns.

Recently new efforts have been devoted to the study of the CAPM as a
general-equilibrium model in which the natural questions of existence (c.f. Nielsen
(1990) and Allingham (1991)) and uniqueness (c.f. Nielsen (1988) and Dana
(1994)) of an equilibrium are important. In this note we continue along this line
of research and address the question of the structure of market demand in the
CAPM. We will show that given any choice of a finite number of price systems
and according demands satistying Walras Law and the Tobin Separation Prop-
erty there exist two variance-averse agents whose market demand coincides with
the preassigned values. This result parallels results known in the general equi-
librium literature (c.f. Shafer and Sonnenschein (1982) for a survey and Andreu
(1982) for such a result on a finite number of prices).

Our result thus shows that the Tobin Separation Property is the additional
structure which is gained in the CAPM over the classical general equilibrium
model (c.f. Arrow and Debreu (1954)). As a corollary it is obtained that for any
number n there exists a CAPM economy which has at least n equilibria. Across
these equilibria relative prices of assets and asset allocations differ. Hence there
are at least n different beta-pricing formulas. The lower bound on the number
of equilibria, n, is shown to be robust to endowment pertubations.

2 The Model

Let (M, M, i) be a probability space. Consider L, the space of real-valued mea-
surable functions on (M, M, n). We endow L with the scalar product x -y =

E(z,y) where E(x,y) = [y x(m)y(m)du and with the norm ||z| = /E(x, z).



For later reference we write the covariance of x,y € L by Cov(x,y) = E(x,y) —
E(x)E(y), where E(x) = [; x(m)du is the expected value of x. The consump-
tion set will be the subset of £ with finite variance, L*(p) = {z € L | ||z||* < oo}.
The price space is the consumption space’s dual space, also L*(u).

Let X denote the marketed subspace of the consumption space L*(x). We
assume that X is a closed vector space. The space X can be interpreted as the
set of linear combinations of an underlying set of securities in L*(p). Security
markets are complete if X = L*(p); otherwise they are incomplete.

Let T be a riskless asset, in the sense that I(m) = 1 for all m in M. We
assume that T € X. It is convenient to decompose every x € L*(u) as the
sum of a riskless asset with the same mean as  and a vector that has mean 0,

r=xll+ &, where 2 = F(x) and F(i) =3 -1=0.

We normalize prices so that p = T+ p, i.e. p = 1 for all p € L*(u) we
consider. An agent ¢ = 1,..., [ is described by his endowments w' € X and his
utility function u* : X — IR. The agent’s decision problem is

max ul(:zj)
z€X,p-rlpw

Under the assumptions made, this decision problem can be derived from
an agent’s portfolio choice problem by recognizing that asset prices must be
arbitrage free; i.e. they can be expressed in terms of state prices p € L*(u).
Furthermore, note that without loss of generality we can restrict state prices to

ly in X. Components of p which are in X1 do not contribute to the value of
comsumption bundles in X.

Given this set-up, the essential assumption that makes the model a CAPM
is the

Assumption 1 (mean—variance preferences)

Every agente =1, ..., 1 has variance averse mean—variance preferences, i.e. there
exist functions v’ 1 IR x Ry — IR, (g, o) — v'(y, o) increasing in pu and decreas-
ing in o such that for all v € X u'(z) = v'(u(x),0(z)) , where p(x) = E(x) and
o(x) = [|z]].

In addition, for demand to be a well defined function, we introduce the
following assumption which goes back to Sharpe (1964).

Assumption 2 (strict quasi—concavity)

For every agent i = 1,...,1 the utility function v' is conlinuous and strictly
quasi—concave.



Definition. A consumer that satisfies Assumptions 1 and 2 is called a« CAPM

consumer.

3 The Main Result

The following proposition on demand of a CAPM consumer is due to Tobin

(1958).

Proposition 1 (Tobin Separation Property)

For all p € X the demand of a CAPM consumer @ lies in the span of 1 and p.
More precisely it has the form

2(p) = (p- w0 + |5l6(3) T — ¢ (3)-L (1)

|
where ¢'(p) is a real valued non-negative function and ¢'(0) = 0.

Proof. Let us first note that if p = 0, then the price is collinear to the riskless
asset. In this case the riskless asset is the most preferred consumption plan in
the budget set since any other plan would have the same mean and a greater
variance. This means that ¢(0) = 0 and the formula still makes sense when
p=0.

Let @ € arg maxex u(x) s. t. p-a < p-w. Then by Assumption 1, p-a = p-w.

We first show that = is in the span of T and p, or — equivalently — 1T and p.
Decompose x = y + z, where z is perpendicular to T and p. Write y in the form
y=al— qﬁﬁ, for some scalars o and ¢. From this follows that p-z = 0 so that
y 1s also budget feasible. But from z being perpendicular to 1 it follows that
¥ = y. Furthermore

121* = 1lg + 201 = lglh* + 1207 > Ng]
because Z is perpendicular to 7. Hence z = 0.
We next deduce a = p - w + ¢|[p|| from Walras’ Law, p-y = p- w.

To show that ¢ is non negative, note that I/(x) = p-w + ¢||p|| and Var(z) =
#*. Thus, since Variance is disliked, (p-w + ||p|[|¢(p)|) T — |q§(}5)|”%”, is preferred

to (p-w + [Pl (=[é(p) )T — (~[¢(p)]) 5 unless ¢ = 0, where |g] denotes the

absolute value of ¢. This implies that ¢ i1s non-negative.

Strict quasi—concavity implies the uniqueness of the optimal portfolio. This
ends the proof of Proposition 1. a



The Tobin Separation Property is inherited by market demand z(p) = S0, 2*(p).
Taking the market clearing condition z(p) = w into account (where w = 3>7_ w?)
establishes the Mutual Fund Property. This property says that at equilibrium
every agent holds a certain fraction of just two funds: the market portfolio w
and the riskless asset 1.

The main result shows that the Tobin Separation Property is the chief addi-
tional structure which a CAPM demand has compared with the classical Arrow-

Debreu model does not possess.?

Theorem 1 For any market portfolio w € X with positive mean and variance
and any finite set of prices in X with pairwise different norms any function that

satisfies Walras Law and the Tobin Separation Property is the aggregate demand
of two CAPM consumers.

Proof. We prove that two CAPM consumers are enough to generate such func-
tions x(p). Recall that the Tobin Separation Property implies that there are
non-negative values ¢(p1),...,¢(p,), so that for p=py,...,p,

o(p) = (- w0+ IBIOG)T = 6(5) 7o

We know from the Tobin Separation Property that the demand for a given
price lies in the span of the riskless asset and the price vector. The solution
to the individual optimisation problem is thus the same as the solution of the
problem

max ul(:zj)
rz€IR1+ Rp, p-x=p-w®

The budget set is a line in this space, it is given by the parametrization
¢ (p-w' +|p||le)l — qﬁﬁ. We even know that an optimal consumption plan
corresponds to some non-negative ¢. So that in the IR + Rp plane which admits
an orthonormal basis (]I, —ﬁ), the solution to the agent’s problem is the same
as the solution of

max u' cw' p|lo) T — p )
g (' + 51001 - o

Figure 1 shows the plane generated by 1 and p for an typical consumer z.

!Note that Rolle’s (1977) critique applies to the Mutual Fund Property and not to the
Tobin Separation Property.
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- Figure 1 -

The budget line in the (1, p) plane has intercept p-w’ with the l-axis and has
slope ||p]]. It is important to note that because of Assumption 1 the indifference
curves of the agent are the same in every (I, p) plane.

This remark justifies drawing all budget half-lines in the same plane. In this
plane a vector « has two coordinates & and ||Z||. One may then define the budget
set

B'(p) = {(n.0) € B*|u = (p-w' +||pllo), o = 0}.

These halt-lines may or may not intersect. The first agent will be given the
endowment w' = 0. Then the half-lines B'(p) never intersect.

Take w? = w as the second agent’s endowment. For every pj define v as
the minimal first coordinate of the intersection of B*(py) with B?*(p;),l # k. Let
furthermore ¢?(p) = min(vx/2, ¢(pr)/2). In the two dimensional space, the
weak axiom of revealed preference is not violated for agent 2 if he is required to
demand the point in B*(py) with coordinate ¢*(py).

Figure 2 illustrates this decomposition. In this figure the * symbol denotes
the market demand that is decomposed into the first and the second agent’s
demand, denoted by m and e, respectively.



- Figure 2 -

We introduce now an auxiliary economy in which we shall only specify prefer-
ences of the agents on two goods (not endowments). The first good, the quantity
of which is denoted by y; corresponds to = in £, the second good, the quantity
of which is denoted by y, is a linear decreasing function of ||#|| of the form
y2() = K — ||Z]|. To every utility function V* in this auxiliary economy one
associates one in the original economy by composition (u'(z) = v'(y1(2), y2()),
yi(z) = &, yo(x) = K — ||| > 0.) This will put us in the position to apply an
extension of Afriat’s theorem given by Chiappori and Rochet (1987).

Let ,, = max  ¢"(p;) and define the demand of the agent 7 in (y1,¥2)

k=1,2,l=1,...,n
coordinates as

g = (pk Fw' Hﬁk!W(ﬁk))
’ 20m = ¢'(Px) )

The corresponding price vectors are

- (Hp;kH) |

Figure 3 shows a typical consumer’s decision in the former (1, p) and the new
(y1,y2) diagram.
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By construction, the demand of both agents satisfies the weak axiom of
revealed preference which in two dimension is equivalent to the strong axiom
(cf. Rose (1958)). Furthermore, we have chosen the demand of individuals so
that it is different for all price vectors py,...,p,, so that the strong version of
the strong axiom of revealed preference (cf. Chiappori and Rochet (1987)) is
satisfied.

Hence, for each agent there is a continuously differentiable, strictly concave,
monotonic utility function, v*, rationalizing his demand behavior.

The continuously differentiable and strictly convex mean-variance utility
function is given by the function v* restricted to IR, I 4+ IR, p. Hence, a contin-
uous and convex utility function v'(p, o) exists so that for every i = 1,2 and

[

Y

((pr-w' +Bll6' (1)), &'(31)) = arg  max  o'(p,0).

(1,0)€B(pr)

Now when considering the two agents in the original good space

(-t + 13l () 1= (6(3)) Lo = arg__ . wi(a)

71| reX,ps<pw
Summing the demand of the two agents ends the proof of the theorem.

a

Theorem 1 parallels the Sonnenschein-Mantel-Debreu results which show that
on a compact set of prices any continuous function which satisfies Walras Law



can be generated as the market excess demand of an Arrow-Debreu exchange
economy with as many agents as the dimension of the commodity space. In our
result we only need two consumers to generate an infinite dimensional market
demand. This is possible because due to the mean-variance assumption the
commodity space we work with becomes effectively two dimensional. A more
substantial difference is that we do not impose any non-negativity constraints
on individual demands. Introducing such constraints in the CAPM would rule
out the important case of normal distributions and moreover would conflict with
the Tobin-sepatation properly. With non-negativity constraints market demand
has some additional properties (cf. Shafer and Sonnenschein (1982)) and in this
case market excess demand has some additional properties when - as it is in
our theorem - aggregate endowments are given at the outset (cf. Koch (1989)).
The most important difference is that our theorem holds on a finite set of prices
only. This assumption is however essential since not every function ¢(p) can be
decomposed as a (finite) sum of functions of p - w® and |[p||. Note that sums
of the form 37, &'(p - w',||p||) cannot generate arbitrary cross derivatives of
all order. For our result it is not essential that in the finite set of prices we
consider, no pair of prices has the same norm. In our construction we need this
asssumption because it might otherwise happen that prices with the same norm
give the same value to the market portfolio and yet market demand is different
for these two prices. Following our construction, however individual demand
has to be the same for both prices since in the (I, p) space very agent’s budget
lines are identical in the two situations. We can dispense with this assumption
at the expense of assuming that ¢(p) is bounded away from zero. If this is the
case, we choose a vector w € X such that for any such prices the value of w
differs. We then endow agent one with 21+ cw. Concerning agent 2, now being
endowed with w — (%]I + ), we follow the same construction as before. Note
however that the budget lines of agent 1 might intersect now. Letting ¢ tend
to zero we can ensure that these intersections tend to the 1 axis. Consequently,
there is some ¢ > 0 for which the residual market demand which agent 1 has to
consume is larger than the largest value of these intersections. The proof is then
completed as previously.

4 Number of CAPM-equilibria

In this section we show that for any number n there exist CAPM economies
with at least n equilibria. The equilibria will differ in relative asset prices as
well as in asset allocations. Hence there are at least n different beta-pricing
relations. Furthermore, the lower bound on the number of equilibria, n, is robust



to endowment pertubations.

Let the market portfolio be

w=wl—w,w>0,||>0.

In terms of Proposition 1, a CAPM-equilibrium is a price system, p, such
that

(o b ) 1= = o — o 2)

Hence equilibrium prices must be such that p is colinear to w, say p = fw
for some 3 > 0. Theorem 1 has shown that on finite domains the function
#(p) := 3, ¢'(p) does only need to satisfy the non-negativity condition ¢(p) > 0.
Thus leaving the decomposition of ¢(p) to Theorem 1, a CAPM-equilibrium is
completely described by a pair of non-negative scalars (3, ¢). Consequently it is
obtained

Corollary 1

For any number n there exist CAPM-economies with at least n equilibria. Fur-
thermore, the lower bound on the number of equilibria, n, is robust to pertubations
of the endowments.

Proof. Consider the pairs (8, ||W||)k=1,..n» Where g, > 0, k = 1,....n

are n different scalars. Then pp = T+ G0 , k = 1,...,n are n different
equilibrium price vectors. Indeed, py - w = (I + ) (wll — @) = w — Bi||w]|?
and ||pr]| = Bil|@]]. Thus ¥; ¢'(p) = ||| solves equation (2).

[l B
Br||w]]

w=wl—1w.

g

(w = Bell]l* + Billw]l]|o]) X

Figure 4 illustrates these equilibria in an Edgeworth-Box diagram. Note that
for the second agent’s budget lines higher intercepts correspond to lower slopes
so that budget lines actually intersect. It is easily veryfied that all budget lines

B*(p) :=={(p,0) e R*|p = (p-w* +|pllo, o> 0}

intersect in the point (w, ||w]|).

10
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For the robustness of the lower bound on the number of equilibria consider
Figure 5. There we have plotted ¢ against 3. For fy,..., 3, we have ¢ = ||w|,
which is the equilibrium value.
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- Figure 5 -
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To make the lower bound on the number of equilibria robust, for intermediate
values of 3 choose ¢ to be alternating between some positive and some negative
value. Application of Theorem 1 to all these values (including the original val-
ues f1,...,3,) gives a CAPM-economy with at least n equilibria. The market
demand function ¢ : IRy — R4 is given by the sum of the two agent’s demand
@', ¢* which by the Corollary in Chiappori and Rochet (1987) are continuous
functions of income and (relative) prices, i.e.

3(8) = ¢'(0, Bll@]]) + ¢*(w — Bll@]*, Bll@]]) -

Market excess demand is a function Z(3,w) = ¢(3,w) — ||w||. Now suppose
we did perturb w slightly to @w. As Z is continuous in w, for the intermediate
values of 3 which we have chosen Z(3, ) remains strictly positive respectively
strictly negative. And as Z is continuous in 3 by the mean value theorem we
still obtain at least n equilibria.

a

The equilibria which are constructed in Corollary 1 differ with respect to the
size of the risk premium which is deducted from the expected value of an assets
payoff. In the CAPM risk is measured by the covariance of an asset and the
market portfolio. Recall that w = wll — @ and pp = 1T + Frw.

Thus the value of an asset x € X is given by
prrx=(1+60) - 2=2+ B x
Note that @ - @ = cov(w, x) = —cov(w, x) thus
pr - =T — fBreov(w, ) (3)

Hence in every CAPM-equilibrium risk is measured in the same way. The
risk premium however is indeterminate.
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