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Abstract

We demonstrate that locally, Walras Law and Homogeneity charac-

terize the structure of market excess demand functions when �nancial

markets are incomplete and assets' returns are nominal. As an applica-

tion it is shown that { in contrast to the complete markets case { when

markets are incomplete there is no general rule describing the e�ects which

monetary policy has on asset prices.

Keywords: excess demand functions, incomplete markets,
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JEL Class. No.: D 52, C 62.

1



1 Introduction

On compact sets of prices Walras' Law and Homogeneity characterize the struc-

ture of market excess demand functions in the Arrow-Debreu model. This result,

that goes back to Sonnenschein (1973), Mantel (1974) and Debreu (1974), has

sometimes been attributed to the fact that in the Arrow-Debreu model the trad-

ing mechanism is overly simpli�ed. In this model a complete set of contingent

contracts is traded at the beginning of time, and there is no further trade in

later periods.

A possibly more realistic setting is considered in the General Equilibrium

Incomplete Markets' (abbreviated GEI) model, where we have a sequence of spot

markets, connected via an incomplete system of �nancial markets. Bottazzi and

Hens (1996) have shown that the result of Debreu (1974) can be extended to the

GEI-model with real assets. This result exploits the fact that with real assets

individual demand exhibits similar properties as when markets are complete.
Hence the structure of the argument used in Debreu's proof of the excess demand
decomposition can be extended to this case.

This is no longer true when assets are nominal. In this case individual demand
has some distinctive features which do not allow an immediate parallel with the
complete market case. In particular, the dimension of the price domain over
which demand is de�ned is larger, with nominal returns, than the dimension
of the space where demand lies. Since by a revealed preference argument the

space where demand moves as prices vary has to be of a lower dimension than
the space where it lies, the larger dimension of the price domain imposes some
restriction on the way demand varies with prices.1 Furthermore, unlike for the
real asset case, a decomposition of the Jacobian of agents' demand into two
terms describing an income and a substitution e�ect is no longer possible. Also

the conjecture was advanced (see Mas-Colell (1986)) that with nominal returns
Walras' Law and Homogenity do not su�ce to characterize the structure of
market excess demand when �nancial markets are incomplete.

The purpose of this paper is to show that the Sonnenschein-Mantel-Debreu
result nevertheless extends to the case of incomplete �nancial markets with nom-

inal returns. The claim will be proved by considering the Jacobian of the aggre-

gate demand function. By the above considerations a simple extension of the
argument provided for the complete market case (see in particular Geanakoplos-

Polemarchakis (1980)) is not possible with incomplete markets and nominal re-

1Building on this, John Geanakoplos (1994) gave an example of a function, satisfying
continuity and the budget constraint with nominal incomplete asset markets which cannot be
rationalized as an individual agent's demand.

2



turns. A di�erent argument is then presented. The result will be established

through a series of intermediate results which are of independent interest.

As an interesting application we consider the e�ects of monetary policy on

equilibrium asset prices. In doing this we follow Magill and Quinzii (1992) and

close the model by adding to the market clearing conditions a simple system of

equations implying the validity of the quantity theory of money. In this setting

an increase in the money supply in some state of nature proportionally increases

the spot price level in that state. When �nancial markets are complete, one gets

then a simple rule describing the transmission of monetary policy to equilibrium

asset prices: prices of assets with positive pay-o� in that state will decrease while

those with negative pay-o�s increase. Our result shows that with incomplete

markets equilibrium asset prices can move in any direction, following a given

change in monetary policy. Hence no statement on a money transmission rule

can be made without the knowledge of the characteristics of the agents' utility

functions and endowments.

The rest of this paper is organized as follows. In the next section we describe
the GEI-model with nominal returns. Thereafter we characterize the local struc-
ture of an individual's excess demand. In the main part the disaggregation result
is established. Finally, as an application, we demonstrate that with incomplete
markets the e�ects of monetary policy on asset prices (and welfare) can go in

any direction.

2 The Model

We consider here a standard two period general equilibrium model with an in-

complete set of �nancial assets whose payo�s are denominated in abstract units
of account. We will assume that in every spot market a single commodity is
available. This assumption is mainly motivated by the need to make the argu-
ment, and the notation, clearer and should not be viewed as being restrictive.
Our main focus is in fact on the consequences of the nominal structure of re-

turns and, in any case, our results extend to economies with several goods.2 The

details of the model are as follows.

There is a �nite set of agents h = 1; : : : ;H symmetrically informed about the

uncertainty in the economy. At date t = 0 the agents take portfolio decisions

and make consumption plans, knowing that at t = 1, when assets pay o� and

2This follows from an appropriate combination of the results in this paper with the disag-
gregation result for economies with complete markets (as in each state there is a complete set
of spot markets).
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consumption plans are carried through, one of S states of the world occurs.

There is no �rst period consumption; the consumption set is then IRS
+, the non-

negative orthant of the S-dimensional Euclidean space. It is common to all

agents. Agent's endowments wh are vectors in IRS
+ and their utility functions

Uh(�) evaluate consumption plans x 2 IRS
+.

In each state of the world, s = 1; : : : ; S, a spot market opens, where the

consumption good is traded. Let ps denote the price of this good in state s,

s = 1; : : : ; S. It is expressed in terms of abstract units of account in which

assets' returns are denominated; p 2 IRS is the vector of these prices.

To transfer income across the various spot markets, the agents can buy and

sell { without any short-sale restriction { a �nite set of assets, j = 1; : : : ; J . Let

�i 2 IRJ denote the portfolio of assets that agent i purchases at t = 0. The

agents' portfolios have to be self-�nancing, i.e. the budget restriction q � �i � 0

has to be satis�ed for all vectors of asset prices q 2 IRJ . Asset j delivers rjs
units of account if state s occurs. Let R = (rjs) s=1;:::;S

j=1;:::;J

denote the (S � J) payo�

matrix describing the structure of the �nancial markets. Asset markets are
said to be complete if the asset structure is su�ciently rich to allow agents to

transfer income freely across all states, i.e. if rank R = S. They are incomplete
if rank R < S.

Throughout this paper we will assume that there are no redundant assets.

Furthermore, we assume that there are portfolios which are strictly desirable.
More precisely:

Assumption 1

rank R = J and R� > 0 for some � 2 IRJ .

This assumption guarantees that agents with strictly monotonic utility func-
tions satisfy the budget restriction with equality.

Let rj 2 IRS denote the j-th column of R and rs 2 IRJ denote the s-th row
of R. Using this notation, the agent's decision problem, (P h), can be written as

(P h) max
x2IRS

+

�2IRJ

Uh(x)

q � � � 0

ps(xs �wh
s ) � rs� ; s = 1; : : : ; S :

Let �h(q; p) and xh(q; p) be the optimal solution of (P h) at prices (q; p). Also we
will denote by �(�) an operator that transforms a vector into a diagonal matrix

4



with the vector on its main diagonal. Thus �(p) =

2
664
p1

. . .

ps

3
775 2 IRS�S .

Furthermore, let vs =
1
ps
; s = 1; : : : ; S, so that �(v) = ��1(p).

Agents are characterized as follows:

Assumption 2

For all h = 1; : : : ;H ; wh 2 IRS
++ and Uh : IRS

+ �! IR is di�erentiably strictly

monotonic and quasi-concave, i.e.

(i) Uh is twice continuously di�erentiable,

(ii) DUh(x) >> 0 for all x 2 IRS
++,

(iii) yTD2Uh(x)y � 0 8y; in addition, for any vector v 2 IRS
++,

yT (RT�(v)D2Uh(x)�(v)R)y < 0 for all y such that
DUh(x)T�(v)Ry = 0.

(iv) closure fy 2 IRS
+ j Uh(y) � Uh(x)g � IRS

++

Assumption 2 is a direct translation of Debreu's (1970) assumption of smooth

preferences to our framework3. It ensures that the agents decision problem has
a unique solution which can be characterized by its �rst order conditions.

Under assumption 2, a necessary (and su�cient) condition for the existence

of a solution to the agents' problem (P h) is that asset prices are arbitrage-free:

9= � 2 IRJ : q � � � 0 and R� > 0 : (1)

It is well known that this condition restricts asset prices to lie in the interior of
the positive cone spanned by the rows of the matrix R, i.e. qT = �TR for some

� >> 0.

A competitive equilibrium is a vector of asset prices, a vector of spot prices

and an allocation of assets and consumption plans such that agents optimize and
markets clear:

De�nition 1

An asset-spot-market equilibrium is an array

(
�

q;
�

p;
�

�;
�

x) 2 IRJ � IRS
+ � IRJH � IRSH

+ such that

(i) (
�

�;
�

x)h solves (P h) at the prices (
�

q;
�

p), h = 1; : : : ;H

3Condition (iii) is a relaxation of strict quasi-concavity, required to hold only on the mar-
keted subspace.
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(ii)
HP
h=1

�

�
h

= 0

(iii)
HP
h=1

�

x
h

=
HP
h=1

wh.

It will be useful to compare asset-spot-market equilibria with Arrow-Debreu

equilibria.

De�nition 2

An Arrow-Debreu equilibrium is an array (
�

p;
�

x) 2 IRS
+ � IRSH

+ such that

(i)
�

x
h

2 arg max
x2IRS

+

Uh(x) s.t.
�

p �x �
�

p �wh ; h = 1; : : : ;H

(ii)
HP
h=1

�

x
h

=
HP
h=1

wh.

Recall that if markets are complete then the allocations
�

x of the asset-spot-
markets equilibria coincide with those of the Arrow-Debreu equilibria, (Arrow
(1953)).

Counting equations and unknowns we can see that the asset-spot-market
equilibrium system

P
h �

h(q; p) = 0,
P

h(x
h(q; p) � wh) = 0 is indeterminate.

The system has J + S unknowns and J + S equations. However, due to the
S +1 budget equations, there are S +1 Walras Laws restricting the equilibrium
equations so that if all but S + 1 markets are in equilibrium then all markets

clear. On the other hand, there are only 2 degrees of homogeneity. If in the
decision problem (P h) q is replaced by �q for some � > 0, then the agent's
choice is una�ected. Furthermore, if p changes to �p for � > 0, the agents can
still a�ord the same consumption plan as at p by scaling up the portfolio � by
the factor �. These two are the only homogeneity properties.

Hence there are S � 1 Walras Laws more than homogeneity properties and
consequently the system of equilibrium equations is indeterminate.

With complete markets, given the allocational equivalence with the Arrow-
Debreu model this indeterminacy will only be nominal, whereas with incomplete
markets the indeterminacy is real, as shown by Balasko and Cass (1989) and by

Geanakoplos and Mas-Colell (1989)). Therefore with incomplete markets, the

dimension of the set of the equilibrium consumption allocations is S�1 whereas
with complete markets it is zero. To get an intuitive understanding of this result

one could think of the equilibrium equations as being solved in terms of the
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asset prices q for a given p. Thus the spot prices can be taken as parameters

of the system of equilibrium equations. As p changes the matrix of `real asset

payo�s' �(v)R changes too, and this will a�ect the risk sharing opportunities of

the agents, if markets are incomplete.

Evidently, this indeterminacy will disappear if S�1 extra independent equa-

tions are introduced, determining the price level in the various states of the

world. A simple argument allowing this is based on an application of the quan-

tity theory of money. This theory postulates that in each state s the volume

of transactions ps
PH

h=1 x
h
s , is proportional to the money supply in that state,

ms ; s = 1; : : : ; S.4 For our purpose here it will be su�cient to introduce the

following additional equations:

ps

HX
h=1

wh
s = 
sms s = 1; : : : ; S ;

where 
s > 0 is the velocity of circulation of money in state s. Monetary policy,
by �xing m = (m1; : : : ;ms), �xes the values of the S spot prices. Hence, the

set of equilibrium allocations is now parameterized by the value m of monetary
policy.5

2.1 Individual Comparative Statics

In this section the properties of the individual Jacobian matrix, @(q;p)(�; x)
h(q; p),

are analyzed. This will lay the foundations for the disaggregation result in the
main part of the paper.

The budget restrictions and the homogeneity properties of demand imply a

set of general restrictions on the Jacobian. From q � �h(q; p) = 0 8q; p, the date
0 budget equation, we get:

qT@q�
h(q; p) = ��hT ; qT@p�

h(q; p) = 0 ; (2)

The remaining budget equations,
�
xh(q; p)� wh

�
= �(v)R�h(q; p), then im-

4See Magill and Quinzii (1992) for an explicit modeling of `cash in advance' constraints
leading to the quantity theory of money in this framework; also Gottardi (1994).

5In e�ect we have introduced S additional equations. However, these are not homogeneous
with respect to p, so that there is now only one homogeneity property of the equilibrium
system, and the number of independent equations is then equal to the number of independent
variables.
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ply:
@qx

h(q; p) = �(v)R@q�
h(q; p) ;

@px
h(q; p) = ��2(v)�(xh(q; p)� wh) + �(v)R@p�

h(q; p)
(3)

The homogeneity properties are

�h(�q; p) = �h(q; p) ; xh(�q; p) = xh(q; p) ;

from which we obtain

@q�
h(q; p) � q = 0 ; @qx

h(q; p) � q = 0 : (4)

Further homogeneity properties are

�h(q; �p) = ��h(q; p) ; xh(q; �p) = xh(q; p)

which implies

@p�
h(q; p) � p = �h ; @px

h(q; p) � p = 0 (5)

Remark 3.1

When markets are complete we get some additional homogeneity properties
for the agents' demand function. To derive them, note that the no arbitrage con-
dition implies that the set of attainable consumption fx 2 IRS

+ j 9� : �(p)(x�
w) = R� ; q � � � 0g, is equivalent to the set fx 2 IRS

+ j �T�(p)(x � w) �
0 and �(p)(x � w) 2 < R >g.6 With complete markets the latter reduces

to fx 2 IRS
+ j �T�(p)(x � w) � 0g. Let �xh(�(p)�) := arg maxUh(x) s.t.

x 2 fx 2 IRS
+ : �T�(p)(x�w) � 0g and let �(p)� = �p. With complete markets

�xh(�(p)�) = xh(q; p) = xh(RT�; p). Di�erentiating this identity with respect
to � yields @qx

hRT = @�p�x
h�(p) and di�erentiating it with respect to p gives

@px
h = @�p�x

h�(�). Combining these two relations we get the following additional

property of the Jacobian, @(q;p)(�; x)
h(q; p), when markets are complete:

@px
h(q; p) =

�
@qx

h(q; p)
�
RT�(�)�(v) : (6)

The following proposition characterizes the structure of an individual's Ja-

cobian matrix.

6We denote by < R > the linear subspace generated by the columns of R.
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Proposition 1

Suppose assumptions 1, 2 hold, p 2 IRS
++ and q is arbitrage free. Then

@(q;p)(�; x)
h(q; p) =

"
Kh

0 Kh
0R

T�(v)

�(v)RKh
0 �(v)RKh

0R
T�(v)

#
�

 
1IJ�

h
0

�h1

!
�
"
vh0�

hT 0

0 �(v)�(xh � wh)

#

+

"
0 Kh

0R
T�(v)D2Uh�(v)�(xh � wh)

��(v)Rvh0�h
T

�(v)RKh
0R

T�(v)D2Uh�(v)�(xh � wh)

#

(7)

where Kh
0 =Mh +

vh
0
vh
0

T

�h
0

, Mh = [RT�(v)D2Uh�(v)R]�1, vh0 = ��h0Mhq,

�h0 = �(qTMhq)�1 , 1IJ = (1; : : : ; 1)T 2 IRJ , and �h0 ; �
h
1 = �(v)DUh are the

Lagrange multipliers associated with date 0 and date 1 budget constraints.

Proof

From the budget identities it follows that @q;px
h can be derived from @q;p�

h

(see equation (3)). Hence it su�ces to consider @q;p�
h; this can be obtained from

the solution of the problem

(P�)
h max

�2IRJ
Uh(wh + �(v)R�)

q � � � 0

wh + �(v)R� � 0 :

Since Uh satis�es assumption 2, the following �rst order conditions charac-

terize the solutions of the problem (P h
� ).

(FOC) DUh(wh+�(v)R�)T�(v)R = �h0q
T and q � � = 0 :

Totally di�erentiating (FOC) yields"
RT�(v)D2Uh�(v)R �q

�qT 0

#  
d�h

d�h0

!

=

 
�h0I

�h
T

!
dq +RT

 
�(v)D2Uh�(R�h)�(v) + �(�h1)

0

!
�(v)dp

(8)

From the strict quasi-concavity of Uh(�), the coe�cient matrix on the left-

hand side of (8) is invertible. Let"
RT�(v)D2Uh�(v)R �q

�qT 0

#
�1

=:

"
Kh

0 �vh0
�vh0

T
�h0

#
:
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It is easy to see that Kh
0 ; v

h
0 and �h0 are as in the statement of the proposition.

Substituting the above into (8) and using (3) yields (7).

2

Note that vh0 � q = 1 and hence Kh
0 q = 0, qTKh

0 = 0. Furthermore, it can

be veri�ed that Kh
0 is a (J � J) negative semi-de�nite matrix, negative de�nite

on q?. The matrix Kh
0 exhibits then the properties of a substitution matrix. It

can be shown that it is in fact the Slutsky substitution matrix arising from the

solution of problem (P h
� ), for a given p. The matrix appearing in the �rst term of

(7) can be written as [I;RT�(v)]TKh
0 [I;R

T�(v)]. Thus it also is negative semi-

de�nite and symmetric. However, its interpretation as a substitution matrix,

and an interpretation of the matrices appearing in the second and third terms

of (7) as income e�ects terms is not warranted.

A simple but important observation is that there is an immediate converse

to Proposition 1.

Proposition 2

Let R; q; v be, respectively, the asset payo� matrix, satisfying assumption 1,
and the vectors of asset and (the inverse of) commodity prices. Let A be a
(S+J)�(S+J)matrix. If there is a S�S matrix �D, and vectors (�0; �

T
1 )

T ; z; � 2
IRS+1

++ � IRS � IRJ such that:

(i) �D is symmetric and satis�es assumption 2(iii),

(ii) q � � = 0,

(iii) z = �(v)R�,

(iv) �T1R = �0 � qT

and

A = [IJ; R
T�(v)]T

"
M � MqqTM

qTMq

# h
IJ ; R

T�(v)
i
�

 
�01I
�1

!

+[IJ; R
T�(v)]T

 
0;

"
M � MqqTM

qTMq

#
RT�(v) �D�(v)�(z)

!

�[IJ; RT�(v)]T
 
Mq�T

qTMq
; 0

!
�
 
0 0
0 �(v)�(z)

!

where M = (RT�(v) �D�(v)R)�1; then there exists an agent with endowments wh

and preferences Uh : IRS
+ �! IR satisfying assumption 2 whose demand function

�h(q; p); xh(q; p) satis�es:
�h(q; p) = � ; xh(q; p) = z + wh, and @q;p(�; x)

h(q; p) = A.
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Proof

Choose wh 2 IRS
++ such that z + wh >> 0, and let

Uh(x) = �T1�(v)
�1x+ 1

2
(x� z + wh)T �D(x� z + wh).

Then DUh(z + wh) = �(v)�1�1; D
2Uh(z + wh) = �D and, in a neighborhood

of x = z + wh, Uh(�) satis�es assumption 2. Therefore (�; z) is indeed the

agent's excess demand at the prices (q; p): (�; z + wh) = (�; x)h(q; p). It is then

immediate to verify, given (6), that @q;p(�; x)
h(q; p) = A.

2

3 Disaggregation of market excess demand

In this section we demonstrate that any matrix A 2 IR(S+J)2 satisfying the

homogeneity and Walras Law restrictions can be the Jacobian matrix of the
market excess demand function of some GEI-economy satisfying assumptions 1
and 2. In reaching the conclusion we will get some intermediate results which
are of independent interest.

We will show �rst how any matrix A 2 IRJ2 satisfying the homogeneity and
Walras Law restrictions can be the matrix of the derivative of the market excess
demand for assets with respect to asset prices. The agents in the economy
can be chosen to have additively separable preferences. Our result is then an

extension of Polemarchakis (1983) to the case of incomplete markets. Also it is
the one commodity version under the possible restriction of additively separable
preferences, and in terms of properties of the Jacobian, of Bottazzi - Hens (1996).
As a corollary of this result we get a characterization of market excess demand
functions (both for assets and consumption) in the case of complete markets. A

second corollary shows that there are no restrictions on the e�ects that changes
of the parameters of agent's utility functions have on equilibrium asset prices.

In the main result of the paper we turn to the whole Jacobian matrix, to

show that again it has no stucture. The argument here has to depart from

known techniques, as a consequence of the peculiar structure of the Jacobian of
individual demand, and in particular { as we argued { of the impossibility of
a clear decomposition of the overall Jacobian into an income and substitution

e�ect. A corollary then demonstrates that there are no comparative statics

restrictions for the e�ects of monetary policy on asset prices.

The Walras Law and homogeneity restrictions (2) - (5) extend, evidently, to
aggregate demand. We have then:

qT �Ph @q�
h(q; p) = �Ph �

h(q; p)T ;
P

h @q�
h(q; p) � q = 0;P

h @qx
h(q; p) � q = 0

(9)
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qT �Ph @p�
h(q; p) = 0;

P
h @p�

h(q; p) � p = P
h �

h(q; p);P
h @px

h(q; p) � p = 0
(10)

P
h @qx

h(q; p) = �(v)R(
P

h @q�
h(q; p));P

h @px
h(q; p) = ��(v)�(Ph x

h(q; p)�P
hw

h) + �(v)R
P

h @p�
h(q; p)

(11)

Theorem 1

Let R satisfy assumption 1, p 2 IRS
++ and q 2 IRJ be arbitrage free. Given

any vector �� 2 IRJ satisfying q � �� = 0 and any matrix A 2 IRJ�J such that

qTA = ���T and Aq = 0, we can �nd J agents with additively separable utility

functions satisfying assumption 2 such that their aggregate demand for assets,P
h �

h(q; p), satis�es @q
PJ

h=1 �
h(q; p) = A and

PJ
h=1 �

h(q; p) = ��.

Proof

It will su�ce to generate the �rst (J�1) rows and columns of A. The last row
and column will then be determined so as to satisfy the conditions qTA = ���T

and Aq = 0.

Let^denote the truncation operator that eliminates the last component of a
vector and the last row and column of a matrix.7 With this notation our problem
is to �nd J � 1 agents such that

Â =
JX

h=1

�
�h0K̂

h
0 � v̂h0 �̂

h
T
�

(12)

where Kh
0 and vh0 are as de�ned in proposition 1. Note that

PJ�1
h=1 v̂

h
0 �̂

h
T

= V̂0�̂
T ,

where V̂0 = [v̂10; : : : ; v̂
J�1
0 ] and �̂ = [�̂1; : : : ; �̂J�1]. Equation (12) can then be

rewritten as follows:

Â�
JX

h=1

�h0K̂
h
0 + v̂J0

�̂�
T

= �[V̂0 � v̂J0 1I
T ]�̂T ; where 1IJ�1 = (1; : : : ; 1)T 2 IRJ�1 :

(13)

Let D2Uh = ��(�h1) for some vector �h1 2 IRS
++ ; h = 1; : : : ; J . We have

then:

vh0 = ��h0[RT�(v)�(�h1)�(v)R]
�1q ; (14)

where �h0 is as de�ned in Proposition 1.

7Thus, if A is a J � J matrix, Â = [IJ�1; 0]A[
IJ�1
0T ].
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Claim 1.1: �h1 ; h = 1; : : : ; J can always be chosen so that the matrix [V̂0�v̂J01ITJ�1]
has full rank.

Proof: Inverting the matrix in (14) which premultiplies q and using the fact

�(�h1)Rv
h
0 = �(Rvh0 )�

h
1 it is obtained that:

RT�2(v)�(Rvh0)�
h
1 = ��h0q : (15)

Without loss of generality RT can be partitioned as [R1 R2]
T , where R1 is

J � J and invertible. Partition the vectors v = (v1; v2); y
h = (yh1 ; y

h
2 ) and

�h1 = (�h11; �
h
12) accordingly. Using this notation we can solve (15) for �h11.

�h11 = �[�2(v1)�(R1v
h
0 )]

�1[RT
1 ]
�1[RT

2�
2(v2)�(R2v

h
0)�

h
12 + �h0q] : (16)

Consider a vector ��1 >> 0 and let �v0 be the corresponding value of v0 given by

(14). Then for all values vh0 in some open neighborhood of �v0 the corresponding
value of �h1 , obtained from (16), will still be strictly positive. Hence by letting
vh0 vary, we can �nd v̂h0 ; h = 1; : : : ; J , in a neighborhood of �̂v0 so that the matrix
[V̂0 � v̂J0 1I

T ] is invertible and the corresponding �h1; h = 1; : : : ; J , are strictly
positive. This completes the proof of the claim.

Therefore, we can always solve (13) with respect to the matrix �̂T . Choosing
�hJ = �q̂ � �̂h( 1

qJ
), h = 1; : : : ; J , ensures that the budget restriction holds.

Finally, let wh be such that xh = �(v)R�h + wh � 0, and �h1 >> 0 such

that �h1
T
�(v)R = �h0q

T for some �h0 > 0. Applying then proposition 2 to the
collection (��(�h); �h; zh; �h); 8h = 1; : : : ; J completes the proof.

2

As we showed in Remark 3.1, with complete markets we have an additional
homogeneity restriction, so that the matrix @q(

P
h �

h(q; p)) determines uniquely
the remaining terms of the matrix @q;p(

P
h(�; x)

h(q; p)), via (11) and (6), applied
to aggregate demand. Therefore, from Theorem 1 we get:

Corollary 1

Let rank R = S; v 2 IRS
++ and q be arbitrage free. Given any vector ��, such that

q � �� = 0, and any matrix A 2 IR(S+J)2 , partitioned as A =

"
A1 A2

A3 A4

#
, where

A1 2 IRJ�J ; A2 2 IRJ�S ; A3 2 IRS�J ; A4 2 IRS�S are such that

qTA1 = ���T , and A1q = 0,

13



A2 = A1R
T�(�)�(v) +R�1�(v)�(R��)

A3 = �(v)RA1

A4 = �(v)RA1R
T�(�)�(v)

for � a vector such that �TR = qT ,

then there exist J agents with additively separable utility functions satisfying

assumption 2 such that
PJ

h=1 �
h(q; p) = �� and @(q;p)

PJ
h=1(�; x)

h(q; p) = A.

Proof

By Theorem 1 we can �nd J agents such that
P

h @q�
h(q; p) = A1;

P
h �

h(q; p) =
��. It is enough then to verify that the matrices A2; A3; A4 satisfy the Walras

Law and homogeneity restrictions for aggregate demand with complete markets:

(6) and (11) as we saw uniquely determine the remaining terms of @q;p(�; x) once

@q� is given.

It is immediate to see that A1; A2; A3; A4 as above satisfy (6) and (11). It

remains to check that (9), (10) also hold:

A3q = �(v)RA1q = 0

A4p = �(v)RA1R
T�(�)�(v)p

= �(v)RA1R
T�

= �(v)RA1R
T (RT )�1q

= �(v)RA1q = 0

A2p = R�1
h
RA1R

T�(�)�(v) + �(v)�(R��)
i
� p

= R�1�(v)�(R��) � p
= R�1R�� = ��

qTA2 = qTR�1
h
RA1R

T�(�)�(v) + �(v)�(R��)
i

= qTA1R
T�(�)�(v) + qTR�1�(v)�(R��)

= ��TRT�(�)�(v) + �TRT�(v)�(R�1q) = 0 since qTR�1 = � :

2

As a second consequence of Theorem 1 we demonstrate that, if there are

`enough' agents in the economy (i.e. H � J), there are in general no restrictions

on the direction in which equilibrium asset prices move when the parameters
determining the agents' demand functions (e.g. their preferences) change.

14



Let �h 2 Bh be a �nite smooth parameterisation of agent h's choice problem

(P h) (and hence of his demand (�; x)h(q; p; �h)). For instance �h could describe

a �nite-dimensional parameterisation of his utility function, e.g.
PS

s=1 �
h
s u

h(xs).

In this case one may expect that an increase in �hs increases the equilibrium

prices of those assets that have a relatively high payo� in state s. Alternatively,

Uh(x) might be of the form
�PS

s=1(u
h
s (xs))

�h
� 1

�h , for �h < 1; an increase of �h
now amounts to a decrease of the agent's risk aversion and again we may think

that as a result the equilibrium prices of relatively riskier assets tend to decrease.

As the following corollary shows, in general, none of these conjectures need

to be true. Even more, without any condition on the agents' preferences and en-

dowments, a change in the parameters of the agents' demand can have any e�ect

on equilibrium asset prices. More precisely, we show that whatever parametri-

sation we choose of the agents' choice problem, the e�ect of a pertubation of K

agents is arbitrary if in the economy there are at least K + J agents.8

Corollary 2

Let R satisfy assumption 1, and K agents be given, with preferences and endow-
ments satisfying assumption 2. Let �h 2 IBh describe a �nite smooth parameter-

isation of agent h's choice problem (P h), h = 1; : : : ;K; �K =
PK

h=1 dim(IBh) �
J � 1.

Then, generically9, any matrix B 2 IR(J�1)� �K of full row rank can be obtained

as the matrix @�q̂, describing the e�ects of changes in � = (�1; : : : ; �K) on the
normalized equilibrium asset prices q = (q̂; 1) for an economy with J +K agents
(K being the number of the given agents), for a given vector of prices p.

Proof

Let

�(q; �) =
KX
h=1

�h(q; �h) +
K+JX

h=K+1

�h(q)

be the market excess demand for assets for an economy with K + J agents, the
�rst being the given K agents.

Due to the homogeneity property, �(�q;�) = �(q;�), and Walras' Law, q �
�(q;�) = 0, we can ignore the demand and the price of the last asset and consider

8If we are willing to be speci�c about the nature of the parametrisation �, so that @�h(�; x)
h

can be derived, it can be shown that we only need J agents in the whole economy for the result
to hold; the argument is similar, though the proof is lenghtier and more elaborate.

9Here we mean generically with respect to the given parameterization (: : : ; �h; : : :), though
any other parameterization of demand will do.
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�̂(q̂; �). Di�erentiating the equilibrium system �̂(q̂; �) = 0, if, at equilibrium, @q̂�̂

is invertible, we get

@� q̂ = �
�
@q̂�̂(q̂;�)

�
�1
@��̂(q̂;�) (17)

To show that we can �nd an economy such that

@�q̂ = B (18)

note that (18) can be rewritten as

K+JX
h=K+1

@q̂�̂
h(q̂) = �

KX
h=1

@� �̂
h(q̂; �)BT(BBT)�1 �

KX
h=1

@q�̂
h(q̂; �) (19)

By Theorem 1 the left-hand side term can be an arbitrary matrix for a

suitable choice of J agents satsfying assumption 2. These agents can then be

chosen so that (19) holds, for the given B.

Finally, by a standard argument we can verify that, generically, @q̂�̂ is indeed
invertible at equilibrium.

2

So far we have considered, with the exception of the complete market case,

only one of the terms of @q;p(�; x). We turn now our attention to the whole
Jacobian. This is the subject of the main result of this chapter.

Theorem 2

Let R be in general position and satisfy assumption 1, S > J , v 2 IRS
++ and

q 2 IRJ be arbitrage free. Given any vector �� such that q � �� = 0, and any matrix
A 2 IR(S+J)2 , partitioned as

A =

"
A1 A2

A3 A4

#
, where A1 2 IRJ�J ; A2 2 IRJ�S ; A3 2 IRS�J ; A4 2 IRS�S

are such that qTA1 = ���T ; A1q = 0, A2p = ��; qTA2 = 0, A3 = �(v)RA1,
A4 = ��2(v)�(R��) + �(v)RA2

we can �nd 2J�1 agents satisfying assumption 2 such that their demand satis�es:

2J�1X
h=1

�h(q; p) = �� and @(q;p)

2J�1X
h=1

(�; x)h(q; p) = A :

Proof

The strategy of the proof has to depart from the standard argument used in

the decomposition of the Jacobian of aggregate demand. The problem is that
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@p�
h(�), as we remarked, does not have a clear decomposition into a substitution

e�ect, with well-de�ned properties, and an income e�ect, with few properties

and a low rank, on which the argument can then be built. Here the symmetric

negative semi-de�nite matrix Kh
0 , of rank J � 1, appears in all terms of @p�

h.

The idea of our proof is then to consider a particular speci�cation of the agents'

Hessian matrixD2Uh which allows a decomposition of Kh
0 into a full rank matrix

and a rank one matrix on which the decomposition is then based.

To prove the result we have to show that the equations
P

h @(q;p)(�; x)
h(q; p) =

A,
P

h �
h(q; p) = �� have a solution, with respect to the parameters describing

preferences, endowments and demands of the agents.

Since, given (11), the submatrices @qx; @px are uniquely determined from

@q�; @p�, and since the matrices A1; A2; A3; A4 also satisfy (11), we can only

consider the equations
P

h @q�
h = A1;

P
h @p�

h = A2.

Agents are partitioned into three groups: agents in a �rst group are labeled
by h1, h = 1; : : : ; J � 1, while agents in the second set are labeled by h2, h =
1; : : : ; J �1. In addition to these agents, which we will use to generate the given
matrices A1 and A2, there is a last agent, labeled J , who will ensure that the

adding up conditions,
P

h �
h = ��, hold.10

We will suppose that the agents' preferences are characterized by the follow-
ing matrix of the second derivatives, of their utility function:

D2Uh1 = �(�D + dh1d
T
h1
) ; for h = 1; : : : ; J � 1

D2Uh2 = �(�D � dh2d
T
h2
) ; for h = 1; : : : ; J � 1

D2UJ = ��D

for

D = ��1(v)R(RTR)�1�(�)(RTR)�1RT��1(v)

dh1 = T1eh
11 ; dh2 = T2eh; h = 1; : : : ; J � 1

T1 = �T�
�1(v)R(RTR)�1�(�) + ���k

T

T2 = �T�
�1(v)R(RTR)�1�(�)

where �; �T ; �� 2 IR+, � 2 IRJ
++, k 2 IRS and � 2 IRS such that �s 6= 0; s =

1; : : : ; S, and RT�(v)� = 0.

Claim 2.1: Let R be in general position. There exists � 2 IRS such that �s 6=
10With some abuse of notation we denote by

P
h the sum across all (2J � 1) agents.

11eh denotes the h-th unit vector in IRJ .
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0; s = 1; : : : ; S and RT�(v)� = 0.12

The proof of the claim is in the appendix.

With the above speci�cation D2Uh1 is negative semi-de�nite, and the matrix

Mh1 = [RT�(v)D2Uh1�(v)R]�1 = �1

�

"
��1(�) � �2Tehe

T
h

��h1

#
;

where �h1 = 1 +
�2
T
�h

�
> 0, is negative de�nite. Analogously, if � > �2T�h, D

2Uh2

is negative semi-de�nite and

Mh2 = �1

�

"
��1(�) +

�2Tehe
T
h

��h2

#
;

where �h2 = 1 � �2
T
�h

�
> 0, is negative de�nite. Finally, D2UJ is negative de�-

nite and MJ = �1
�
��1(�) is negative de�nite. Hence the above speci�cation is

consistent with assumption 2 (iii).

We also get

�h10 = �(qT��1(�)q � �2Tq
2
h

��h1
)�1 ;

Kh1
0 = �1

�

"
��1(�) � �2Tehe

T
h

��h1

# "
I � �h10

�
q(qT��1(�) � (

�2Tqh

��h1
)eTh )

#

and

vh10 =
�h10
�

"
��1(�)q � (

�2Tqh

��h1
)eh

#
:

Similarly,

�h20 = �(qT��1(�)q +
�2Tq

2
h

��h2
)�1

Kh2
0 = �1

�

"
��1(�) +

�2Tehe
T
h

��h2

# "
I � �h20

�
q(qT��1(�) + (

�2Tqh

��h2
)eTh )

#

vh20 =
�h20
�

"
��1(�)q + (

�2Tqh

��h2
)eh

#
:

12The general position of R is only a su�cient condition for the validity of the claim; it is
however also a necessary condition when J = S � 1.
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Finally,

�J0 = �(qT��1(�)q)�1

KJ
0 = �1

�
��1(�)

"
I � �J0

�
qqT��1(�)

#

vJ0 =
�J0
�

h
��1(�)q

i

The problem can be simpli�ed by an appropriate transformation of basis. If

S1L; S
1
R; S

2
L 2 IRJ�J ; S2R 2 IRS�S are invertible matrices to prove the result we

can equivalently show that the following system of equations has a solution:

S1LA1S
1
R = S1

L

 
HX
h=1

@q�
h(q; p)

!
S1
R (20)

and

S2LA2S
2
R = S2

L

 
HX
h=1

@p�
h(q; p)

!
S2
R (21)

In particular, it is convenient to consider the following matrices:

S1L = S2
L =

h
S?; q

iT
S1R =

h
InJ ; q

iT
S2R =

h
InS; p

iT

where the superscript nn denotes the fact that the n-th column of a matrix has
been deleted, i.e. Inn =

�
In�1
0

�
, and S? denotes a J � (J � 1) basis of the space

orthogonal to the vector ��1(�)q. It is immediate to verify, given assumption 1
and the fact that � >> 0, that the above matrices are all of full rank.

Due to properties (9), (10) of the Jacobian of aggregate demand, arising
from homogeneity and Walras Law, and to the corresponding properties of the

matrix A, with the above speci�cation of S1
L; S

2
L; S

1
R; S

2
R, equations (20) and

(21) become: 2
4 S?AnJ1 0

� �̂�
T

0

3
5 =

2
4 S?(

P
h @q�

h)nJ 0

� �̂�
T

0

3
5 (22)

"
S?A

nS

2 S?��

0̂T 0

#
=

"
S?(

P
h @p�

h)nS S?��

0̂T 0

#
(23)
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We can thus limit our attention to showing the existence of a solution for the

equations

S?A
nJ
1 = S?(

X
h

@q�
h)nJ (24)

S?A
nS

2 = S?(
X
h

@p�
h)nS : (25)

The e�ect of premultiplying a matrix by S? is that the terms collinear to

��1(�)q no longer appear. Consider the �rst system of equations:

S?A
nJ
1 = S?(

X
h

@q�
h)nJ = S?(

X
h

�h0K
h
0 � vh0�

hT )nJ (26)

Given the above speci�cation of preferences, (26) can be rewritten as:

S?(A1 �
P

h �
h
0K

h
0 )
nJ = S?

�PJ�1
h=1

�
�2
T

�2
�
h1
0
qh

�h1

�
eh�̂

T
h1
�PJ�1

h=1

�
�2
T

�2
�
h2
0
qh

�h2

�
eh�̂

T
h2

�
= S?InJ

h
�(�1)�̂

T
1 � �(�2)�̂

T
2

i
(27)

where

�i = (: : : ; �hi; : : : ; �J�1i); for �hi =
�2T
�2
�hi0 qh

�hi
�i = [�1i; : : : ; �J�1i];

for i = 1; 2. Solving (27) for �̂1 as a function of �̂2, we get
13

�̂T
1 = ��1(�1)

h
(S?)nJ

i
�1
S?

"
A1 �

X
h

�h0K
h
0

#nJ
+ ��1(�1)�(�2)�̂

T
2 (28)

Consider the remaining system of equations, (25). Aggregating across agents
the expression for the individual Jacobian obtained in (7) and using the above

speci�cation of preferences to substitute for Kh
0 the right-hand side of (25) can

be rewritten as:

S?(
X
h

@p�
h)nS = S?

 X
h

Kh
0R

T�(v)
h
�(�h1) +D2Uh�2(v)�(R�h)

i!nS

= �1

�
S?

 X
h

h
��1(�) � ehz

T
h

i
RT�(v)

h
�(�h1) +D2Uh�2(v)�(R�h)

i!nS

13Since S? has rank J�1, up to an appropriate interchange of columns, the matrix
�
(S?)nJ

�
is invertible.
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where

zTh1 =
�2T
��h1

" 
1 +

�2T�
h1
0 q

2
h

�2�h1

!
eTh �

 
�h10 qh

�

!
qT��1(�)

#
; h = 1; : : : ; J � 1

and

zTh2 = � �2T
��h2

" 
1 � �2T�

h2
0 q

2
h

�2�h2

!
eTh �

 
�h20 qh

�

!
qT��1(�)

#
; h = 1; : : : ; J � 1

and

zTJ = 0 :

Substituting then for D2Uh the speci�cation we adopted, after a series of

computations, yields:

S?(
P

h @p�
h)nS = �1

�
S?

�
��1(�)RT�(v)�(��1)� �(RTR)�1RT�(v)�(R��)

�nS
+1

�
S?

�P
h ehz

T
h (R

T�(v)�(�h1)) +
P

h eha
T
h�(v)�(R�

h)
�
nS

(29)
where

aTh1 =

 
�2T�

h1
0 qh

�h1�

!
qT (RTR)�1RT + ~�h1kh�

T�(v) ; h = 1; : : : ; J � 1 ;

~�h1 :=

 
�T

��h1
(�h�

2
T � ��h1) +

�3Tq
2
h

�3(�h1)2
(�h�

2
T � ��h1)�h10

!
�� ;

and

aTh2 = �
 
�2T�

h2
0 qh

��h2

!
qT (RTR)�1RT ; h = 1; : : : ; J � 1 ;

aTJ = 0

��1 =
X
h

�h1 :

The agents' budget constraint (q � �h = 0) allows us to write �hJ in terms

of �̂h; therefore given �̂h the whole vector �h is determined: �h = ~I�̂h, where
~I = [IJ�1;�q̂( 1

qJ
)]T . Using this relation and substituting then the expression

obtained in (28) for �̂h1 ; h = 1; : : : ; J � 1 we get:

S?(
P

h @p�
h)nS = �1

�
S?(��1(�)RT�(v)�(��1)� �(RTR)�1RT�(v)�(R��))nS

+ 1
�
S?[

P
h ehz

T
hR

T�(v)�(�h1)
nS

+
PJ�1

h=1 eha
T
h1
�(R~I(�h + �h2=�

h
1 �̂

h2)) +
PJ�1

h=1 eha
T
h2
�(v)�(R�h2)]nS ;

(30)
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where �Th is the h-th row of the matrix 1
�2
T

��1(�1)[(S
?)nJ ]�1S?[A1�

P
h �

h
0K

h
0 ]
nJ,

which is independent of h. Recalling that �h2=�h1 =
�
h2
0

�
h1
0

� �h1
�h2

, and the above

expressions for ah1; ah2, (30) can be simpli�ed as follows:

S?(
P

h @p�
h)nS = �1

�
S?

�
��1(�)RT�(v)�(��1) � �(RTR)�1RT�(v)�(R��)

� PJ�1
h=1 eha

T
h1
�(R~I�h)

nS
�
nS

+ 1
�
S?[

P
h ehz

T
hR

T�(v)�(�h1) +
PJ�1

h=1 �heh�
T�(v)�(R~I�̂h2)]nS

(31)

where �h is the scalar kh

�
�
h2
0
�h1

�
h1
0
�h2

�
~�h ; h = 1; : : : ; J � 1

Substituting (31) into the system (25) and moving the �rst term appearing

in (31) on the other side, we are left, on the right-hand side of such system, with

the term:

1

�
S?

0
@X

h

ehz
T
hR

T�(�h1) +
J�1X
h2=1

�heh�
T�(R~I�̂h2)

1
A�(v)nS (32)

The important observation is that this matrix \decomposes agent by agent";

that is to say every h-th row is exclusively generated by the vectors �h1 ; �h2 ; �̂h2.
We have then succeded in obtaining a matrix which has a similar structure as
the matrix of the income e�ect terms. This allows us to use each (here pair of)

agents to generate independently each row of the matrix S?A
nJ
1 .

Thus it remains to demonstrate that an appropriate choice of �h1 ; �h2 ; �̂h2,
subject to the non-negativity restrictions which have to hold for �h (�h >

0;
P2(J�1)

h=1 �h < ��14) allow us to generate an arbitrary (S � 1)-vector yh, i.e.
that the following system has a solution, for every pair h1; h2:

2
64 �h[�

nS(v)]T�(�)R~I [�nS(v)]T�(Rzh1) [�nS(v)]T�(Rzh2)
0 RT 0
0 0 RT

3
75
0
B@
�̂h2

�h11
�h21

1
CA =

0
B@

yh
�h10 q

�h20 q

1
CA

(33)
where the last two equations are the no arbitrage restriction which have to hold
for �h1 ; �h2 , and yh is an arbitrary vector in IRS�1.

In the appendix it is shown

Claim 2.2: We can always �nd values of �; �; �T ; ��, (in turn generating �h0; �
h)

14The second inequality comes from the non-negativity condition for �J , indeed determined

by ���
P2(J�1)

h �h.
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so that the matrix of the coe�cients in (33) has full (row) rank and the solution

for �h1 ; �h2 satis�es the non-negativity conditions.

To complete the proof let DUh = �(v)�h1; h = 1; : : : 2(J � 1), DUJ = �(v)f

for some f 2 IRS
++ such that fTRT = q, and choose wh su�ciently large to

insure that wh + �(v)R�h � 0; h = 1; : : : ; 2J � 1 to obtain the existence of

utility functions, for every agent, consistent with the above speci�cation.

2

As an application of Theorem 2 we demonstrate that in contrast to the

complete markets case, without some knowledge of the agents' characteristics

no rule can be given describing the e�ects of monetary policy on asset prices

(and agents' welfare): these e�ects can then go in any direction.

In the case of complete markets, the e�ects of monetary policy m on as-

set prices can be explained by a simple rule. Note that among the �rst order
conditions for the agents' choice problem (P h) under Assumption 2 we have:

RT�(v)DUh(xh) = �h0q

where �h0 is agent h's Lagrange multiplier associated with the constraint q � � �
0. Let �h(x) := DUh(xh)

�h
0

>> 0. With complete markets at equilibrium �h is

independent of h, say �.

Thus, from (35) we obtain:

q = RT�(w)��1(
)��1(m)�

where w = (
P

hw
h
1 ; : : : ;

P
h w

h
s ), 
 = (
1; : : : ; 
s); note that ws�s


sms
is the present

value of one unit of money contingent on state s, s = 1; : : : ; S.

Since equilibrium allocations are the some as in the Arrow-Debreu model,
they are independent of monetary policy. Thus � does not change where m

varies. In particular, when ms increases,
!s�s

sms

decreases, hence the price of the

assets with positive (negative) payo�s in state s decreases (increases).

On the other hand, with incomplete markets we need to look at the whole

system of equilibrium equations (34), (35).

More precisely, let m be a description of a normalized monetary policy,

m = (m̂; 1); the associated monetary equilibrium can be de�ned as a vector

of normalized asset prices (q̂; 1) and spot prices p such that the market for the

�rst J � 1 assets and for money clear:

HX
h=1

�hj (q̂; p) = 0 ; j = 1; : : : ; J � 1 (34)
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ps
X
h

wh
s � 
sms = 0 ; s = 1; : : : ; S (35)

By Walras Law and homogeneity of demand, the market for the last asset

and the commodity traded in all states s = 1; : : : ; S will also clear, and asset

prices can be normalized in terms of qJ .

Note that this system decomposes in the sense that m does not appear in

(34) while q̂ does not appear in (35). The latter equation determines then the

price levels p, say p =  (m) and we are left with
P

h �̂
h(q̂;  (m̂)) = 0. The

e�ects on the equilibrium asset prices of an arbitrary change in monetary policy

are then, locally, described by:

dm̂q̂ = �
�
@q̂�̂(q̂;  (m̂))

�
�1
@p�̂(q̂;  (m̂))@m (m̂) : (36)

where @m̂ (m̂) is the diagonal matrix with (
s=
P

h w
h
s ); s = 1; : : : ; S � 1 on its

main diagonal.

Corollary 3

Let R be in general position and satisfy assumption 1 and let B be an arbitrary
(J � 1) � (S � 1) matrix. Then there exists an economy with 2J � 1 agents,
satisfying assumption 2, such that dm̂q̂ = B.

Proof

In Theorem 2 we have shown that any matrix of the appropriate order can
be the Jacobian matrix

P
h @(q;p)�̂

h of an economy with 2J �1 agents. Given the

expression of dm̂q̂ derived in (36), the result follows.
2

Note that the e�ects of monetary policy are arbitrary even when the Jaco-

bian of excess demand with respect to asset prices
P

h @q̂�̂
h exhibits some of the

properties, which yields nice comparative statics results with respect to endow-

ment changes (e.g. negative de�niteness or strict gross substitution). This is
the case since the Jacobian with respect to asset prices and the Jacobian with
respect to commodity prices can be generated independently from each other.

4 Appendix

4.1 Proof of claim 2.1

Let R be a S � J matrix with rank R = J .
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Note that if the condition

(A1) 9� 2 IRS; �s 6= 0 8s : RT�(v)� = 0

is satis�ed for some v 2 IRS
++ then it is satis�ed for all v 2 IRS

++: if � satis�es

(A1) for v, then �0 = ��1(v)�(v0)� satis�es (A1) for v0. Hence without loss of

generality, we can set vs = 1; s = 1; : : : ; S.

We need therefore to demonstrate that the general postition of R implies the

existence of a vector � 2 IRS; �s 6= 0 all s = 1; : : : ; S such that RT� = 0.

Since rank R = J , we know that

(1) there exists � 2 IRJ such that
PJ

s=1 �srs = �PS
s=J+1 rs.

Moreover, since R is in general position

(2) there exists �� 2 IRJ ; ��s 6= 0; s = 1; : : : ; J such that
PJ

s=1 ��srs = �rJ+1.
To see the latter, suppose to the contrary that rJ+1 =

PJ
j=1 �jrj = 0 and

�k = 0 some k. Then (r1; : : : ; rk; rJ+1; rk+1; : : : ; rJ ) are linearly dependent, con-

tradicting general position of R.

From (1) and (2) we see that for all t 2 IR

RT (t��1 + �1; : : : ; t��J + �J ; t+ 1; 1; : : : ; 1) = 0 :

It remains to choose t such that t 6= �1 and t 6= ��1
��1
; : : : ; t 6= ��J

��J
.

2.

4.2 Proof of claim 2.2

The argument that the system of equations (33) has a solution that satis�es
the positivity requirement imposed on �h; h = 1; : : : ; 2J � 1 is based on two
steps. We demonstrate �rst that for an open set of parameter values � 2 IRJ

++

the coe�cient matrix of (33) is regular. To satisfy the positivity requirement we
take then limits of the solution with respect to the scale factors �; �T ; �� and

�J .

4.2.1 Regularity of the coe�cient matrix

We demonstrate that for almost all � 2 IRJ
++ the systems of equations (33) has

a solution 8h = 1; : : : ; J � 1.

Since the coe�cient matrix of (33) is block-diagonal it su�ces to demonstrate
that the upper-left square matrices
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(A3)

"
[�̂(v)]�̂(Rzh1) 0 �h[�̂(v)�̂(�) 0]R~I

[RT ]nS rs 0

#
; h = 1; : : : ; J � 1

are all invertible. The lower-right matrix [RT ]nS has full row rank. Following

Murata (1977, Theorem 1.3) we have then to demonstrate the invertibility of

the matrices 8<
:[rs; 0]� �n

2
4RT nS�̂�1(Rzh1)�̂(�)[R

T ]nS
2
4
0
...
0
~I

3
5
3
5
9=
; ;

and �̂(Rzh1); h = 1; : : : ; J � 1.

Lemma 3

There exists an open set
�

Zh1� IRJ such that RT nS�̂�1(Rzh1)�̂(�)[R
TnS]T is

invertible for all z 2
�

Zh1 , 8h = 1; : : : ; J � 1.

Proof Note that the vectors on the diagonal matrix on the right and the left
hand side of (A4) are never colinear, for all appropriate choice of �2.

15

By Lemma 4 in Geanakoplos and Mas-Colell (1989), from the general position
of R it then follows:

< �̂

 
��̂�1(v1)(RT

1 )
�1RT

2�(v2)�2
�2

!
[RT nS]Ty >6=< �

 
�(RT

1 )
�1RT

2

nS
x2

x2

!
[RT nS]Tz > :

Hence there exists an open set
�

Zh1� IRJ such that 8z 2
�

Zh1 there is no y

satisfying (A3). In particular note that z close to eJ lies in
�

Zh1.

2

Recalling the de�nition of zh1, it is easy to verify that the map

zh1(�) =
�2T

��h1(�)

" 
1 +

�2T�
h1
0 (�)q2h

�2�h1(�)

!
eTh �

 
�h10 (�)qh

�

!
qT��1(�)

#

15Suppose, on the contrary, that the two diagonal matrices were identical. Then it must be
x2 = �̂2 and

���1(v1)(R
T
1 )
�1RT

2
nS
�̂(v2)�̂2 + ��1(v1)R

T
1 �svs�s = (RT

1 )
�1RT

2
nS
�̂2

but we can always choose �2 so that the above equation does not hold.
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is continuous; thus there also exists an open set X � IRJ
++ such that zh1(�) 2

�

Zh1

; 8h = 1; : : : ; J � 1; 8� 2 X.16

The invertibility of (RT )nS�̂�1(Rzh1)�(�)(R
T nS)T implies the existence of

vectors bh1 2 IRJ such that �h(R
T )nS�̂�1(Rzh1)�(�)(R

T nS)Tbh1 = rs, h = 1; : : : ; J�
1. Thus, to establish the full rank of (A3) we only have to show the invertibility

of the matrices

h
bh1

~I
i
=

"
bh1

IJ�1
�q̂=qJ

#
; h = 1; : : : ; J � 1 :

These matrices are full rank if q � bh1 6= 0, or equivalently:

qT
�
RT nS�̂�1(Rzh1)�̂(�)[R

TnS ]T
�
�1

rs 6= 0; h = 1; : : : ; J � 1 :

We have to show that for all z in some open set
�

Zh1� IRJ there does not
exist a vector y 6= 0 such that

(A4)

RT nS�̂�1(Rz)�̂(�)[RT nS]Ty = 0 :

Let RT = (RT
1 ; R

T
2 ) where RT

1 2 IRJ�J and rank RT
1 = J . Using this

decomposition, the right nullspace of RT nS can be parameterized by vectors

x2 2 IRS�J�1 using the expression
�
�(RT

1
)�1RT

2

nS
x2

x2

�
. Accordingly, the set of �

such that RT�(v)� = 0 can be parameterized by
�
���1(v1)(R

T
1
)�1RT

2
�(v2)�2

�2

�
, where

�2; v2 2 IRS�J and v1 2 IRJ . Hence (A4) has a solution if and only if there is

y 2 IRJ ; x2 2 IRS�J�1 such that:
(A5)

�̂

 
���1(v1)(RT

1 )
�1RT

2�(v2)�2
�2

!
[RT nS]Ty = �

 
�(RT

1 )
�1RT

2

nS
x2

x2

!
[RT nS]z :

2

4.2.2 Positivity of the solution with respect to �h1

Letting ��h1 := �h11 � �h21 ; ��h0 := �h10 � �h20 we can rewrite system (33) as
follows:

16Let
�

Z
+

h1
be the set of zh1 such that �(Rzh1 ) is invertible.

�

Z
+

h1
is open and dense. Thus

�

Z
+

h1
\

�

Zh1 is an open set.
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(A6)

2
6664
�h[�

nS(v)]T�(�)R~I �̂(v)�̂(Rzh1)

0

...
0

�̂(v)�̂(R(zh1 + zh2))

0

...
0

0 RT 0

0 0 RT

3
7775
0
B@ �̂h2

��h1
�h21

1
CA =

0
B@

yh
��h0q

�h20 q

1
CA

Note that as � ! 1, zh2 ! ��, zh1 ! �1
�

h
eh � qh

qT��1(�)q
��1(�)q

i
17,hence

the above systems decomposes.

Let (�̂h;��
h) be a solution to the upper left subsystem:

(A7)

2
64 �h[�

nS(v)]T�(�)R~I 1
�
�̂(v)�

�
R
�
��1(�)q

�
qh

qT��1(�)q

�
� eh

�� 0

...
0

0 RT

3
75
 

~�h2

��h

!
=

 
yh

��h0q

!
:

Set �h10 = �h20 it is easy to verify that we can always choose a solution �h21
of the lower subsystem of (A6), RT�h21 = �h20 q su�ciently large so that �h11 =
�h21 +��h1 >> 0.

Hence, by continuity we can claim that for � su�ciently big there exist solu-
tions (�̂h; �

h1 ; �h2), h = 1; : : : ; J � 1 to (A6) such that �h1 ; �h2 >> 0 8h.

4.2.3 Positivity of �J

The values for the last agent, �J , �J , are then determined as follows: �J =
�� �P

h �
h; �J = �� �P

h �
h. Thus it remains to check that the solution for �J

we obtained also satis�es the non-negativity condition. For this we argue that
in solving the system (A7) we can keep the solution for ��h bounded.

Let �J :=
qJ
�J

and take limits �; �J ; �T ; �� !1 where �T =
p
�J and

�

�J
! 0.

Then
�h1 � �2

T

�
!1; �h2 � ��2

T

�
! �1

�h10 � �

�J
! 0; �h20 � �

�J
! 0

Kh1
0 � �J

�
!1; Kh2

0 � �j

�
!1

�2TRzh1 �
�J

�

2
64 �3T

�J � q2
h
�2
T

�+�2
T
�h

 
�

� + �2T �h

!375 =
�J

�

"
�3T�

�J(� + �2T�h)� q2h�
2
T

#

17This follows from the facts: �hi ! 1;
�
h
i

0
q2
h

�2�hi
! 0;

�
�
h
i

0
qh

�

�
qT��1(�) ! qhq

T��1(�)
qT ��1(�)q

; i =

1; 2; �h ! kh.
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and

Rzh1 ! rJ

note that
�2
T
�

�2�h
� �2T

1
�J

1
��2

T

� 0 thus indeed R(zh1 + zh2) ! 0 we need to check

that the factors on the left hand side obtained moving the �rst terms in (31) on

the other side are of a lower order than the factors of � and Rzh:

on the left hand side we have:

S?A
nJ
2 +

1

�
S?

 
��1(�)RT�(v)�(��1)� �(RTR)�1RT�(R��)�

J�1X
h

eha
T
h1
�(R~IT�h)

!nS

2nd term is of order �J
�
less than �2TRzh for

�3
T
�

�J(�+�
2
T
)
!1

4th term has various elements:

the ones where � (in ah1) does not appear are of order

�2T
�h10
�h1�

 
�2�h1

�h10

!
1

�2T

�J

�
= �J

less than Rzh1 for
�3
T

�T (�+�
2
T
)�q2

h
�2
T

� �3
T
�J�

2
T

!
1 for �T of higher order than �J .

the ones where � (in ah1) appears are of order:

�h��
1

�2T

 
�2�h1

�h10

!
�J

�

for

�h =

 
1

��h1
�2T (�h�T � ��h1) +

�2T (�h�T � ��h1)�h10 q
2
h�

2
T

�3�h1
2

!

while the terms where � appears in system (33) are of order:

�h��

so we would like 1
�2
T

�
�2
T

�

�J�J
�
! 0 which is ok for � of higher order than �2J .
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