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Abstract

We propose a class of counting process models for analysing �ring times

of an ensemble of neurons. We allow the counting process intensities to be

unspeci�ed, unknown functions of the times passed since the most recent

�rings.

Under this assumption we derive a class of statistics with their respec-

tive thresholds as well as graphical methods for detecting neural connec-

tivity.

We introduce a model under which detection is shown to be certain

for long series of observations and suggest ways to estimate strength and

classify the interactions as inhibition or excitation.

The power of the proposed methods is compared by simulating obser-

vations from arti�cial networks.

By analysing empirically obtained series we obtain results which are

consistent with those obtained from cross correlation based methods but

in addition obtain new insights on further aspects of the interactions.

Key words: neural �ring times, inhibition, excitation, spiketrain series,
stochastic dynamical system, counting processes, Markovian interval process,
intensities, martingale dynamics.
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1 Introduction and summary

The �ring activities of a neural ensemble are naturally described in terms of
a multivariate counting process. Using counting process intensities to charac-
terize the probability of a jump in the near future given the past of the process
the following stochastic model was proposed in Utikal (1994a): The intensity
of any component is a general, unknown, nonrandom function of the time since
the last jump of the component, i.e. its backwards recurrence time (BRT) as
well as of the BRTs of some or all of the other components of the system. It
has turned out that this model, called Markovian interval process, which was
introduced by Cox and Lewis for the analysis of component failure times in the
context of reliability theory, is also suitable for the analysis of �ring times of
connected neurons. It has been shown by Utikal (1994b) that a nonparametric
estimate of the �ring intensity will display geometric properties characteristical
for neural interactions. Inhibition of a target is manifested as a sudden drop
of the intensity a certain time after a trigger �ring to a lower level for a cer-
tain duration whereafter it rebounces to its previous level as suddenly as it had
dropped. This is easily recognized in the geometric display of the target's in-
tensity estimate as a surface which at a certain BRT of the trigger is cut by a
sharp valley, independent within certain limits of the BRT of the target.

This has lead to the suggestion of a new method of graphically detecting
inhibition and estimating its maximal strength, duration, and change over time,
which can be superior to cross correlation methods for small as well as large
samples as is illustrated in Utikal(1995a).

In this article we propose now a quantitative method of detecting neural in-
teractions which will be shown to lead to consistent inference within the frame-
work of Markovian interval processes.

Moreover, a special class of processes is introduced under which the proposed
method is easily motivated and most naturally interpreted. For these models
which we call proportional hazard Markovian interval processes (PhMips) the
intensity of any component is an unknown, general function of its own BRT
which is modulated by step functions of the BRTs of the other components.
These step functions have a value equal to one except on some unknown intervals
where they may take other constant, unknown values reecting strengths of
delayed e�ects which extend for certain durations.

The method of detecting those e�ects is based on a diagram which may be
considered a modi�cation of the cross correlation histogram (CCH) of Perkel et
al. (1967) for pairs of neurons but which is also straightforwardly generalized
to e.g. triplets of two triggers and a target. Nonstationary controlled or uncon-
trolled e�ects within the system can be incorporated and its signi�cance tested
for. Moreover can it be used to test for signi�cance of cumulative e�ects of
successive trigger �rings or aftere�ects of a trigger �ring beyond a target �ring.
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We assess the validity and power of the proposed method in a simulation
study using networks from Utikal (1995a) and MacGregor (1987). This leads
to recommendations on the sample sizes required to produce reliable results.
Using empirically obtained data our analyses are shown to be consistent with
results previously obtained by other authors using cross correlation methods
but moreover previously hidden e�ects are found to play a signi�cant role. The
results are interpreted in terms of a PhMip and the problem of superposition of
e�ects from di�erent triggers is addressed.

Other related work on modeling statistical aspects of neural �ring times using
intensity based counting process theory has been done in the past. Chornoboy
et al. (1986) assume additivity of the trigger e�ects i.e. the targets �ring inten-
sity is decomposed into a sum over all observed triggers of arbitrary univariate
functions of the BRTs of each trigger. Nonparametric functional estimation
of the component functions has been carried out in a computationally e�cient
way but no numerical tests for signi�cance of the observed e�ects was given. As
their model is a special case of the Markovian interval process described here,
our test applies to their model as well.

A model introduced by Borisyuk et al. (1985) can be seen as a forerun-
ner to the PhMip introduced here. Being more general, our model avoids the
shortcomings their model encounters in certain situations as further explained
below.

The remainder of this paper is organized as follows. In Section 2 we introduce
Mips and PhMips and relate them to intensity based counting process models
proposed by other authors.

The main result is contained in Section 3. The simulation study is contained
in Section 4 and applications to empirically obtained data are given in Section
5. The proofs of the theorems are appended in the Section 6.

2 Model

The method of detecting neural interactions discussed in Section 3 is shown
to be a consistent procedure under the following model. The �ring activities
of an ensemble of p + 1 neurons is conveniently described by a (p + 1)variate
counting process N = (N;N (1); :::; N (p)) whose components jump at their re-

spective �ring times f�1; �2; :::g, f� (1)1 ; �
(1)
2 ; :::g, : : :, f� (p)1 ; �

(p)
2 ; :::g. We model

the �ring intensity of a neuron as a certain jump intensity of the corresponding
counting process. It is well known that, given the past history of the process
N, denoted by Ft, the components of N(t) can be decomposed into a sum of its
dual predictable projection or intensity process �t and an Ft-martingale M(t)
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N(t) =
Z t

0
�s ds+M(t) (2.1a)

N (r)(t) =

Z t

0
�(r)s ds+M (r)(t) (2.1b)

for r = 1; � � � ; p where (Ft) is a �ltration satisfying the "usual conditions", see
Andersen et al (1992) p.60. As an alternative notation for (2.1) we also use

dN(t) = �t dt+ dM(t)

dN (r)(t) = �
(r)
t dt+ dM (r)(t) :

The proposed models specify the intensity as some unknown or partially known
function of the times passed since the last jump of the components of N i.e. its

backwards recurrence times (BRTs). Denote the BRT of N (p) at t, by t� � (p)
N (p) ;

see Figure (2.1).

N
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τ
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2
. . . . . . . . .

(t)t- τ
(p)

t
τ (p)
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(p)

(p)
(t)
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Figure 2.1. Backwards recurrence times of N (p)

All models discussed here are special cases of the following model in which
the intensities of the components are functions of the BRTs of the components
of N. These functions are arbitrary, unknown, assumed to be continuous and
positively bounded away from zero on every compact domain, i.e.

dN(t) = �
�
t � �N(t�); t� � (1)N (1)(t�)

; :::; t� � (p)
N (p)(t�)

�
+ dM(t) (2.2a)

dN (r)(t) = �(r)
�
t � �N(t�); t� � (1)N (1)(t�)

; :::; t� � (p)
N (p)(t�)

�
+ dM(t) (2.2b)

for r = 1; : : : ; p.

These processes, called Markovian interval process by Cox & Lewis (1972)
who in the context of reliability theory assume a dependence of the probabilities
of a components breakdown in the very near future on the ages of some or all
components in the system. The ergodic properties of the stochastic system
described by (2.2) were studied by Slud (1984).

As there is no further assumption on the functional form of �; �(1); : : : ; �(r)

these models are very general. It has been shown in Utikal (1994a, 1994b, 1994c,
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1995a) that they are useful tools for analysing the �ring activities of small
networks. Neural interactions are characterized through geometric properties
of the function � which are also clearly reected in their functional estimates
and give a much clearer picture and impression than is usually obtained by the
crosscorrelogram.

The following derivatives of model (2.2) will be considered, obtained by re-
stricting the domain of de�nition or by further specifying the functions involved.

1. If we are not sure how to model the cumulative e�ects of several trigger
�rings after a target �ring, this can be avoided by stopping the observa-
tions at a consecutive trigger �ring and restrict the model to hold at times
t while at most one �ring of any trigger component has been observed, i.e.

�n � t < �
(r)

N (r)(�n)+2
^ �n+1 (2:3)

for n = 1; : : : and r = 1; : : : ; p.

2. A simpli�cation of the model is obtained under the hypothesis that after
a �ring of N and before the next �ring of N the function � depends on
the BRT of N only, i.e.

� = �(t � �N(t�)) if �n < t < �
(r)

N (r)(�n)+1
for all r = 1; : : : ; p : (2:4)

In other words we assume in (2.4) that the aftere�ect of a trigger after a
target �ring is negligible. This hypothesis has been tested for a related
model in Utikal (1994c) and, for the data considered in Example 1 of the
present work, cannot be rejected (p� value > :10).

Model (2.2) under (2.3), (2.4) is used in the analyses presented in Section 5.

3. On the other hand one can investigate if there is an aftere�ect of the jth

trigger after a target �ring took place by considering sequences speci�ed
by

� (i)
N

(i)
(�n)

� � (j)
N

(j)
(�n)

� �n < t � �n+1 ^ � (i)N (i)(�n)+1

for all i = 1; : : : ; p.

4. More general models are obtained by incorporating dependence on the
last several trigger events after a target �ring. This leads to models of the
form (2.1), (2.2) where dependence of � is extended to

t � � (1)
N (1)(t�)

; : : : ; t� �
(1)

N (1)(t�)�k1
; : : : ; t� � (p)

N (p)(t�)
; : : : ; t� � (p)

N (p)(t�)�kp
:

An important special case of this is given by for p = 1; kp = 1. A more
general model for this case is obtained by requiring the above to hold only
while

�n < t � �n+1 ^ � (1)N (1)(�n)+3
:
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This is a useful generalization e.g. for infering on cumulative e�ects of
two sucessive trigger �rings. However, in order not to overburden the
notation, we will only consider the case k = k1 = � � � = kp = 0 and leave
straightforward generalizations to the reader.

Further observed variables describing factors thought to inuence the �r-
ing activities of the ensemble can be incorporated into the model. These
may be controlled or uncontrolled by the experimenter e.g. indicating pres-
ence or absence of "treatments" or outside stimuli.

As a special case of (2.2) we assume that the e�ects of the BRTs multiply.
This leads to the multiplicative or proportional hazards Mip (PhMip)

dN(t) = �0

�
t� �N(t�)

�
�
�
t � � (1)

N (1)(t�)
; : : : ; t� � (p)

N (p)(t�)

�
+dM(t) (2.5a)

dN (r)(t) = �(r)
�
t � �N(t�); t� � (1)N (1)(t�)

; : : : ; t� � (p)
N (p)(t�)

�
+dM(t) (2.5b)

for r = 1; : : : ; p.

To model the dependence observed in Utikal (1995c) and briey described
in the introduction we propose a semiparametric model whose parametric part
is speci�ed as

�(s1; : : : ; sp) = 1 +
X
B2A

hiB I f(s1; : : : ; sp) 2 Bg (2:6)

where A is a given �xed partition of the space of backward recurrence times
and hiB are unknown parameters such that hiB > �1. The function �0 is
arbitrary, unknown, positive, continuous. In the special case p = 1, i.e. for a
pair of neurons, (2.6) is reduced to

�t = �0(t� �N(t�))(1 + hi) Ifdel < t � � (1)
N

(1)
(t�)

< del+ durg (2:7)

where del and del + dur are unknown parameters from a given �nite set.

This model stipulates an intensity of N which varies as a (smooth) function
of the time since the last jump of N and which is interrupted by sudden rise or
fall for a short period of dur, starting at a time del after a jump of N (1) and
which disappears thereafter as suddenly as it arose. This way N (1) transmits
its e�ect on N which may be exciting (hi > 0) or inhibiting (�1 < hi < 0) .

An obvious specialization of (2.6) is given by

�B(s1; : : : ; sp) =
pY

r=1

(1 + hirIfsr 2 Brg)

where B = �p
r=1Br. It is seen in Example 2 of Section 5 however that this

might quickly become too severe of a restriction.
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We note that other attempts of describing neural �ring activities have been
made using models that are special cases of (2.2). The model proposed by
Borisyuk et al (1985) is closely related to ours. It is speci�ed by an intensity of
the form (2.5) with

�(s) = exp f� expfs=12gg : (2:8)

This function has been proposed earlier as a model for transient phenomena
by Cox & Oakes (1984). As is shown in Borisyuk et al. (1985) and Utikal
(1994c), this model can describe adequately certain networks; for undelayed
excitations of a certain duration the model reconstructs correctly the structure
of simulated network of known wiring. A generalization of (2.8) to possibly
delayed e�ects of unknown duration leads to a model for which inference can be
studied by methods similar to ours. However, we believe that sudden jumps of
an intensity, as those observed in Utikal (1994b) should not be modeled by using
continuously decreasing functions �k as in (2.8). This has been attempted in
Utikal (1994c) with unsatisfying outcome; estimators and inference are becoming
increasingly numerically unstable the more disruptive and visible the simulated
e�ects become.

Note that instead of giving the model (2.2) a multiplicative structure as we
do in (2.5) additivity is another possibility. This was done in Chornoboy et al
(1986) who proposed the model

�t = �
�
t� �N(t�)

�
+

pX
k=1

�k

�
t � � (k)

N (k)(t�)

�
: (2:9)

However, we have found (2.5) convenient for modeling certain two-component-
networks like the one analysed nonparametrically in Utikal (1995c); a sudden
drop to zero of the intensity may be simpler to explain by a factor dropping to
zero in a product than by a sum of hazards. The important question of discrim-
inating between additive and multiplicative models needs further investigation.

3 Inference

In this section we construct tests for the independence of N from the back-
wards recurrence times (BRT) of N (1); : : : ; N (p) assuming model (2.2).

From observing one single trajectory of the processes we derive the BRT
process

X(t) = (t � � (1)
N(t)(1)

; : : : ; t� � (p)
N(t)(p)

)
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as indicated in Figure 3.1.

If the model is assumed to hold only

-

N(t)

N (t)r

1
t

t

t

t

1

-

X  (t)

Y (t)

X  (t)

r

r

r

0
1

Figure 3.1: kth BRT process

at times during which a certain pattern of
counts is repeated e.g. as in (2.3), we in-
troduce an auxiliary process Y(t) = fYr(t);
r = 1; : : :pg. During times at which (2.3)
is violated, the process Yr(t) is set to zero
and otherwise we set Yr(t) = 1. Denote
Y = minfY1; : : : ; Ypg. In the absence of any
restrictions, Y (t) equals one for all times. If
other restrictions on the times during which
the model is to hold are imposed, this is in-
corporated accordingly.

A further use of the indicator Y is for
screening out extraordinary long times be-
tween successive �rings of the target. As
is illustrated in Utikal (1995b) it is recom-
mendable to limit these times to some phys-
iologically meaningful region, less than some
value T, say (e.g. 275 ms) in Example 1
of Section 5. This is achieved by setting
Y (t) = 0 while

t� �N(t) > T: (3:1)

This condition will be assumed throughout. We base inference on the fol-
lowing statistics. We denote the indicator function of a set B by IB. De�ne

�t(B) =
X

�j+1<t

Y (�j+1)>0

(
IBfX(�j+1)g �

P
Rt(�j+1)

IBfX(�k + �j+1 � �j)gP
Rt(�j+1) 1

)
(3:2)

and similarly

�2t (B) =
X

�j+1<t

Y (�j+1)>0

(
IBfX(�j+1)g �

P
Rt(�j+1) IBfX(�k + �j+1 � �j)gP

Rt(�j+1) 1

)2
(3:3)

where Rt(�j+1) = f�k : t > �k+1 > �k + �j+1 � �j ; Y (�k) > 0g.

The introduction of these statistics is motivated as follows. Each time the
target �res we compute from the total number of cases in which a target has not
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�red for more than the observed time the percentage for which their respective
BRTs fall within limits set by B. This percentage is then related to the event
wether that the target �red with a respective trigger's BRT lying inside the
range set by B. If a trigger is inhibiting after a time and for a duration within
the limits set by B we would expect this di�erence to be signi�cantly negative,
and in the opposite case of excitation signi�cantly positive.

We consider the following test statistics. Denote by C a �nite collection of
hypercubes in the covariate space of IRp. For each hypercube in C there must
be another member of C which is adjacent in the sense that they share a face.
The collection of all unions of adjacent cubes in C is denoted by B(C). Denoting
the square root of �2 by � we de�ne

�1 = max
B2B(C)

j�(B)j
�(B)

�2 = max
B2C

j�(B)j
�(B)

�3 = max
B2B(C)

(X
C

j�(C)j
�(C)

; where C 2 C such that B = [C
)

�4 = max
B2B(C)

(X
C

�(C)2

�2(c)
; where C 2 C such that B = [C

)
:

For further motivation we also note that �(B)=�(B) approximates the stan-
dardized partial likelihood score in model (2.5)-(2.6) under the hypothesis
H0 : hiB = 0 against the alternative that hiB 6= 0 for some �xed known
B. More precisely, Cox's partial likelihood of observing f(�j+1 � �j ; X1(�j +
s); : : : ; Xp(�j + s)); s � �j+1 � �j ; j = 1; 2; :::g for one single, known set B can
be approximated by

L(hi) =
Y

0<�j+1<t

Y (�j+1)6=0

1 + hi IB(X(�j+1))P
Rt(�j+1)(1 + hi IB(X(�k + �j+1 � �j)))

: (3:4)

Evaluating (@=@hi) log(L) in zero one obtains �(B) as de�ned in (3.1). From
this point of view �1 can be expected to be the most powerful of all four tests
considered. This is con�rmed by the simulations in the following section.

Moreover, for this reason one can choose from a variety of existing software
to compute �(B)=�(B) for any �xed B. Any program that computes "score test
statistic" in the Cox model may be used, provided the model allows for time
dependent covariates to be included, e.g. PHREG of SAS. It is then possible to
use the indicator that the trigger's BRTs at a target �ring fall within the range
of B as covariates while the target's BRT plays the role of the response variable.
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Maximizing (3.3) with respect to the unknown parameters of (2.6), one would
expect to obtain reasonable estimators for these. Maximization is facilitated
by using di�erentiability in hi of (3.3) while plotting �(B)=�(B), as further
explained below, one gets starting values for the maximization in del and dur

as in (2.7).

The following theorem will be useful in computing the distribution of the test
statistics de�ned below. We assume that the components of N have intensities
of the form (2.2) and N has an intensity of the form (2.6) with � � 1. We have
the following theorem.

Theorem 3.1: Under the null hypothesis H0 : N is an independent
renewal process we have for t!1

(i) (�=�)(B) is asymptotically standard normal.

(ii) �(B(1)) and �(B(2)) are asymptotically independent if B(1) \B(2) = ;.
(iii) �(B(1)) + �(B(2)) = �(B(1) [B(2)) if B(1) \ B(2) = ;.

It follows from this theorem that the distribution of �2 can be computed ap-
proximately as that of a maximum deviation of independent standard Gaussian
random variables.

Likewise the distribution of �3 is approximately equal to that of a maximum
over sums of absolute values of independent standard Gaussian random variables
and that of �4 can be approximately computed as that of a maximum over
simulated sums of independent chi-square random variables with one degree of
freedom each.

While the distribution of �1 depends on parameters of the data generating
process, i.e. has to be computed anew for each new series of observations, this
is not the case for �2; �3; �4.

The distribution of �1 can be determined as follows. Denote by
D
= equality

in distribution.

Corollary 3.2: As t !1
�
�

�

�0@ j2[
j=j1

Bj

1
A D
=

Pj2�j1+1
j=1 Xj�(Bj)qPj2�j1+1
j=1 �2(Bj)

+ o(1)

where Bj1 \Bj2 = ; if j1 6= j2 and X1; X2; : : : are independent standard normal
random variables.

The test statistic �2 has the additional advantage that it leads to a simple
graphic method of detecting inhibition or excitation. Partitioning the region
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of interest into disjoint intervals B, the random variables �(B) / �(B) are in-
dependent standard Gaussian processes. If their maximum exceeds a critical
threshold value, the corresponding interval is likely to contain the time at which
the e�ect of a trigger on the target manifests. The sign of this maximal devi-
ation indicates the inhibiting or excitating natures of the e�ect. The threshold
value can be approximately chosen according to the following corollary.

Corollary 3.3: As t !1

P (�2 > x)! (2(1� �(x))n (3.5)

where n is the number of disjoint equally sized hypercubes in the collection C
and where �(x) is the standard normal distribution.

For computationally simple approximations to this distribution we refer to
Leadbetter et al. (1982).

As another corollary to the proof of Theorem 3.1 we show that tests based
on �1; : : : ; �4 are consistent in detecting neural e�ects if these are present.

Corollary 3.4: Assume model (2.5), (2.6) with hiB 6= 0 for some B.
Then j � j=� ! 1 as t!1:

Using the same principles we can easily adjust the proposed tests to account
for the e�ects of other observed covariates or to test for the signi�cance of their
e�ects. Suppose for instance that a covariate  (t) is binary, indicating presence
or absence of a certain condition at time t. One way to test the signi�cance of
 is to compute �i separately over times corresponding to di�erent values of  ,
say �i( = 0) and �i( = 1). Under the assumption that these statistics are
independent the asymptotic distribution of their di�erence can be found from
Theorem 3.1. Another way is to model the e�ect of  explicitly in (2.5), (2.6)
and then derive a test statistic from maximizing the functional corresponding
to (3.3).

The bivariate case (p = 1) will receive special attention in the next section. It
is shown in Utikal (1995a) by graphical means, that models (2.2)-(2.7) can lead
to correct inference even where the CCH gives a misleading picture. Moreover,
it will be seen that the power of the test based on �2 is surprisingly high when
compared to �1.

4 Simulations

Two simulation studies are carried out to assess the goodness of the meth-
ods proposed in Section 3. In Simulation 1 an extremely simple network of two
neurons is used to estimate the power of detecting independence, excitation,
and inhibition where strength, location, and duration of the e�ects are varied
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systematically. The power of �1; : : : ; �4 is compared and recommendations con-
cerning the required number of �rings are drawn. In Simulation 2 we analyse
data generated by a neuronal generator which models the underlying physiolog-
ical processes more realistically. It is shown that the method recovers correctly
the wirings of a network of �ve neurons even when the numbers of observed
�rings lie below those recommended in Simulation 1.

A comparison of the power of detection for the proposed method relative to
cross correlation based methods is not intended in the present article. However,
it can be conjectured from the results in Utikal (1995a) that for certain values of
the parameters in the model considered in Simulation 1 our method compares
favorably.

Simulation 1: We simulate �ring times from a pair of neurons such that

(i) the �ring intensity is constant before a trigger �ring

(ii) For del units of time after a trigger �ring the targets intensity remains
unchanged. Provided no other �ring of trigger or target have occurred,
after del units the targets intensity jumps to a new level hi where it
remains for dur units and whereafter it falls back to its previous level.

(iii) Whenever a new trigger �ring occurs, the targets �ring intensity is re-
generated at (ii), whenever a new target �ring occurs, it regenerates at
(i).

For an algorithmic descriptions and further applications of this network see
Utikal (1995a). In mathematical terms this means we simulate a trajectory of
the bivariate counting process (2.5), (2.7) with r = 1 and �0 = 1. As trigger
process we choose a homogenous Poisson process, hence we obtain the system

dN(t) = (1 + hi) I

(
del < t < t� �

(1)

N
(1)
(t�)

(1) < del + dur

)
dt+ dM(t)

dN (1)(t) = dt+ dM (1)(t)

with side conditions (2.3) and (2.4).

The programs used in the simulations are written in C and Splus and are
available from the author. The random number generator ran2 of Press et al.
(1988) was used.

The CCH for a pair of typical replications of the simulation corresponding
to di�erent alternatives speci�ed in Table 4.2 is shown in Figure 4.1.
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Figure 4.1. CCH for di�erent alternatives.

model p-value

Figure 3.2 hi del dur mpl numint triggers

[left] 0.882 0.40 0.10 0.04 10 2000

[right] 1.600 0.40 0.10 0.07 10 2000

Table 4.1: Tests from samples with CCH dislayed in Figure 3.2.

It is seen from Figure 4.2 that for moderate sample sizes the simulated Pois-
son counts frequently tend to accumulate and build up spurious but remarkable
singular features in the cross correlogram which the test statistic records as ab-
normal as much as the human eye does. It has been con�rmed by our simulations
that for these cases the test statistics indicate highly signi�cant interactions con-
sistent with perceived patterns. More precisely, score functions and the derived
statistics are maximized for durations that correspond to towering hights or
steep valleys of the CCH. Therefore it is not surprising that rather large sample
sizes are needed to assure the speci�ed �-level of the test.

0.0 0.5 1.0 1.5 2.0

0
5

10
15

20

Figure 4.2 Small sample CCH for a pair of independent Poisson processes.
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The following table gives the power of the four tests proposed above for
H0 : hiA = 0 for all A 2 A against the alternative Ha : hiA 6= 0 for some
A. We consider di�erent levels of signi�cance and di�erent sample sizes (i.e.
number of triggers). The relevant time interval of the BRT is partitional into
either �ve or ten intervals of equal width. The power calculations for each test
are based on 1000 replications.

It can be concluded that under the null hypothesis the tests based on �2; �3; �4
are more volatile than �1. Under the alternative the power of �2 is quite good
when compared with �1 for impulses of short duration but is overtaken by �3
and �4 for larger values of dur.

Model Test

hi del dur �1 �2 �3 �4 alpha int triggers

0.00 0.153 0.167 0.151 0.216 0.10 5 500
0.00 0.091 0.109 0.098 0.132 0.05 5 500
0.00 0.127 0.128 0.125 0.189 0.10 5 750
0.00 0.070 0.075 0.078 0.104 0.05 5 750
0.00 0.107 0.127 0.109 0.164 0.10 5 1000
0.00 0.074 0.075 0.078 0.092 0.05 5 1000
0.00 0.188 0.195 0.191 0.213 0.10 10 750
0.00 0.138 0.145 0.147 0.155 0.05 10 750
0.00 0.165 0.179 0.170 0.188 0.10 10 1000
0.00 0.113 0.127 0.130 0.133 0.05 10 1000
0.00 0.130 0.150 0.145 0.157 0.10 10 1500
0.00 0.080 0.106 0.088 0.102 0.05 10 1500
0.00 0.102 0.122 0.112 0.130 0.10 10 2000
0.00 0.049 0.076 0.05 0.076 0.05 10 2000
0.50 0.40 0.10 0.376 0.457 0.366 0.536 0.10 10 1500
0.50 0.40 0.10 0.245 0.324 0.267 0.417 0.05 10 1500
0.50 0.40 0.20 0.603 0.499 0.586 0.617 0.10 10 1500
0.50 0.40 0.20 0.457 0.359 0.468 0.514 0.05 10 1500
-0.30 0.40 0.10 0.459 0.490 0.468 0.554 0.10 10 1500
-0.30 0.40 0.10 0.358 0.388 0.378 0.426 0.05 10 1500
-0.30 0.40 0.20 0.529 0.495 0.541 0.536 0.10 10 1500
-0.30 0.40 0.20 0.429 0.398 0.456 0.443 0.50 10 1500
-0.30 0.40 0.30 0.674 0.577 0.693 0.671 0.10 10 1500
-0.30 0.40 0.30 0.569 0.478 0.607 0.570 0.05 10 1500

Table 4.2: Power of the tests �1; : : : ; �4

Simulation 2: The �ring times of �ve neurons N1; : : : ; N5 were generated by
Lindsey (1993) using the neural generator SYSTM11 of MacGregor (1987).

Three of the neurons are serially connected N2 �! N3 �! N4, i.e. N2
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excites N3 and N4 is excited by N3 while N1, N5 �re independently. This
data was previously analysed by Utikal (1994c) using model (2.8). Using model
(2.2){(2.4) now and testing for the independence of Ni from Nj we obtain the
following p-values of the test based on �1 displayed in Table 4.3.

An e�ect of N2 on N3 as well as of N3 on N4 can be clearly perceived
from the table. The sample sizes used are given in Table 4.4, where numbers
in parenthesis indicate censored events, i.e. Y (�j) = 0, see the beginning of
Section 3. We also note from Table 4.3 a borderline signi�cance of an e�ect
of N4 on N2. This e�ect is to be attributed to the relative smallness of the
sample. By changing the partition of the backwards recurrence time range from
10 intervals to 8 intervals a second test was run on the subgroup of N2; N3; N4.
From the p-values displayed in Table 4.5 it can be seen that the e�ect of N4 on
N2 was spurious while the e�ects of N2 on N3 and of N3 on N4 are con�rmed.

p-values target
1 2 3 4 5

1 0.30 0.17 0.21 0.36
2 0.89 0.00 0.45 0.68

trigger 3 0.69 0.72 0.02 0.71
4 0.64 0.10 0.20 0.84
5 0.46 0.65 0.24 0.64

Table 4.3: full group (p-values)
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trigger target
events 1 2 3 4 5

1 1216(85) 1273(82) 1260(76) 1172(85)
2 554(285) 1273(263) 1260(285) 1171(290)

trigger 3 554(306) 1216(299) 1260(306) 1172(319)
4 554(318) 1216(311) 1273(287) 1172(302)
5 554(285) 1217(270) 1273(268) 1260(248)

Table 4.4: full group (trigger events), number of censored observations in paren-
thesis

p-values target
2 3 4

2 0.00 0.28
trigger 3 0.74 0.01

4 0.31 0.66

Table 4.5: reduced group (p-values)

5 Application

In this section two sets of neurophysiological data, describing the �ring ac-
tivities of groups of neurons recorded in form of a multivariate spike train series,
are reanalysed. We apply the methods of automatic detection of neural interac-
tions introduced in Section 3. In addition we present a simple graphical device
illustrating signi�cance, nature, delay, and location of the detected e�ects. In
the �rst example we show the robustness of the method towards variation in
the number of una�ected target �rings. In the second example we study the
interaction of two triggers on a target. The results obtained are in accordance
with those obtained by previous analysts using cross-correlation analysis, how-
ever new and additional insights into the �ring activities are gained from the
data.

Example 1: Lindsey et al. (1992) recorded the �ring times of a pair of
neurons located in the midline brain stem of a cat. From an inspection of the
CCH it is suggested that the target is a�ected by an inhibiting trigger �ring at
a time later than 50 ms. This data was reanalysed by Utikal (1994b), (1995a)
using Markovian interval processes which suggest a time to maximal inhibition
of approximately 60 ms after a trigger �ring.
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Figure 5.1: CCH and scoreplots restricted time range 175 ms [center] and 350
ms [right]

By dividing up the range of the backwards recurrence time of the trigger of
100 ms into 10 intervals B1; : : : ; Bn and graphing the values of �(B)=�(B) as
de�ned in (3.1),(3.2), we obtain Figures (5.2)[center] and (5.2)[right]. These two
�gures were produced to illustrate the robustness of the method from variations
in the range of times between target and the following trigger �rings as explained
next. 90% thresholds were computed from (3.5) and represented in the picture
by a straight horizontal line.

It was shown in Utikal (1994b) that the perceived strength of the e�ect may
crucially depend on the backwards recurrence time of the target at the time of
the trigger �ring. For the data analysed in this example, the e�ect was strongly
present only for times up to 175 ms and completely disappeared on targets
with a backwards recurrence time of more than 350 ms at a trigger �ring. This
way the e�ect is "drowned" in the presence of a large number of targets with
abnormally high backwards recurrence times. The tests considered here are
remarkably invariant against this peril. While the center graph was produced
after �ltering out all observations with backwards recurrence times exceeding
175 ms at the time of a target �ring, this range was increased to 350 ms in the
plot of Figure (5.2) [right] with little e�ect.

Example 2: The �ring times of a group of �ve neurons were measured
and analysed by Lindsey et al (1994). A total of 61,247 �rings were counted, a
segment of the observed series is displayed in Figure 5.2.
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time in ms
0 2000 4000 6000 8000

R7

B13

B13A

B12

B11

Figure 5.2: Data MR90.ADT.

Detection tests and estimates of

p-value

R7 ! B11 0.00

R7 ! B12 0.00

R7 ! B13A 0.06

B13A ! B11 0.00

B13A ! B12 0.00

B11 ! B12 0.00

B11 ! B13 0.03

B12 ! B13 0.02

Table 5.1: p-values for �1-test for re-
duced sample (10,000 �rings) indicate
signi�cant interactions beyond those de-
tected graphically in Figure 5.3 [right]

connectivity e�ects, their strength, and
duration were obtained by the above
authors using cross correlation based
methods. More precisely, based on
the CCH a detectability index of Aert-
sen and Gerstein (1985) was used, de-
�ned as \the ratio of the maximum
amplitude of departure from the back-
ground, d, to the background, divided
by the standard deviation of the cor-
relogram noise". This simple ad hoc
method requires compution and in-
spection of a CCH of up to 475 ms
to obtain their results.

18



0 20 40 60 80 100

0
2
0
0

5
0
0

R7--->B11

0 20 40 60 80 100

0
2
0
0

6
0
0

B13A--->B11

0 20 40 60 80 100

0
2
0
0

4
0
0

R7--->B12

0 20 40 60 80 100

0
2
0
0

6
0
0

B13A--->B12

0 20 40 60 80 100

0
1
0
0

3
0
0

R7--->B13A

0 20 40 60 80 100

0
5
0
0

1
5
0
0

B11--->B12

0 20 40 60 80 100

0
4
0
0

8
0
0

B11--->B13

0 20 40 60 80 100

0
4
0
0

8
0
0

B12--->B13

20 40 60 80 100

-
6

-
2

2

R7--->B11

20 40 60 80 100

-
4

0
4

8

B13A--->B11

20 40 60 80 100

-
8

-
4

0
4

R7--->B12

20 40 60 80 100

-
2

2
4

6
8

B13A--->B12

20 40 60 80 100

-
4

0
2

4
6

R7--->B13A

20 40 60 80 100

-
2

2
4

6
8

B11--->B12

20 40 60 80 100

-
4

0
2

4

B11--->B13

20 40 60 80 100

-
2

0
2

4

B12--->B13

20 40 60 80 100

-
4

0
2

R7--->B11

20 40 60 80 100

-
2

0
2

B13A--->B11

20 40 60 80 100

-
2

0
2

R7--->B12

20 40 60 80 100

-
3

-
1

1

B13A--->B12

20 40 60 80 100

-
2

0
1

2

R7--->B13A

20 40 60 80 100

-
2

0
2

4

B11--->B12

20 40 60 80 100

-
2

0
1

2
3

B11--->B13

20 40 60 80 100

-
2

0
1

2

B12--->B13

Figure 5.3: CCH and scores with joint 90% con�dence bands; total series
length: 61247 counts [center], 10000 counts [right].

As can be seen from Figure 5.3[center], the one dimensional score plots
�(B)=�(B) as de�ned in (3.1), (3.2) lead to similar conclusions on the connect-
edness of pairs of neurons as those of Lindsey et al (1994) in Figure 5.3[left]. In
order to study dependence of our methods on the sample size, we reduce the
number of observed �rings from 61247 to 10000. It comes as no surprise that
the graphical indicators reect the connectivity relations now in a weaker form,
see Figure 5.3 [right]. However, as is shown in Table 5.1, the test based on �1
still indicates connectivity among all pairs considered, even for those for which
the scores remain within the chosen 90% con�dence bands in Figure 5.3 [right]
as computed from (3.5).
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We now take the step to extend the analysis from pairs to triplets of neurons,
i.e. trigger1, trigger2, target. We use a partition of the square with sides 0 to
100 ms into 36 subsquares fBg. These are formed by considering di�erent
ranges for the duration of time since trigger �rings. Also included is the region
of particular importance in which one trigger has already �red but the other
trigger has not yet �red since the last target �ring. This region is represented
by the bands of 6 squares each limited by the horizontal axes in the plots of
Figure 5.4. It can be seen from those plots that in all three cases of triplets
considered a clear distinction emerges in the �ring patterns of the target after a
�ring of trigger1, depending if trigger2 has �red already or still has not done so:
If trigger2 (i.e. B11, respectively B13A) has not �red, trigger1 (i.e. R7) inhibits
the target as consistent with the one dimensional scoreplots and the CCH of
Figure 5.3. But the exciting e�ects of trigger1 can only be detected (in case
one) after a �ring of trigger2. The excitatory e�ects of trigger1 are consistent
with those displayed in Figure 5.3 but can only be recognized with clarity during
the �rst 40 ms after a �ring of trigger2. Inhibition by trigger1 is independent
of trigger2 in the third case. Given that both triggers have �red, their e�ects
on the target seem manifest only if the �rings take place consecutively within a
short amount of time (i.e. 20-40ms). Using (3.5), we determine an approximate
90% region between two planes intersecting the vertical axes at � 3.

0

100
R7

0

100

B11

-10

10

0

100
R7

0

100R7 0

100

B13A

-9

9

0

100R7

Figure 5.4 a, b. Both scoreplots show inhibition of B12 by R7 only before a
�ring of B11 [left] resp. B13A [right]. Excitation can be detected only after a

�ring of B11[left] but independent of B13A[right].
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Figure 5.4 c. Scoreplot shows that inhibition of B13 by B11 independent of
B12.

6 Proofs

The proofs use standard techniques from intensity based counting process
and martingale theory as exposed e.g. in Karr (1986) combined with facts from
the theory of Markov processes.

Repeated applications of the central limit theorem for martingales and the
weak law of large numbers for Markov chains are left indicated and details of
the proofs are omitted.

For ease of exposition we restrict attention to the case of two neurons, i.e.
model (2.2) with r = 1. The proof of Theorem 3.1 exploits the Markov property
of the backwards recurrence process

Z(t) = (t� �N(t�); t� � (1)N (1)(t�)
):

Denote by Ft the sigma-�eld generated by the internal history of Z, i.e.

Ft = �(fZ(v); 0 � v < tg) (6:1)

and f��1 ; ��2 ; : : :g as the jump times of N(t) + N (1)(t). As is further explained
in Utikal (1995b), the processes fZ(��n)g and fZ(�n)g are F��n

- respectively F�n-
Markov chains with a one-dimensional state space and transition densities de-
termined by �, �(1). Under the conditions that �; �(1) are continuous and
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strictly positive, Doeblin's condition (condition "D" on p. 192 of Doob (1953))
is satis�ed which implies the existence of a limiting density f to which the tran-
sition densities converge exponentially fast. In what follows all (unconditional)
expected values are taken with respect to this limiting distribution. More pre-
cisely, suppose that f(xjx1) is the transition density of fZ(��n)g. Then

jf (n)(xjx1)� f(x)j � C�n (6.2)

uniformly in x; x1 for some generic constants C > 0; � 2 (0; 1). Similarly, if
An(xjx1) is the hazard of the transition distribution, i.e.Z x

0
f (n)(vjx1)dv = 1� e�An(xjx1)

then

jdAn(xjx1)� dAn(x)j � C�ndx: (6.3)

In what follows we will describe the transitions using counting process in-
tensities. For given �n de�ne the one-step jump processes

Nn(s) = If�n+1 � �n + sg
Yn(s) = If�n + s � �n+1g

and the �ltration

Fn(s) = F(�n + s) = �fZ(v); 0 � v < �n + sg: (6:4)

Then with respect to Fn(s) the following semi-martingale decomposition of
Nn(s) holds:

dNn(s) = Yn(s) �(Z(�n + s)) ds+ dMn(s) (6:5)

where the quadratic variation process of M is given by

d < Mn > (s) = Yn(s) �(Z(�n + s)) ds (6:6)

where � is de�ned in (2.2a).

Under H0 formulas (6.5), (6.6) simplify to

dNn(s) = Yn(s) �(s) ds+ dMn(s)

d <Mn> (s) = Yn(s) �(s) ds:

We now come to the description of the process �t(B); �2t (B) de�ned in (3.1),
(3.2). De�ne

�n(s) = If�n + s � � (1)
N (1)(�n+s�)

2 Bg ;
S1n(s) =

Pn
i=1 �i(s)Yi(s) ; Nn(s) =

Pn
i=1Ni(s)

S0n(s) =
Pn

i=1 Yi(s) ; Mn(s) =
Pn

i=1Mi(s) :
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In this notation we have

�
(n)
B =

nX
i=1

Z T

0
�i(v) dNi(v)�

Z T

0

S1(v)

S0(v)
dN(v)

and �
2(n)
B similarly.

To proof Theorem 3.1 we observe that

nX
i=1

Z s

0
�i dNi�

Z s

0

S1

S0
dN =

nX
i=1

Z s

0
�i (dNi � Yid�)�

Z s

0

S1

S0

�
dN � S0 d�

�
(6:7)

where � is any function of bounded variation. Now, under H0 we choose d� =
�(s) ds and write

�
(n)
B = I

(n)
1 � I(n)2 + I

(n)
3 (6.8)

where

I
(n)
1 =

nX
i=1

Z T

0
(�i � E �

E Y
)dMi

I
(n)
2 =

Z T

0

S1� nE �

nE Y
dM

I
(n)
3 =

Z T

0

S1

S0

S0� nE Y

nE Y
dM

where the expectation is taken with respect to the limiting distribution.

To show convergence of (1=
p
n)I

(n)
1 , we introduce the processes

I
(n+1)
1 (s) = I

(n)
1 +

Z s

0
(�n+1 � E �

E Y
)dMn+1:

Note that I
(n+1)
1 (s) is an Fn(s)-martingale (see (6.4)) with quadratic variation

d < I
(n)
1 > (s) =

�
�n+1(s)� E �(s)

E Y (s)

�2
Yn+1�(Z(�n+1 + s))ds :

It now follows from application of a martingale central limit theorem for com-
pensated counting integrals using the weak law of large numbers for Markov

chains that 1=
p
n I

(n)
1 converges to a Gaussian random variable with mean

zero and variance �2 equal to the limit in probability of < I
(n)
1 > (1)=n. It

remains to show that I
(n)
2 =

p
n and I

(n)
3 =

p
n are negligible. We start with the

following lemma.
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Lemma 1:

E0(
Z T

0
(S1� nE �)dM)2 = O(n2)

as n ! 1, where E0 is the expectation with respect to the initial distribution
of the process.

Proof: Introduce the notation �̂i = �i �E�. Then

E0(

Z T

0
(S1� nE �) dM)2 = E0(

X
i1;i2

Z T

0
�̂i1 dMi2)

2

=
X

i1;i2;i3;i4

E0

Z T

0
�̂i1 dMi2

Z T

0
�̂i3 dMi4 : (6:9)

For all four indices di�erent we consider the following two cases.
First case: i4 > maxfi1; i2; i3g :
Using the martingale property we conclude

E0

Z T

0
�̂i1 dMi2

Z T

0
�̂i3 dMi4 = E0

 Z T

0
�̂i1 dMi2E0

 Z T

0
�̂i3 dMi4 jFi4(0)

!!
= 0

Second case: i3 > maxfi1; i2; i4g = i.�����E0

Z T

0
�̂i1 dMi2

Z T

0
�̂i3 dMi4

����� � E0

�����
Z T

0
�̂i1 dMi2

Z T

0
E0(�̂i3 jFi(0)) dMi4

�����
But jE0(�̂i3 jFi)j � C��(i3�i) by exponential convergence of the transition den-
sities (6.1). This and the uniform boundedness of the �rst integral imply that

X
i

X
i3>i

E0j
Z T

0
�̂i1dMi2

Z T

0
�̂i3dMi4 j

is uniformly bounded.
We next have to consider the possibility that any two of fi1; i2; i3; i4g are equal.
Hence we consider the additional case.
Third case: i2 = i4.
If maxfi1; i3g > i4 we can argue as in the previous case. On the other hand, if
i4 > maxfi1; i3g = i we use the martingale property to conclude that

E0

Z T

0
�̂i1 dMi2

Z T

0
�̂i3 dMi4 = E0

Z T

0
�̂i1 �̂i3 d < Mi4 >

= E0

Z T

0
�̂i1 �̂i3E0(d < Mi4 > jFi(0))

=

 
E0

Z
T

0
�̂i1 �̂i3E0Yi4 dA

!�
1 +O(��(i4�i))

�
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where the last equation follows from exponential convergence of the hazards of
the transition densities (6.2). Now by arguing as in the second case, we obtain
for the �rst summand on the right hand side above

jE0

Z T

0
�̂i1�̂i3E0Yi4 dAj � C��ji1�i3j:

The cases that three or four of the indices are equal needs no further consider-
ation since the summands of (6.9) are uniformly bounded.

To apply this result we observe that E S0(v) � E S0(T) > n" for some
" > 0 because of the strict positivity and continuity of �; �(1). Hence the lemma

implies that I
(n)
2 = Op(1) as n ! 1. To show that the third term on the

right-hand side of (6.7) is negligible, a similar argument to that of Lemma 1 is
applied using that jS1=S0j � 1. The proof is lengthy but straightforward and
will be omitted. This concludes the proof of part (i).

Parts (ii) and (iii) of Theorem 3.1 are proved using similar arguments. De�ne

�n(B; s) = If�n + s � � (1)
N (1)(�n+s�)

2 Bg

S1n(B; s) =
nX
i=1

�i(B; s):

We observe that with

Mn(B; s) =
nX
i=1

Z s

0

�
�i(B)� E�(B)

E Y

�
dMi

the martingalesMn(Br1 ; �);Mn(Br2 ; �) are orthogonal for Br1 \Br2 = ;. Their
joint convergence is then shown using the Cramer Wold device and the martin-
gale central limit theorem.

To prove consistency of the test, i.e. Corollary 3.4, we assume the model (2.5),
(2.6) i.e. d�i = �0(s) Yi(s) (1+ hi �i(s)) and obtain a partition similar to (6.3)

nX
i=1

Z
�i dNi �

Z
S1

S0
dN =

nX
i=1

Z
�(dNi � Yid�i)�

Z
S1

S0
(dN �

nX
i=1

Yi d�i) + I
(n)
4 + I

(n)
5

where

I
(n)
4 =

nX
i=1

Z
�iYi d�i

I
(n)
5 = �

nX
i=1

Z
S1

S0
Yi d�i:
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It follows by the same arguments as before that the �rst two terms on the right
hand side above are O(n�

1
2 ). Now, by the law of large numbers

1

n
I
(n)
4 �!

Z T

0
E�Y (1 + hi �)�0 ds

� 1

n
I
(n)
5 �!

Z T

0

E �

E Y
EY (1 + hi �)�0 ds =

Z T

0

E�Y

EY
EY (1 + hi �)�0 ds

such that under the condition of the model (1=n)(I
(n)
4 + I

(n)
5 ) �! 0 if and only

if hi = 0. This can be seen as follows. Denote the above limits by I4 and I5.
By elementary probability calculus it can be seen that

E � Y (1 + hi �) � E � Y

E Y
E Y (1 + hi �): (6:10)

If hi6= 0 equality can hold only if E�Y = EY , i.e. E(X jY ) = 1 or
E(Y jX = 0) = 0. This is in contradiction to the hypothesis of strict positiv-
ity of � in model (2.2). Therefore the inequality in (6.10) is strict. Because of
continuity of E�;EY;E�Y and positivity of �0 this implies strict inequality of
I4 and I5.
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