Discussion Paper No. B-291
 Equity-linked life insurance a model with stochastic interest rates J. Aase Nielsen Klaus Sandmann ${ }^{1}$
 Version September 1994

Jørgen Aase Nielsen: Department of Operations Research University of Aarhus, Bldg. 530, Ny Munkegade, DK-8000 Aarhus C, Denmark. e-mail: atsjan@mi.aau.dk
Klaus Sandmann: Department of Statistics University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. e-mail: sandmann@addi.or.uni-bonn.de

Abstract

In Brennan and Schwartz $(1976,1979)$, the rational insurance premium on an equity - linked insurance contract was obtained through the application of the theory of contingent claims pricing. The premium was determined in an economy with the equity following a geometric Brownian motion, whereas the interest rate was assumed to be constant. Further considerations with deterministic interest rate have been discussed in Aase and Persson (1992) and in Persson (1993). Bacinello and Ortu (1993) allow for interest rate risk by assuming an Ornstein - Uhlenbeck process implying a closed form solution of the single premium endowment policy. This paper presents a model for the multi premium case in the context of a stochastic interest rate process. It is shown that the insurance contract includes an Asian like option contract. No closed form solution will be obtained. We discuss different numerical approaches and apply Monte Carlo simulations with a variance reduction technique.

Code JEL : G 13
Key words : Asian option, forward risk adjusted measure, Monte Carlo simulations

[^0]
1 Introduction

In Brennan and Schwartz $(1976,1979)$ the rational insurance premium on an equitylinked insurance contract was obtained through the application of the theory of contingent claims pricing. The premium was determined in an economy with the equity price following a geometric Brownian motion, whereas the interest rate was assumed to be known and constant throughout the entire life of the insurance contract considered. Further considerations on equity-linked contracts have been discussed in Aase and Persson (1992) and in Persson (1993), but also in these papers the interest rate is assumed to be deterministic. Bacinello and Ortu (1993) allow for interest rate risk as they model the development in the short term interest rate and the underlying fund with an Ornstein-Uhlenbeck process and a closed form solution of the single premium endowment policy.
The purpose of this paper is to present a model for the multi-premium case in the context of a stochastic interest rate process. It is shown that the insurance contract includes an Asian-like option contract. No closed form solution will be obtained, but different numerical procedures will be discussed and results with respect to Monte Carlo simulation will be obtained.
The schedule of the paper is as follows. In section 2, the notation and the definition of the contract as well as a description of the economy is presented. Excluding mortality section 3 is devoted to the pricing of a call option imbedded in the life insurance contract. It is shown that the call option is similar to an Asian option. In section 4, the mortality case is investigated. A discussion of different numerical approaches is given in section 5 . Section 6 contains the simulation result. Finally, section 7 concludes.

2 Notation and definition of the contract

An equity-linked contract is an agreement between a buyer and a seller, where the buyer is committed to pay, typically at yearly intervals and until the maturity of the contract or the death of the buyer whichever comes first, a predetermined premium to the seller. At maturity or death of the buyer, the seller is committed to deliver a payment in accordance to the agreement settled when the contract was written. This payment, the benefit, is the max. of 1) a function depending on the periodic premium and on the history of the spot price of the underlying equity from the date of settlement to the expiration date of the contract and 2) a non-random guaranteed amount also depending on the periodic premium.
We will defer the problem of mortality and for now simply assume that the insured person survives the maturity date of the contract. Then the model will structurally be less complicated, and further on due to the assumption that the mortality process is independent of the process describing the development in the financial market, no point of interest will be missed when in the end we regard the possibility of an early death.

The following notation will be applied:
$K \quad$ the periodic premium paid by the insured,
$k \quad$ a share of the periodic premium, $k=a \cdot K$ where $0 \leq a \leq 1$.
$t_{i} \quad$ a premium payment date, $i=0,1,2, \ldots, n-1 . t_{o}=0$.
$t_{n} \quad$ the maturity date, $t_{n}=T$.
$S(t) \quad$ the price of an index or a mutual fund at time t.
$D\left(t, t^{\prime}\right)$ the price at date t of a zero coupon bond with maturity date $t^{\prime}, t \leq t^{\prime}$.

The reference portfolio

is defined as the portfolio obtained by investing an amount $k=a \cdot K$ at each of the dates $t_{i}, i=0,1,2, \ldots, n-1$, in the fund with price process $S(t)$.
$g(K) \quad$ the guaranteed amount. A deterministic function of the periodic premium.
$V(T)+g(K)=g(K)+\max \left\{k \cdot \sum_{i=0}^{n-1} \frac{S(T)}{S\left(t_{i}\right)}-g(K), 0\right\}$
the benefit from the insurance contract received at maturity date T.
Fair periodic premium
The periodic premium is fair if the value at date t_{0} of the benefit equals the value at the same date of the premium payments, where the latter could also be denoted the cost of the insurance contract.
$r(t) \quad$ the instantaneous risk free rate of interest at time t.
$B(t) \quad$ the bank account. $B(t)$ is an accumulation factor corresponding to the price of a bank account, rolling over at $r(t)$, with the date t_{0} investment of one unit of account.

$$
B(t)=\exp \left\{\int_{0}^{t} r(u) d u\right\}, \quad d B(t)=r(t) \cdot B(t) d t
$$

The benefit at maturity is composed of the guaranteed amount plus a call option with exercise price $g(K)$ and with the reference portfolio as the underlying asset. The benefit is the proceeds from a financial contract and its price at time t_{0} will be found in accordance to the absence of arbitrage possibilities in the financial market. As $g(K)$ is a deterministic function its value at time t_{0} is equal to $g(K) \cdot D\left(t_{0}, T\right)$, and as the periodic premium is also known at date t_{0} the cost of the contract is $K \cdot \sum_{i=0}^{n-1} D\left(t_{0}, t_{i}\right)$. Therefore, the fair premium in the absence of mortality risk is the solution to the
equation

$$
K \cdot \sum_{i=0}^{n-1} D\left(t_{0}, t_{i}\right)=g(K) \cdot D\left(t_{0}, T\right)+V\left(t_{0}\right)
$$

so as $V\left(t_{0}\right)$ is the only term missing to be determined, we will in the following concentrate on the call option pricing.

3 Pricing of the call option in the absence of mortality risk

The fund from which the reference portfolio is created, consists of a linear combination of traded stocks and its value $S(t)$ is assumed to satisfy the differential equation ${ }^{2}$

$$
d S(t) / S(t)=\mu d t+\sigma_{1} d W_{1}(t)+\sigma_{2} d W_{2}(t)
$$

The development of the bonds is described by

$$
d D\left(t, t^{\prime}\right) / D\left(t, t^{\prime}\right)=\mu\left(t, t^{\prime}\right) d t+\sigma\left(t, t^{\prime}\right) d W_{1}(t)
$$

where the time dependence is such that $\sigma\left(t, t^{\prime}\right)=0$ and $D(t, t)=1$.
In a general setup we could allow for stochastic and time dependent coefficients in the differential equations for the bonds and the fund, but as anyway we will be forced to restrict ourselves to nonstochastic coefficients when looking for a solution the restriction is introduced at once.
The absence of arbitrage in the financial market implies certain restrictions on the μ 's. If there is no arbitrage in the economy considered, then there exist functions $\lambda_{1}(t)$ and $\lambda_{2}(t)$, which are asset-independent ${ }^{3}$:

$$
\begin{aligned}
& \lambda_{1}(t)=\frac{\mu\left(t, t^{\prime}\right)-r(t)}{\sigma\left(t, t^{\prime}\right)} \\
& \lambda_{2}(t)=\frac{\mu-r(t)}{\sigma_{2}}-\frac{\sigma_{1}}{\sigma_{2}} \cdot \frac{\mu\left(t, t^{\prime}\right)-r(t)}{\sigma\left(t, t^{\prime}\right)} .
\end{aligned}
$$

Denoting the objective probability measure by P an equivalent probability measure P^{*} is given by

$$
\frac{d P^{*}}{d P}=\exp \left\{-\int_{t_{0}}^{T} \lambda_{1} d W_{1}-\int_{t_{0}}^{T} \lambda_{2} d W_{2}-\frac{1}{2} \int_{t_{0}}^{T}\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) d t\right\}
$$

[^1]and using Girsanov's Theorem, the processes
$$
\left(d W_{1}^{*}, d W_{2}^{*}\right)=\left(d W_{1}+\lambda_{1}(t) d t_{1} d W_{2}+\lambda_{2}(t) d t\right)
$$
are standard Wiener processes under the P^{*} - measure.
The change of probability measure has no influence on the volatility coefficients in the differential equations whereas all the μ 's are replaced by $r(t)$. In this artificial economy, the expected rate of return over the next time interval of length $d t$ will for any asset be equal to $r(t)$:
\[

$$
\begin{aligned}
d S(t) / S(t) & =r(t) d t+\sigma_{1} d W_{1}^{*}(t)+\sigma_{2} d W_{2}^{*}(t) \\
d D\left(t, t^{\prime}\right) / D\left(t, t^{\prime}\right) & =r(t) d t+\sigma\left(t, t^{\prime}\right) d W_{1}^{*}(t)
\end{aligned}
$$
\]

The equations for the relative prices where the numeraire is the bank account are especially interesting as these relative prices are martingales under the P^{*} - measure. Denoting the bank account at time t by $B(t)$ we have

$$
\begin{aligned}
d(S(t) / B(t)) /(S(t) / B(t)) & =\sigma_{1} d W_{1}^{*}(t)+\sigma_{2} d W_{2}^{*}(t) \\
d\left(D\left(t, t^{\prime}\right) / B(t)\right) /\left(D\left(t, t^{\prime}\right) / B(t)\right) & =\sigma\left(t, t^{\prime}\right) d W_{1}^{*}(t)
\end{aligned}
$$

It follows that

$$
\frac{S(T)}{S(t)}=\exp \left\{\int_{t}^{T} r(u) d u-\frac{1}{2} \int_{t}^{T}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) d u+\int_{t}^{T} \sigma_{1} d W_{1}^{*}(u)+\int_{t}^{T} \sigma_{2} d W_{2}^{*}(u)\right\}
$$

or

$$
\begin{equation*}
S(t)=E_{t}^{*}\left[\exp \left\{-\int_{t}^{T} r(u) d u\right\} \cdot S(T)\right] \tag{1}
\end{equation*}
$$

However, due to the stochastic development of $r(t)$, it is not an easy task to determine the distribution of the ratio $S(T) / S(t)$ or to calculate the expected value in (??). For this reason it will be convenient to make another change of the probability measure, and this time to the measure under which the expected spot price is equal to the forward price. This will cause the integral over the short term interest rate to be replaced by the zero coupon bond price, $D(t, T)$. Observe that

$$
\begin{aligned}
d\left(D\left(t, t^{\prime}\right) / D(t, T)\right) /\left(D\left(t, t^{\prime}\right) / D(t, T)\right)= & -\sigma(t, T) \cdot\left(\sigma\left(t, t^{\prime}\right)-\sigma(t, T)\right) d t \\
& +\left(\sigma\left(t, t^{\prime}\right)-\sigma(t, T)\right) d W_{1}^{*}(t) .
\end{aligned}
$$

A new equivalent P^{T} - measure given by

$$
\left.\frac{d P^{T}}{d P^{*}}=\exp \left\{\int_{t_{0}}^{T} \sigma(t, T) d W_{1}^{*}(t)\right)-\frac{1}{2} \int_{t_{0}}^{T} \sigma^{2}(t, T) d t\right\}
$$

leads again through Girsanov's Theorem to the standard P^{T} - Wiener processes

$$
\left(d W_{1}^{T}(t), d W_{2}^{T}(t)\right)=\left(d W_{1}^{*}(t)-\sigma(t, T) d t, d W_{2}^{*}(t)\right)
$$

under which

$$
\begin{gather*}
\frac{d\left(D\left(t, t^{\prime}\right) / D(t, T)\right)}{\left(D\left(t, t^{\prime}\right) / D(t, T)\right)}=\left(\sigma\left(t, t^{\prime}\right)-\sigma(t, T)\right) d W_{1}^{T}(t) \tag{2}\\
\frac{d(S(t) / D(t, T))}{(S(t) / D(t, T))}=\left(\sigma_{1}-\sigma(t, T)\right) d W_{1}^{T}(t)+\sigma_{2} d W_{2}^{T}(t) \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{S(t)}{D(t, T)}=E_{t}^{T}\left[\frac{S(T)}{D(T, T)}\right]=E_{t}^{T}[S(T)] \tag{4}
\end{equation*}
$$

Comparing (??) and (??), we notice that the stochastic discounting in (??) has been replaced by the time-t measurable discounting in (??). From (??) and (??) we derive next that

$$
\left.D(t, T)=\frac{D\left(t_{0}, T\right)}{D\left(t_{0}, t\right)} \cdot \exp \left\{-\int_{t_{0}}^{t}(\sigma(u, t))-\sigma(u, T)\right) d W_{1}^{T}(u)+\frac{1}{2} \int_{t_{0}}^{t}(\sigma(u, t)-\sigma(u, T))^{2} d u\right\}
$$

and

$$
\begin{aligned}
\frac{S(T)}{S(t)}= & \frac{1}{D(t, T)} \cdot \exp \left\{-\frac{1}{2} \int_{t}^{T}\left(\left(\sigma_{1}-\sigma(u, T)\right)^{2}+\sigma_{2}^{2}\right) d u\right. \\
& \left.+\int_{t}^{T}\left(\sigma_{1}-\sigma(u, T)\right) d W_{1}^{T}(u)+\int_{t}^{T} \sigma_{2} d W_{2}^{T}(u)\right\}
\end{aligned}
$$

and combining these expressions, we obtain

$$
\begin{align*}
\frac{S(T)}{S(t)}= & \frac{D\left(t_{0}, t\right)}{D\left(t_{0}, T\right)} \cdot \exp \left\{\int_{t_{0}}^{t}(\sigma(u, t)-\sigma(u, T)) d W_{1}^{T}(u)\right. \\
& -\frac{1}{2} \int_{t_{0}}^{t}(\sigma(u, t)-\sigma(u, T))^{2} d u-\frac{1}{2} \int_{t}^{T}\left(\left(\sigma_{1}-\sigma(u, T)\right)^{2}+\sigma_{2}^{2}\right) d u \tag{5}\\
& \left.+\int_{t}^{T}\left(\sigma_{1}-\sigma(u, T)\right) d W_{1}^{T}(u)+\int_{t}^{T} \sigma_{2} d W_{2}^{T}(u)\right\}
\end{align*}
$$

In order to make the model computationally feasible, $\sigma\left(t, t^{\prime}\right)$ should be parametrised in a suitable manner. The specific and convenient form chosen is

$$
\begin{equation*}
\sigma\left(t, t^{\prime}\right)=\left(t^{\prime}-t\right) \cdot \sigma \tag{6}
\end{equation*}
$$

where σ is constant. This parametrisation, which is the continuous time analogue of Ho and Lee (1986) specification, allows us to reduce (??) to

$$
\begin{align*}
\frac{S(T)}{S(t)}= & \frac{D\left(t_{0}, t\right)}{D\left(t_{0}, T\right)} \cdot \exp \left\{-\frac{1}{2}(T-t)^{2} \sigma^{2} t-\frac{1}{2} \int_{t}^{T}\left(\left(\sigma_{1}-(T-u) \sigma\right)^{2}+\sigma_{2}^{2}\right) d u\right\} \\
& \exp \left\{-\sigma(T-t) W_{1}^{T}(t)+\int_{t}^{T}\left(\sigma_{1}-(T-u) \sigma\right) d W_{1}^{T}(u)+\int_{t}^{T} \sigma_{2} d W_{2}^{T}(u)\right\} \tag{7}
\end{align*}
$$

4 Mortality case

The fair premium determination will involve the modelling of an early death possibility, but as already stated, the death process is assumed to be independent of the processes ruling in the financial market. Furthermore, the insurance company is assumed to behave as risk neutral concerning the mortality risk. With $\pi(t) d t$ denoting the probability that the contract terminates in the time interval $[t, t+d t]$, the value at date t_{0} of the benefit is

$$
\begin{array}{r}
\int_{t_{0}}^{T} \pi(t) \cdot D\left(t_{0}, t\right) \cdot E^{t}\left[g(K)+\max \left\{k \cdot \sum_{i=0}^{n^{*}-1} \frac{S(t)}{S\left(t_{i}\right)}-g(K), 0\right\}\right] d t \tag{8}\\
+\left(1-\int_{t_{0}}^{T} \pi(t) d t\right) \cdot D\left(t_{0}, T\right) \cdot E^{T}\left[g(K)+\max \left\{k \cdot \sum_{i=0}^{n-1} \frac{S(T)}{S\left(t_{i}\right)}-g(K), 0\right\}\right]
\end{array}
$$

where $n^{*}=\min \left(i \mid t_{i}>t\right)$.
$V\left(t_{0}\right)$ is determined through the application of the numerical procedure specified in section 5. In finance, a good procedure should give the price within seconds to keep up with the volatile market, but in the case considered here, the computer time needed is not the limiting factor. The calculations should only be performed once when the contract is entered.
The cost of the contract consists of

$$
K \sum_{i=0}^{n-i} D\left(t_{0}, t_{i}\right) \cdot\left(1-\int_{t_{0}}^{t_{i}} \pi(t) d t\right)
$$

The fair premium can now be found by an iterative approach. The value (??) of the benefit denoted by $V\left(t_{0} ; a, K\right)$ depends on a, the fraction of the premium invested, and on the premium K. For a given a, the fair premium is the K satisfying

$$
\begin{align*}
V\left(t_{0} ; a, K\right) & +g(K) \cdot \int_{t_{0}}^{T} D\left(t_{0}, t\right) \pi(t) d t+g(K) \cdot\left(1-\int_{t_{0}}^{T} D\left(t_{0}, t\right) \pi(t) d t\right) \\
& =K \sum_{i=0}^{n-1} D\left(t_{0}, t_{i}\right) \cdot\left(1-\int_{t_{0}}^{t_{i}} \pi(t) d t\right) \tag{9}
\end{align*}
$$

5 Numerical method

In order to calculate the fair premium K of the insurance contract, we first have to calculate the arbitrage price of the average option ${ }^{4}$ and secondly apply an iterative procedure to compute the fair premium defined by (??). Under the specification of the index process $\left\{S_{t}\right\}_{t}$ and the interest rate of dynamics, we know that (??) is bivariate lognormal distributed. Thus the option pricing problem is very similar to the one of Asian options under the assumption of a geometric Brownian motion. In difference, the insurance contract depends on the sum of the index returns and not on the average index realisation and more important the discounting is stochastic. So far, there exists no closed form solution for the distribution of a sum of correlated lognormal distributed random variables. Therefore, numeric techniques have to be applied to approximate the option value.
Let $0 \leq t_{i-1}<t_{i}<T=t_{n}$ be two premium dates, then we can rewrite (??) into:

$$
\begin{align*}
\frac{S(T)}{S\left(t_{i}\right)}= & \frac{S(T)}{S\left(t_{i-1}\right)}\left[\frac{D\left(t_{0}, t_{i}\right)}{D\left(t_{0}, t_{i-1}\right)} \exp \left\{\frac{1}{2}\left[\left(T-t_{i-1}\right)^{2} t_{i-1}-\left(T-t_{i}\right)^{2} t_{i}\right] \sigma^{2}\right\}\right. \\
& \exp \left\{\frac{1}{2} \int_{t_{i-1}}^{t_{i}}\left(\sigma_{1}-(T-u) \sigma\right)^{2}+\sigma_{2}^{2} d u\right\} \tag{10}\\
& \exp \left\{\left[\left(T-t_{i-1}\right) W_{1}^{T}\left(t_{i-1}\right)-\left(T-t_{i}\right) W_{1}^{T}\left(t_{i}\right)\right] \sigma-\int_{t_{i-1}}^{t_{i}}\left(\sigma_{1}-(T-u) \sigma\right) d W_{1}^{T}(u)\right\} \\
& \left.\exp \left\{-\int_{t_{i-1}}^{t_{i}} \sigma_{2} d W_{2}^{T}(u)\right\}\right] \\
=: & \frac{S(T)}{S\left(t_{i-1}\right)} A^{T}\left(t_{i-1}, t_{i}\right)
\end{align*}
$$

Inserting (??) in $\sum_{i=0}^{n-1} \frac{S(T)}{S\left(t_{i}\right)}$, we obtain after a slight reshuffling that

$$
\begin{equation*}
\sum_{i=0}^{n-1} \frac{S(T)}{S_{i}}=\frac{S(T)}{S\left(t_{0}\right)}\left[1+A^{T}\left(t_{0}, t_{1}\right)\left[1+A^{T}\left(t_{1}, t_{2}\right)\left[1+\ldots A^{T}\left(t_{n-3}, t_{n-2}\right)\left[1+A^{T}\left(t_{n-2}, t_{n-1}\right), \ldots\right]\right]\right]\right] \tag{11}
\end{equation*}
$$

The structure of this equation is similar to the one that Turnbull - Wakeman (1991) apply to calculate the first four central moments of the unknown distribution. Furthermore, Caverhill and Clewlow (1990) suggest to apply interactively the Fast Fourier transformation on an expression which in structure is similar to (??). Both methods explicitly use the fact that for deterministic interest rates the elements of the

[^2]sequence $A^{T}\left(t_{i-1}, t_{i}\right), i=1,2, \ldots$ are stochastic independent. This is not the case in our situation since for
\[

$$
\begin{aligned}
X & :=\left(T-t_{i-1}\right) W_{1}^{T}\left(t_{i-1}\right)-\left(T-t_{i}\right) W_{1}^{T}\left(t_{i}\right) \\
Y & :=\left(T-t_{i}\right) W_{1}^{T}\left(t_{1}\right)-\left(T-t_{i+1}\right) W_{1}^{T}\left(t_{i+1}\right)
\end{aligned}
$$
\]

we have
a) $E[X]=E[Y]=0$
b) $E[X \cdot Y]=\left[t_{i+1}-t_{i}\right] \cdot\left[\left(T-t_{i-1}\right) t_{i-1}-\left(T-t_{i}\right) t_{i}\right] \neq 0$
which implies that the $A^{T}\left(t_{i-1}, t_{i}\right)$ are stochastic dependent random variables. Thus we cannot apply the Fast Fourier transformation suggested by Caverhill and Clewlow to our problem.
Turnbull and Wakeman (1991) suggest to approximate the unknown density ρ^{T} of the sum of lognormal distributed variables by the following Edgeworth expansion:

$$
\begin{equation*}
\rho^{T}(x) \approx f(x)+\frac{c_{2}}{2!} \frac{\partial^{2} f(x)}{\partial x^{2}}-\frac{c_{3}}{3!} \frac{\partial^{3} f(x)}{\partial x^{3}}+\frac{c_{4}}{4!} \frac{\partial^{4} f(x)}{\partial x^{4}} \tag{12}
\end{equation*}
$$

where $f(x)$ is given by a lognormal density function, i.e.

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma_{f}} \frac{1}{x} \exp \left\{-\frac{\left(\ln x-\mu_{f}\right)^{2}}{2 \sigma_{f}^{2}}\right\}
$$

and

$$
\begin{aligned}
& c_{2}=\mathcal{K}\left(2, \rho^{T}\right)-\mathcal{K}(2, f) \\
& c_{3}=\mathcal{K}\left(3, \rho^{T}\right)-\mathcal{K}(3, f) \\
& c_{4}=\mathcal{K}\left(4, \rho^{T}\right)-\mathcal{K}(4, f)+3 c_{3}^{2}
\end{aligned}
$$

where $\mathcal{K}(i, f)=E_{f}\left[\left(X-E_{f}[X]\right)^{i}\right]$ equals the i-th central moment with respect to the lognormal distribution given by f, resp. $\mathcal{K}\left(i, \rho^{T}\right)$ with respect to the unknown distribution given by ρ^{T}. To calculate these moments, the first four non - central moments of (??) must be computed. The paramenters μ_{f} and σ_{f} are chosen such that the first two non-central moments under both measures are identical. Given the moments and a vanishing error term, the value of the insurance bonus at time $t_{n}=T$ is approximated by:

$$
\begin{array}{r}
D\left(t_{0}, t_{n}\right) \cdot E^{T}\left[\max \left\{k \cdot \sum_{i=0}^{n-1} \frac{S(T)}{S\left(t_{i}\right)}-g(K), 0\right\}\right] \\
\approx k \cdot n D\left(t_{0}, t_{n}\right)\left\{e^{\mu_{f}+\frac{\sigma_{f}^{2}}{2}} N(x)-\frac{g(K)}{k \cdot n} N\left(x-\sigma_{f}\right)+\frac{c_{2}}{2!} f\left(\frac{g(K)}{k \cdot n}\right)\right. \\
\left.-\frac{c_{3}}{3!} \frac{\partial f}{\partial x}\left(\frac{g(K)}{k \cdot n}\right)+\frac{c_{4}}{4!} \frac{\partial^{2} f}{\partial x^{2}}\left(\frac{g(K)}{k \cdot n}\right)\right\}
\end{array}
$$

with $x=\frac{\mu_{f}+\sigma_{f}^{2}-\ln \left(\frac{g(K)}{k \cdot n}\right)}{\sigma_{f}}$ and $N($.$) denoting the standard normal distribution.$
Since the $A^{T}\left(t_{i-1}, t_{i}\right)$ in (??) are stochastic dependent variables, it is not possible to calculate the moments of (??) as in Turnbull - Wakeman. An alternative but much slower algorithm is given in the Appendix. Apart from this numerical difficulty, the applicability of this approximation to the insurance problem appears not advisable. The usual maturity of Asian options is less than one year whereas the equity linked insurance contract has a maturity between 10 and 35 years. Secondly, in the insurance case, the premium dates are discrete which implies that the contract is based on a discrete average in difference to the continuous average in the Asian option case.
In table 1 we present the four non-central moments and c-coefficients c_{2}, c_{3}, and c_{4} for the Turnbull-Wakeman approximation. The data used for these calculations are: $\sigma=$ $8 \%, \sigma_{1}=10 \%, \sigma_{2}=15 \%$ and a flat initial interest rate curve with $D\left(t_{0}, t_{i}\right)=(1.06)^{-t_{i}}$. As expected, the moments grow extremely with time to maturity which leads to extreme c-coefficients. As a consequence, the correction of the lognormal distribution suggested by Turnbull-Wakeman is without any control and leads to unreasonable option values.
Table 1: Moments of $X\left(t_{i}\right)=\sum_{j=0}^{i-1} \frac{S\left(t_{i}\right)}{S\left(t_{j}\right)}$ and c-coefficients

t_{i}-years	$E\left[X^{1}\left(t_{i}\right)\right]$	$E\left[X^{2}\left(t_{i}\right)\right]$	$E\left[X^{3}\left(t_{i}\right)\right]$	$E\left[X^{4}\left(t_{i}\right)\right]$	c_{2}	c_{3}	c_{4}
2	2.1836	4.938873203	1.157153044 E 1	2.808594171 E 1	$-3.608224830 \mathrm{E}-16$	$7.041681995 \mathrm{E}-4$	$7.306091592 \mathrm{E}-4$
3	3.374616	12.03111244	4.533130605 E 1	1.805753740 E 2	$-2.775557562 \mathrm{E}-15$	$1.606725317 \mathrm{E}-2$	$4.018295328 \mathrm{E}-2$
4	4.63709296	23.53757207	1.309741467 E 2	8.001377772 E 2	$3.996802889 \mathrm{E}-15$	$1.922651545 \mathrm{E}-1$	1.138657036 E 0
5	5.975318538	41.39886631	3.342386526 E 2	3.160524105 E 3	$-4.440892099 \mathrm{E}-15$	1.669350636 E 0	2.290425470 E 1
6	7.39383765	69.16034229	8.303573898 E 2	1.298256255 E 4	$-1.243449788 \mathrm{E}-14$	1.196483272 E 1	3.773601312 E 2
7	8.897467909	113.5793366	2.157719679 E 3	6.318076241 E 4	$-1.421085472 \mathrm{E}-14$	7.755033394 E 1	5.761398349 E 3
8	10.49131598	188.2398003	6.267727071 E 3	4.162394608 E 5	$-2.842170943 \mathrm{E}-14$	4.914973363 E 2	9.248360267 E 4
9	12.18079494	322.3108235	2.180177327 E 4	4.263979812 E 6	$2.273736754 \mathrm{E}-13$	3.275085893 E 3	1.791041567 E 6
10	13.97164264	583.5278803	9.748415571 E 4	7.730078475 E 7	$-5.684341886 \mathrm{E}-14$	2.463199682 E 4	4.873539479 E 7
11	15.8699412	1144.028252	5.991464196 E 5	2.758617255 E 9	$3.410605132 \mathrm{E}-13$	2.245321673 E 5	2.187155218 E 9
12	17.88213767	2488.291088	5.357771496 E 6	2.111394207 E 11	$-2.728484105 \mathrm{E}-12$	2.663475845 E 6	1.882475589 E 11
13	20.01506593	6145.112321	7.299377020 E 7	3.740094687 EE 13	$9.094947018 \mathrm{E}-13$	4.405244580 E 7	3.530657062 E 13
14	22.27596988	17592.90185	1.576026608 E 9	1.651369077 E 16	$3.637978807 \mathrm{E}-12$	1.083417346 E 9	1.602456828 E 16
15	24.67252808	59424.64672	5.596824986 E 10	1.958121843 E 19	$-2.182787284 \mathrm{E}-11$	4.199624043 E 10	1.926052058 E 19

With these remarks, it is not surprising that the comparison with Monte Carlo simulations in section 6 will strongly reject the Turnbull - Wakeman approach to this problem.
Based on the strong relationship between the arithmetic and the geometric average, Vorst (1992) suggests an alternative approximation of the arbitrage price for an Asian option and furthermore derives upper and lower bounds for these prices. With the following notation

$$
A\left(t_{n}\right)=\frac{1}{n} \sum_{i=0}^{n-1} \frac{S\left(t_{n}\right)}{S\left(t_{i}\right)}, \quad G\left(t_{n}\right)=\sqrt[n]{\prod_{i=0}^{n-1} \frac{S\left(t_{n}\right)}{S\left(t_{i}\right)}}
$$

the Vorst approximation and bounds on the price of the Asian option are given by

$$
\begin{align*}
& D\left(t_{0}, T\right)\left(e^{m_{G}+\frac{1}{2} \sigma_{G}^{2}} N\left(d_{1}\right)-Y N\left(d_{1}-\sigma_{G}\right)\right) \\
\leq & D\left(t_{0}, T\right) E^{T}\left[\max \left\{A\left(t_{n}\right)-Y, 0\right\}\right] \\
\approx & D\left(t_{0}, T\right)\left(e^{m_{G}+\frac{1}{2} \sigma_{G}^{2}} N\left(d_{2}\right)-Y^{\prime} N\left(d_{2}-\sigma_{G}\right)\right) \tag{13}\\
\leq & D\left(t_{0}, T\right)\left(e^{m_{G}+\frac{1}{2} \sigma_{G}^{2}} N\left(d_{1}\right)-Y N\left(d_{1}-\sigma_{G}\right)+E^{T}\left[A\left(t_{n}\right)\right]-E^{T}\left[G\left(t_{n}\right)\right]\right)
\end{align*}
$$

where

$$
\begin{aligned}
& d_{1}=\frac{m_{G}-\ln (Y)+\sigma_{G}^{2}}{\sigma_{G}}, \quad d_{2}=\frac{m_{G}-\ln \left(Y^{\prime}\right)+\sigma_{G}^{2}}{\sigma_{G}} \\
& Y^{\prime}=Y-\left(E^{T}\left[A\left(t_{n}\right)\right]-E^{T}\left[G\left(t_{n}\right)\right]\right) \\
& \left.\begin{array}{rl}
m_{G} & =E^{T}\left[\ln G\left(t_{n}\right)\right] \\
\sigma_{G}^{2} & =V^{T}\left[\ln G\left(t_{n}\right)\right]
\end{array}\right\} \Rightarrow E^{T}\left[G\left(t_{n}\right)\right]=\exp \left\{m_{G}+\frac{1}{2} \sigma_{G}^{2}\right\}
\end{aligned}
$$

Thus the Vorst approximation only involves the computation of the first moment for the arithmetic mean and the mean and variance of the logarithmic geometric mean. Inserting (??) we can directly compute

$$
m_{G}=\frac{1}{n} \sum_{i=0}^{n-1}\left[\ln \left(\frac{D\left(t_{0}, t_{i}\right)}{D\left(t_{0}, T\right)}\right)-\frac{1}{2}\left(T-t_{i}\right)^{2} \sigma^{2} t_{i}-\frac{1}{2} \int_{t_{i}}^{T}\left(\left(\sigma_{1}-(T-u) \sigma\right)^{2}+\sigma_{2}^{2}\right) d u\right]
$$

whereas the computation of the variance is more complicated. A recursive algorithm and a formula is given in the Appendix. Inspecting (??), we notice that the approximation is derived by transforming the probability measure of a lognormal distribution with support \mathbb{R}^{+}to a lognormal distribution with support $\left[E^{T}\left[A\left(t_{n}\right)\right]-E^{T}\left[G\left(t_{n}\right)\right], \infty[\right.$. Since the support of the random variable $A\left(t_{n}\right)$ is \mathbb{R}^{+}the distance $E^{T}\left[A\left(t_{n}\right)\right]$ $E^{T}\left[G\left(t_{n}\right)\right]>0$ is important for the approximation error. Again for a flat interest rate curve, figure 1 shows the development of this distance if t_{n} increases. From this we can expect for our insurance problem that the Vorst approximation leads to an overpricing of in the money Asian call options if the maturity increases.

Figure 1: Arithmetic and geometric mean as functions of the time to maturity. Flat initial term structure with constant effective rate per annum of $0.06, \sigma=0.08, \sigma_{1}=0.10$, and $\sigma_{2}=0.15$.

Motivated by the complexity of the problem, we apply Monte Carlo simulations to estimate the fair premium K of the equity-linked life insurance contract, and we use antithetic and control variate technique to reduce the variance of the estimation. As control variate we use the corresponding geometric average option. More precisely, the following setup is applied:

Define $\underline{\underline{\underline{\Theta}}}=\left\{0=\tau_{0}<\tau_{1}<\ldots<\tau_{N}=T\right\}$ with $\Delta \tau=\tau_{i+1}-\tau_{i} \forall i$ as the finest discretisation of the time axis, where T is the maturity of the insurance contract. The premium K will be paid at each time $t_{i} \in \underline{\underline{T}}$ with $\underline{\underline{T}}=\left\{0=t_{0}<\ldots<t_{n}=T\right\} \subset \underline{\underline{\Theta}}$ such that there exists a number $h \in N$ with $\Delta t=t_{i+1}-t_{j}=h \cdot \Delta \tau$. We assume that if the insured dies at time $\tau_{i} \in \Theta \backslash\left\{\tau_{0}\right\}$ the insurance company will pay the guaranteed amount $g(K)$ plus the bonus at time τ_{i+1}, which implies that the present value of this payoff is given by

$$
\begin{equation*}
D\left(t_{0}, t_{i+1}\right)\left[g(K)+E^{\tau_{i+1}}\left[\max \left\{a \cdot K \cdot \sum_{j=0}^{v^{*}(i)} \frac{S\left(\tau_{i+1}\right)}{S\left(t_{j}\right)}-g(K), 0\right\}\right]\right] \tag{14}
\end{equation*}
$$

with $v^{*}(i)=\max \left\{j \in\{0, \ldots, n\} \mid t_{j}<\tau_{i}\right\}$. Note that the expectation has to be formed with respect to the τ_{i+1} forward measure. With M being the number of Monte Carlo simulations ($2 M$ antithetic) for each of the two Wiener processes, the value of the bonus is estimated by

$$
\begin{align*}
\hat{C}\left(\tau_{i+1}, K, a\right)= & \frac{1}{2 M} \sum_{m=1}^{2 M}\left[\left[a \cdot K \cdot \sum_{j=0}^{v^{*}(i)} \frac{S_{m}\left(\tau_{i+1}\right)}{S_{m}\left(t_{j}\right)}-g(K)\right]^{+}\right. \tag{15}\\
& \left.-\left(1+v^{*}(i)\right) a \cdot K\left[\sqrt[1+v^{*}(i)]{\prod_{j=0}^{v^{*}(i)} \frac{S_{m}\left(\tau_{i+1}\right)}{S_{m}\left(t_{j}\right)}}-\frac{g(K)}{a \cdot K \cdot\left(1+v^{*}(i)\right)}\right]^{+}\right] \\
& +\left(1+v^{*}(i)\right) a \cdot K \cdot G\left(\tau_{i+1}, \frac{g(K)}{a \cdot K \cdot\left(1+v^{*}(i)\right)}\right)
\end{align*}
$$

where $\sum_{j=0}^{v^{*}(i)} \frac{S_{m}\left(\tau_{i+1}\right)}{S_{m}\left(t_{j}\right)}$ is the realisation of the m -th simulation.
The time τ_{i+1} - forward value of the European geometric average option $G\left(\tau_{i+1}, \frac{g(K)}{a \cdot K v^{*}(i)}\right)$ with exercise price $\frac{g(K)}{a \cdot K\left(1+v^{*}(i)\right)}$ is given by

$$
\begin{align*}
G\left(\tau_{i+1}, Y\right) & =\exp \left\{m_{G}(i)+\frac{1}{2} \sigma_{G}^{2}(i)\right\} N(x)-Y \cdot N\left(x-\sigma_{G}(i)\right) \tag{16}\\
x & =\frac{-\ln Y+m_{G}(i)+\sigma_{G}^{2}(i)}{\sigma_{G}(i)}
\end{align*}
$$

where $m_{G}(i)$ and $\sigma_{G}^{2}(i)$ are determined as before as the mean resp. variance of the logarithmic geometric average at time τ_{i+1}, i.e.

$$
\begin{align*}
m_{G}(i)= & E^{\tau_{i+1}}\left[\ln \left(\sqrt[1+v^{*}(i)]{\left.\prod_{j=0}^{v^{*}(i)} \frac{S\left(\tau_{i+1}\right)}{S\left(t_{j}\right)}\right)}\right]=\frac{1}{1+v^{*}(i)} \sum_{j=0}^{v^{*}(i)} E^{\tau_{i+1}}\left[\ln \left(\frac{S\left(\tau_{i+1}\right)}{S\left(t_{j}\right)}\right)\right]\right. \\
= & \frac{1}{1+v^{*}(i)} \sum_{j=0}^{v^{*}(i)}\left[\ln \left(\frac{D\left(t_{0}, t_{j}\right)}{D\left(t_{0}, \tau_{i+1}\right)}\right)-\frac{1}{2}\left(\tau_{i+1}-t_{j}\right)^{2} \sigma^{2} t_{j}\right. \tag{17}\\
& \left.-\frac{1}{2} \int_{t_{j}}^{\tau_{i+1}}\left(\left(\sigma_{1}-\left(\tau_{i+1}-u\right) \sigma\right)^{2}+\sigma_{2}^{2}\right) d u\right] \\
\sigma_{G}^{2}(i)= & V^{\tau_{i+1}}\left[\operatorname { l n } \left(\sqrt[1+v^{*}(i)]{\left.\left.\prod_{j=0}^{v^{*}(i)} \frac{S\left(\tau_{i+1}\right)}{S\left(t_{j}\right)}\right)\right]}\right.\right.
\end{align*}
$$

which can be calculated with a similar recursive algorithm as the central moments (see Appendix). The fair premium K^{*} is then estimated from

$$
\begin{align*}
0 & =K^{*} \sum_{i=0}^{n-1} D\left(t_{0}, t_{i}\right)\left[1-\sum_{j=0}^{i \cdot h-1} \pi\left(\tau_{j}\right)\right] \tag{18}\\
& -g(K) \sum_{i=0}^{N-1} \pi\left(\tau_{i}\right) D\left(t_{0}, \tau_{i+1}\right)-g(K) D\left(t_{0}, t_{n}\right)\left(1-\sum_{i=0}^{N-1} \pi\left(\tau_{i}\right)\right) \\
& -\sum_{i=0}^{N-1} \pi\left(\tau_{i}\right) D\left(t_{0}, \tau_{i+1}\right) \cdot \hat{C}\left(\tau_{i+1}, K^{*}, a\right)-\left(1-\sum_{i=0}^{N-1} \pi\left(\tau_{i}\right)\right) D\left(t_{0}, \tau_{N}\right) \cdot \hat{C}\left(\tau_{N}, K^{*}, a\right)
\end{align*}
$$

Due to the homogeneity of the bonus part, the right hand side is strictly monotonous increasing in K with a lower bound on K given by

$$
\begin{equation*}
\underline{K}=\frac{g(K) \sum_{i=0}^{N-1} \pi\left(\tau_{i}\right) D\left(t_{0}, \tau_{i+1}\right)+g(K) D\left(t_{0}, t_{n}\right)\left(1-\sum_{i=0}^{N-1} \pi\left(\tau_{i}\right)\right)}{\sum_{i=0}^{n-1} D\left(t_{0}, t_{i}\right)\left[1-\sum_{j=0}^{i \cdot h-1} \pi\left(\tau_{j}\right)\right]} \tag{19}
\end{equation*}
$$

Finally, for the death distribution, we assume a mortality table adjusted with the Makeham formula

$$
\begin{align*}
l_{x} & =b \cdot s^{x} \cdot g^{c^{x}} \quad \text { with } \tag{20}\\
s & =0.99949255 \\
g & =0.99959845 \\
c & =1.10291509 \\
b & =1000401.71
\end{align*}
$$

which leads to

$$
\begin{aligned}
\pi_{x}\left(\tau_{i}\right)= & \frac{l_{x+\tau_{i}}-l_{x+\tau_{i}+\Delta \tau}}{l_{x}} \\
\hat{=} & \text { the probability that a life-aged- } x \text { will survive } \tau_{i} \text { years and die within } \\
& \text { the following } \Delta \tau \text { years. }
\end{aligned}
$$

6 Simulation results

Within the Monte Carlo simulation we consider three different specifications for the initial term structure, i.e.

Scenario I : flat initial term structure $D\left(t_{0}, \tau_{i}\right)=(1.06)^{-\tau_{i}}$
Scenario II : normal initial term structure $D\left(t_{0}, \tau_{i}\right)=\left(0.06+(1.02)^{\tau} \frac{i}{15}\right)^{-\tau_{i}}$
Scenario III : invers initial term structure $D\left(t_{0}, \tau_{i}\right)=\left(2.06-(1.02)^{\left.\tau^{\frac{2}{15}}\right)^{-\tau_{i}}}\right.$ with $\tau_{i}<15$ (years). All three scenarios imply non negative forward rates at time $t_{0}=\tau_{0}=0$. For each scenario, we consider three possible maturities of the equity linked life insurance contract, i.e. $T=t_{n} \in\{10$ years, 12 years, 15 years $\}$ where the payment of the premium ranges between yearly and monthly. The number of periods per year for each insurance contract is fixed to 12 which implies at the most 180 periods for the 15 year contract and $h=1,2,6,12$ for a yearly, $\frac{1}{2}$ yearly, quaterly resp. monthly payment frequency of the premium. The volatility parameters for all three scenarios are fixed by $\sigma=8 \%, \sigma_{1}=10 \%$ and $\sigma_{2}=15 \%$ which implies an instantaneous correlation with a zero coupon bond of $d S d D(t, T)=S \cdot D \cdot \sigma_{1} \sigma(T-t) d t=S \cdot D \cdot 0.008(T-t) d t$ resp. with the spot rate process of $d S d r=S \cdot \sigma_{1} \sigma d t=S \cdot 0.008 d t$. Within each scenario, we run 10 independent Monte Carlo simulations each with $M=1000$ paths 5 to calculate the fair premium and the standard deviations.
Table 2 shows, for the yearly payment frequency and the flat initial term structure, simulated initial moments and the calculated central moments applying the recursive algorithm given in the Appendix.

[^3]Table 2: Simulated and exact central moments of $X\left(t_{i}\right)=\sum_{j=0}^{i-1} \frac{S\left(t_{i}\right)}{S\left(t_{j}\right)}$

t_{i}-years	method	$\mu=E\left[X\left(t_{i}\right)\right]$	$E\left[\left(X\left(t_{i}\right)-\mu\right)^{2}\right]$	$E\left[\left(X\left(t_{i}\right)-\mu\right)^{3}\right]$	$E\left[\left(X\left(t_{i}\right)-\mu\right)^{4}\right]$
2	simulated	2.183546634	0.1706166958	$4.058493436 \mathrm{E}-2$	$1.026579508 \mathrm{E}-1$
	exact	2.1836	0.1707642433	$4.124530528 \mathrm{E}-2$	$1.054905504 \mathrm{E}-1$
	sd	0.001518331538	0.00687513339	$4.225170127 \mathrm{E}-3$	$1.075338954 \mathrm{E}-2$
3	simulated	3.375831403	0.6538835535	$4.163553347 \mathrm{E}-1$	1.792371732 E 0
	exact	3.374616	0.6430792915	$3.906301790 \mathrm{E}-1$	1.674717935 E 0
	sd	0.004456675464	0.03319292174	$6.282951028 \mathrm{E}-2$	$3.136366746 \mathrm{E}-1$
4	simulated	4.641506035	2.082237824	3.114687107 E 0	2.238481570 E 1
	exact	4.63709296	2.034940946	2.955816318 E 0	2.040954491 E 1
	sd	0.009225995879	0.09360289184	$3.322933273 \mathrm{E}-1$	4.813023454 E 0
5	simulated	5.984845155	5.873241813	2.112293044 E 1	2.632730035 E 2
	exact	5.975318538	5.694434682	1.881511710 E 1	2.161130730 E 2
	sd	0.01789537053	0.3361507394	4.512128473 E 0	9.976128190 E 1
6	simulated	7.407485224	15.06282664	1.296532772 E 2	3.464251838 E 3
	exact	7.39383765	14.49150709	1.047013457 E 2	2.143898820 E 3
	sd	0.04120601035	1.431960579	6.320106493 E 1	3.729919880 E 3
7	simulated	8.929212895	36.3239221	6.773177647 E 2	3.567333166 E 4
	exact	8.897467909	34.41440139	5.347491129 E 2	2.153554003 E 4
	sd	0.0864395638	4.545117836	3.942398857 E 2	4.513553696 E 4
8	simulated	10.55897074	86.18790302	4.216454503 E 3	6.709244347 E 5
	exact	10.49131598	78.17208927	2.652587666 E 3	2.411826806 E 5
	sd	0.1611117614	17.48755385	4.752174780 E 3	1.480962452 E 6
9	simulated	12.28877093	203.876908	2.893606249 E 4	1.283438622 E 7
	exact	12.18079494	173.9390581	1.363833922 E 4	3.422616507 E 6
	sd	0.2629258015	71.89197513	4.803506106 E 4	3.294386670 E 7
10	simulated	14.20022701	558.7061554	3.283252224 E 5	4.783549105 E 8
	exact	13.97164264	388.3210822	7.848034592 E 4	7.242186418 E 7
	sd	0.48662079	459.9617218	8.135383092 E 5	1.418065301 E 9
11	simulated	16.26914928	1561.793191	2.538766323 E 6	7.822533985E9
	exact	15.8699412	892.1732186	5.526732855 E 5	2.722122064 E 9
		0.8201196074	1871.018811	6.625288800 E 6	2.287502045 E 10
12	simulated	18.47356137	3891.534972	1.315146373 E 7	7.431135011 E 10
	exact	17.88213767	2168.52024	5.235719977 E 6	2.107606544 E 11
	sd	1.234842826	5696.180555	3.577773059 E 7	2.564215671 E 11
13	simulated	20.9962176	9533.295284	5.145572105 E 7	4.266375651 E 11
	exact	20.01506593	5744.509457	7.264082190 E 7	3.739511726 E 13
	sd	1.947522213	13293.61606	1.260760529 E 8	3.698755650 E 13
14	simulated	23.76235303	22763.88996	1.972781769 E 8	2.483869623 E 12
	exact	22.27596988	17096.68302	1.574873018 E 9	1.651355039 E 16
	sd	2.847674115	30694.12457	1.451536106 E 9	1.651106791 E 16
15	simulated	26.5110614	46683.09384	5.703046963 E 8	9.667355299 E 12
	exact	24.67252808	58815.91308	5.596388143 E 10	1.958121291 E 19
	sd	3.713532892	59546.28867	5.540675534 E 10	1.958120324 E 19

As table 2 indicates, the Monte Carlo simulation implies reasonable estimations of the moments for the first 10 years. The standard error increases with the time to maturity and with the power of the moment. This is also true for the normal and invers initial term structure. Given the histogram of the Monte Carlo simulation for the distribution of the average, we can consider the difference between the probability distributions underlying the closed form analytic approximations suggested by Turnbull-Wakeman and Vorst. As shown by figure 2 to 5 the Turnbull-Wakeman approach already leads to an unreasonable approximation for the density for a maturity of 4 years. As already observed in section 5 , this is due to the explosion of the c-coefficients. As a consequence, we get unreasonable values for the fair premium using the Turnbull-Wakeman approach.

Figure 2: Simulated density of the arithmetic mean and approximations at $t=4$ years with flat initial term structure and monthly frequency.

Figure 4: Simulated density of the arithmetic mean and approximations at $t=10$ years with flat initial term structure and monthly frequency.

Figure 3: Simulated density of the arithmetic mean and approximations at $t=5$ years with flat initial term structure and monthly frequency.

Figure 5: Simulated density of the arithmetic mean and approximations at $t=15$ years with flat initial term structure and monthly frequency.

On the other hand, the performance of the Vorst approximation of the density coincide quit reasonable with the Monte Carlo simulation for maturities less than 10 years. If the maturity is higher than 10 years, the support of the density is substantial different from the estimation using our Monte Carlo simulation. Given that the Monte Carlo simulation over-
estimates the first moment of the true distribution it seems that the Vorst approximation induces a too large shift of the probability measure into high realisations if the maturity increases. For maturities above 10 years, the lower bound derived by Vorst is closer to the simulation result than the suggested approximation. Therefore, we expect that in terms of the fair premium, the result obtained by the Vorst approximation underestimates the fair premium. On the other hand, using the distribution of the geometric mean (lower bound derived by Vorst) we expect these to be close to the Monte Carlo simulation ${ }^{6}$. As table 3 shows, this is the case for all three initial term structures which we considered.

Table 3.1: Fair premium with normal initial term structure for a life aged 30 and guaranteed amount 1000

maturity:		10		12		15	
a share	method	Vorst	simulated	Vorst	simulated	Vorst	simulated
0.40	down	68.6516		53.3759		37.6527	
	appr.	68.8651	70.6797	53.7024	56.5781	38.03	41.5548
	up	71.8648		57.7536		43.718	
0.45	down	69.7322		54.5246		38.6006	
	appr.	70.0649	72.3230	55.0134	58.5078	39.1424	43.4411
	up	73.5794		59.8496		46.0786	
0.50	down	71.0617		55.8769		39.6664	
	appr.	71.566	74.3160	56.5877	60.8115	40.4267	45.6367
	up	75.6654		62.3407		48.8596	
0.55	down	72.6825		57.4585		40.8633	
	appr.	73.4265	76.7379	58.4773	63.5548	41.9135	48.2176
	up	78.2027		65.3252		52.1766	
0,60	down	74.6473		59.3085		42.2084	
	appr.	75.7298	79.6930	60.7532	66.8638	43.6481	51.2870
	up	81.316		68.9362		56.1943	
0.65	down	77.0291		61.4792		43.7226	
	appr.	78.6019	83.3382	63.5261	70.8988	45.6916	55.0106
	up	85.1739		73.3839		61.1638	

[^4]Table 3.2: Fair premium with flat initial term structure for a life aged 30 and guaranteed amount 1000

maturity:		10		12		15	
a share	method	Vorst	simulated	Vorst	simulated	Vorst	simulated
0.40	down	75.3848		61.0836		46.5138	
	appr.	75.6078	77.7162	61.4431	65.0587	46.9655	53.3655
	up	78.7267		65.826		53.6159	
0.45	down	76.5879		62.4267		47.7266	
	appr.	76.9376	79.5277	62.9636	67.3776	48.374	56.2986
	up	80.5899		68.1959		56.49	
0.50	down	78.0677		64.0068		49.0917	
	appr.	78.5973	81.7472	64.7883	70.1401	50.0022	59.7956
	up	82.8595		71.0135		59.8774	
0.55	down	79.8737		65.8584		50.6293	
	appr.	80.6541	84.4338	66.9797	73.4436	51.8901	64.0342
	up	85.6234		74.3908		63.9189	
0.60	down	82.0651		68.03		52.3622	
	appr.	83.2047	87.7296	69.6206	77.4438	54.0968	69.3158
	up	89.0117		78.4816		68.8118	
0.65	down	84.7236		70.5823		54.3191	
	appr.	86.3781	91.8050	72.8407	82.3653	56.6984	76.1493
	up	93.2133		83.5144		74.866	

Table 3.3: Fair premium with invers initial term structure for a life aged 30 and guaranteed amount 1000

maturity:		10		12		15	
a share	method	Vorst	simulated	Vorst	simulated	Vorst	simulated
0.40	down	82.8088		69.9274		57.4674	
	appr.	83.0432	84.8639	70.3227	73.3564	58.0098	63.1250
	up	86.3096		75.1077		65.8741	
0.45	down	84.1441		71.4897		59.0054	
	appr.	84.5131	86.7543	72.0801	75.7489	59.7846	66.0432
	up	88.3375		77.7916		69.3858	
0.50	down	85.7889		73.3295		60.7406	
	appr.	86.3462	89.0468	74.1916	78.5892	61.8381	69.4521
	up	90.8096		80.9892		73.5256	
0.55	down	87.7942		75.4886		62.6987	
	appr.	88.6215	91.8318	76.7271	81.9763	64.2207	73.5038
	up	93.8237		84.8212		78.4654	
0.60	down	90.2321		78.0224		64.909	
	appr.	91.4378	95.2462	79.7849	86.0370	67.0077	78.3853
	up	97.5189		89.4613		84.4518	
	down	93.1954		81.0086		67.4146	
	appr.	94.947	99.4537	83.513	90.9753	70.2985	84.4323
	up	102.1043		95.1791		91.8572	

In order to calculate the fair premium K^{*} we have to solve equation (??). This can be done by any iterative procedure, since the right side of (18) is strictly increasing. The results are given in tables 4 to 6 in the Appendix. As expected, the fair premium is monotonous in the share of the premium a invested into the index and in the age due to the death distribution. The standard deviation increases in the time to maturity and the frequency of the premium payment. Furthermore, the Monte Carlo simulation indicates a convex behavior of the fair premium with respect to the share $a \in[0.1]$.

Figure 6: Simulated fair premium for a life aged 30 of the insurance contract with a guaranteed amount of 1000 as a function of the share a with maturities $T=10,12,15$ years, normal initial term structure and annual premium payment.

Figure 7: Simulated fair premium for a life aged 30 of the insurance contract with a guaranteed amount of 1000 as a function of the share a with maturity $T=15$, years, normal, flat and invers initial term structure and annual premium payment.

From the point of view of the insurance company, this seems to be reasonable. The insurer has to guarantee the contract value $g(K)$. If the share a is relatively high, the insurer faces in addition to the mortality risk also the financial risk. To control this additional financial risk, he "maximizes" the part of the premium $(1-a) K$ not invested into the reference portfolio in the first periods. This results in a high premium which itself leads into an increase of the value of the reference portfolio. This implies that the Asian option will very soon be in the money and thus the insurer is compensated by a high expected bonus if the death event will not occur. The expected bonus at each time τ_{i+1} can be calculated by

$$
\begin{equation*}
E^{\tau_{i+1}}\left[\max \left\{a K^{*} \sum_{j=0}^{v^{*}(i)} \frac{S\left(\tau_{i+1}\right)}{S\left(t_{j}\right)}-g\left(K^{*}\right), 0\right\}\right] \tag{21}
\end{equation*}
$$

which is equal to the payment at time τ_{i+1} minus $g\left(K^{*}\right)$ in case of death between τ_{i} and τ_{i+1}. Table 7 shows the result for a 12 year contract with yearly payment frequency and normal initial term structure obtained by the Monte Carlo simulation.

Table 7: Development of the expected bonus of a 12 year insurance contract with guaranteed amount of 1000 for a life aged 30 , yearly premium payment and normal initial term structure

age 30							
		0.40	0.45	0.50	0.55	0.60	0.65
year	premium	56.58	58.51	60.81	63.55	66.86	70.9
$t=1$	bonus	0.0	0.0	0.0	0.0	0.0	0.0
	sd	0.0	0.0	0.0	0.0	0.0	0.0
$t=2$	bonus	0.0	0.0	0.0	0.0	0.0	0.0
	sd	0.0	0.0	0.0	0.0	0.0	0.0
$t=3$	bonus	0.0	0.0	0.0	0.0	0.0	0.0
	sd	0.0	0.0	0.0	0.0	0.0	0.0
$t=4$	bonus	0.0	0.0	0.0	0.0	0.0	0.0
	sd	0.0	0.0	0.0	0.0	0.0	0.0
$t=5$	bonus	0.0	0.0	0.0	0.0	0.0	0.01
	sd	0.0	0.0	0.00001	0.00009	0.00054	0.00304
$t=6$	bonus	0.0	0.01	0.04	0.12	0.34	0.93
	sd	0.0002	0.00094	0.00365	0.01273	0.04061	0.1213
$t=7$	bonus	0.17	0.44	1.03	2.24	4.57	8.93
	sd	0.00868	0.02453	0.06222	0.14726	0.3298	0.70953
$t=8$	bonus	1.97	3.87	7.11	12.38	20.76	33.85
	sd	0.06534	0.14015	0.27904	0.53184	0.97855	1.75728
$t=9$	bonus	9.03	15.1	24.0	36.74	54.77	80.2
	sd	0.2057	0.37453	0.64604	1.08387	1.77719	2.87232
$t=10$	bonus	25.05	37.74	54.77	77.3	107.06	146.48
	sd	0.40586	0.66715	1.05258	1.63166	2.49153	3.77408
$t=11$	bonus	51.53	72.52	99.1	132.58	174.88	228.76
	sd	0.61293	0.94257	1.40327	2.0665	3.01334	4.3772
$t=12$	bonus	87.9	118.04	154.78	199.58	254.55	322.78
	sd	0.78635	1.15589	1.6546	2.35355	3.32683	4.69802

Figure 8: Expected bonus of a 12 year insurance contract for a life aged 30 with guaranteed amount of 1000 , yearly premium payment, normal initial term structure, $\sigma=0.08$, $\sigma_{1}=0.10$, and $\sigma_{2}=0.15$.

7 Conclusion

In an economy with stochastic development of the term structure of interest rates a model for the determination of the fair premium on an equity linked life insurance contract has been established. An essential part of the premium equation consists of a contingent claim with a character as an Asian option. However it was shown that the stochastic interest rate and the long time to maturity of the insurance contract prohibited the application of the "usual" solution methods: Edgeworth expansion or Fast Fourier transform. The approximation formula developed by Vorst (1992) exhibited a better performance than the two just mentioned for medium term contracts. To overcome the difficulties we applied and advocated for Monte Carlo simulations. The result obtained was compared to the Edgeworth and Vorst approximation and found to be preferable to these. Although the Monte Carlo simulations are more time consuming than the other methods we do not take it as a serious critical point against simulation as the fair premium only has to be calculated once when the contract is entered.

Appendix

Recursive algorithms for the first four non-central moments of a sum of $n \log$ normal distributed variables. For simplicity we only give the recursive algorithm for the forward risk adjusted measure at time T. Define $\beta_{i}:=\frac{S(T)}{S\left(t_{i}\right)}$ and for $i=0, \ldots, n-1$

$$
\begin{aligned}
\sigma_{i} & :=\exp \left\{\frac{1}{2}\left[\left(T-t_{i}\right)\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+\left(t_{i} \sigma^{2}-\sigma \sigma_{1}\right)\left(T-t_{i}\right)^{2}+\frac{1}{3} \sigma^{2}\left(T-t_{i}\right)^{3}\right]\right\} \\
v_{i, j} & :=\exp \left\{\sigma\left(T-t_{j}\right)\left(t_{j}-t_{i}\right)\left[\frac{1}{2} \sigma\left(t_{i}+t_{j}\right)-\sigma_{1}\right]\right\} \quad \text { for } j=0, \ldots, i \\
d_{i} & :=\frac{D\left(t_{0}, t_{i}\right)}{D\left(t_{0}, T\right)}
\end{aligned}
$$

Proposition

$\forall 0 \leq i \leq j \leq l \leq n-1 \quad ; \quad \forall \alpha, \gamma, \eta \in \mathbb{N}$
(a) $E^{T}\left[\beta_{i}^{\alpha}\right]=d_{i}^{\alpha} \sigma_{i}^{\alpha(\alpha-1)}$
(b) $E^{T}\left[\beta_{i}^{\alpha} \beta_{j}^{\gamma}\right]=d_{i}^{\alpha} d_{j}^{\gamma} \sigma_{i}^{\alpha(\alpha-1)} \sigma_{j}^{\gamma(\gamma-1+2 \alpha)} v_{i, j}^{\alpha \cdot \gamma}$
(c) $E^{T}\left[\beta_{i}^{\alpha} \beta_{j}^{\gamma} \beta_{l}^{\eta}\right]=d_{i}^{\alpha} d_{j}^{\gamma} d_{l}^{\eta} \sigma_{i}^{\alpha(\alpha-1)} \cdot \sigma_{j}^{\gamma(\gamma-1+2 \alpha)} \cdot \sigma_{l}^{\eta(\eta-1+2 \gamma+2 \alpha)} v_{i, j}^{\alpha \cdot \gamma} v_{i, l}^{\alpha \cdot \eta} v_{j, l}^{\gamma \cdot \eta}$

Proof

Define $\beta_{i}=\frac{S(T)}{S\left(t_{i}\right)}=\mu_{i} \exp \left\{X_{i}+Y_{i}+Z_{i}\right\}$ with

$$
\begin{aligned}
\mu_{i} & :=d_{i} \exp \left\{-\frac{1}{2}\left(T-t_{i}\right)^{2} t_{i} \sigma^{2}-\frac{1}{2} \int_{t_{i}}^{T}\left(\left(\sigma_{1}-(T-u) \sigma\right)^{2}+\sigma_{2}^{2}\right) d u\right\}=d_{i} \sigma_{i}^{-1} \\
X_{i} & :=-\left(T-t_{i}\right) \sigma W_{1}^{T}\left(t_{i}\right) \\
Y_{i} & :=\int_{t_{i}}^{T}\left(\sigma_{1}-(T-u) \sigma\right) d W_{1}^{T}(u) \\
Z_{i} & :=\int_{t_{i}}^{T} \sigma_{2} d W_{2}^{T}(u)
\end{aligned}
$$

These stochastic variables have expectation of zero and
(i) X_{i} and Z_{j} are in pairs stochastic independent $\forall t_{i}, t_{j}$
(ii) Y_{i} and Z_{j} are in pairs stochastic independent $\forall t_{i}, t_{j}$
(iii) X_{i} and Y_{j} are in pairs stochastic independent $\forall t_{i} \leq t_{j}$

Furthermore we know that $\forall i \leq j \leq l$

$$
\begin{aligned}
E^{T}\left[X_{i} Y_{j}\right] & =E\left[X_{j}^{2}\right]-\left(T-t_{j}\right)\left(t_{j}-t_{i}\right)\left[T-t_{j}-t_{i}\right] \sigma^{2} \\
E^{T}\left[Y_{i} Y_{j}\right] & =E\left[Y_{j}^{2}\right] \\
E^{T}\left[Z_{i} Z_{j}\right] & =E\left[Z_{j}^{2}\right] \\
E^{T}\left[X_{j} Y_{i}\right] & =-\sigma\left(T-t_{j}\right) \int_{t_{i}}^{t_{j}}\left(\sigma_{1}-(T-u) \sigma\right) d u \\
& =\frac{1}{2} \sigma\left(T-t_{j}\right)\left(t_{j}-t_{i}\right)\left[\sigma\left(2 T-t_{i}-t_{j}\right)-2 \sigma_{1}\right]
\end{aligned}
$$

ad a)

$$
\begin{aligned}
E^{T}\left[\beta_{i}^{\alpha}\right] & =\mu_{i}^{\alpha} \cdot \exp \left\{\frac{1}{2} \alpha^{2} V\left[X_{i}+Y_{i}+Z_{i}\right]\right\} \\
& =\mu_{i}^{\alpha} \cdot \sigma^{\alpha^{2}}=d_{i}^{\alpha} \sigma^{\alpha(\alpha-1)}
\end{aligned}
$$

ad b)

$$
\begin{aligned}
E^{T}\left[\beta_{i}^{\alpha} \beta_{j}^{\gamma}\right] & =\mu_{i}^{\alpha} \mu_{j}^{\gamma} E^{T}\left[\exp \left\{\alpha\left(X_{i}+Y_{i}+Z_{i}\right)+\gamma\left(X_{j}+Y_{j}+Z_{j}\right)\right\}\right] \\
& =\mu_{i}^{\alpha} \mu_{j}^{\gamma} \sigma_{i}^{\alpha^{2}} \sigma_{j}^{\gamma^{2}} \cdot \exp \left\{\alpha \gamma E^{T}\left[X_{i} X_{j}+X_{j} Y_{i}+Y_{i} Y_{j}+Z_{i} Z_{j}\right]\right\} \\
& =d_{i}^{\alpha} d_{j}^{\gamma} \sigma_{i}^{\alpha(\alpha-1)} \sigma_{j}^{\gamma(\gamma-1)} \sigma_{j}^{2 \alpha \gamma} v_{i j}^{\alpha \gamma}
\end{aligned}
$$

ad c)

$$
\begin{aligned}
E^{T}\left[\beta_{i}^{\alpha} \beta_{j}^{\gamma} \beta_{l}^{\eta}\right]= & \mu_{i}^{\alpha} \mu_{j}^{\gamma} \mu_{l}^{\eta} \\
& \cdot E^{T}\left[\exp \left\{\alpha\left(X_{i}+Y_{i}+Z_{i}\right)+\gamma\left(X_{j}+Y_{j}+Z_{j}\right)+\eta\left(X_{l}+Y_{l}+Z_{l}\right)\right\}\right] \\
= & \mu_{i}^{\alpha} \mu_{j}^{\gamma} \mu_{l}^{\eta} \cdot \sigma_{i}^{\alpha^{2}} \sigma_{j}^{\gamma^{2}} \sigma_{l}^{\eta^{2}} \\
& \cdot \exp \left\{\alpha \gamma E^{T}\left[X_{i} X_{j}+X_{j} Y_{i}+Y_{i} Y_{j}+Z_{i} Z_{j}\right]\right. \\
& +\alpha \eta E^{T}\left[X_{i} X_{l}+X_{l} Y_{i}+Y_{i} Y_{l}+Z_{i} Z_{l}\right] \\
& \left.+\gamma \eta E^{T}\left[X_{j} X_{l}+X_{l} Y_{j}+Y_{j} Y_{l}+Z_{j} Z_{l}\right]\right\} \\
= & d_{i}^{\alpha} d_{j}^{\gamma} d_{l}^{\eta} \sigma_{i}^{\alpha(\alpha-1)} \sigma_{j}^{\gamma(\gamma-1)} \sigma_{l}^{\eta(\eta-1)} \cdot \sigma_{j}^{2 \alpha \gamma} v_{i, j}^{\alpha \gamma} \cdot \sigma_{l}^{2 \alpha \eta} v_{i, l}^{\alpha \eta} \cdot \sigma_{l}^{2 \gamma \eta} v_{j, l}^{\gamma \eta}
\end{aligned}
$$

With the help of the following vector notation we can now give the recursive algorithms.

$$
\begin{array}{rll}
d(i) & :=\left(d_{0}, \ldots, d_{i}\right)^{T} \in \mathbb{R}^{i+1} & \forall i=0, \ldots, n-1 \\
v(i) & :=\left(v_{0, i}, \ldots, v_{i-1, i,}^{T} \in \mathbb{R}^{i}\right. & \forall i=1, \ldots, n-1 \\
v^{2}(i) & :=\left(v_{0, i}^{2}, \ldots, v_{i-1, i}^{2}\right)^{T} \in \mathbb{R}^{i} & \text { resp. } v^{3}(i), v^{4}(i)
\end{array}
$$

1. Moment

$$
E^{T}\left[\sum_{i=0}^{n-1} \beta_{i}\right]=\sum_{i=0}^{n-1} d_{i}=\langle d(n-1), 1\rangle
$$

2. Moment

$$
\begin{aligned}
x(0) & :=d_{0}^{2} \sigma_{0}^{2} \text { and for } i=1, \ldots, n-1 \\
x(i) & :=x(i-1)+d_{i}^{2} \sigma_{i}^{2}+2\langle d(i-1), v(i)\rangle d_{i} \sigma_{i}^{2} \\
\Rightarrow & E\left[\left(\sum_{i=0}^{n-1} \beta_{1}\right)^{2}\right]=x(n-1)
\end{aligned}
$$

3. Moment

$$
\begin{aligned}
x(0) & :=d_{0}^{3} \sigma_{0}^{6} \text { and for } i=1, \ldots, n-1 \\
x(i) & :=x(i-1)+d_{i}^{3} \sigma_{i}^{6}+3 \cdot\left\langle d(i-1), v(i)^{2}\right\rangle d_{i}^{2} \sigma_{i}^{6}+3 \cdot a(i-1, i)
\end{aligned}
$$

where

$$
\begin{aligned}
a(0, i):= & d_{0}^{2} d_{i} \sigma_{0}^{2} \sigma_{i}^{4} v_{0, i}^{2} \quad \text { and for } j=1, \ldots, n-1 \\
a(j, i):= & a(j-i, i)+d_{j}^{2} d_{i} \sigma_{j}^{2} \sigma_{i}^{4} v_{j, i}^{2} \\
& +2\left(\sum_{k=0}^{j-1} d_{k} v_{k, j} v_{k, i}\right) d_{j} \sigma_{j}^{2} d_{i} \sigma_{i}^{4} v_{j, i} \\
\Rightarrow \quad & E^{T}\left[\left(\sum_{i=0}^{n-1} \beta_{i}\right)^{3}\right]=x(n-1)
\end{aligned}
$$

4. Moment

$$
\begin{aligned}
x(0) & :=d_{0}^{4} \sigma_{0}^{12} \quad \text { and for } i=1, \ldots, n-1 \\
x(i) & :=x(i-1)+d_{i}^{4} \sigma_{i}^{12}+4 \cdot a(i-1, i)+6 \cdot c(i-1, i)+4\left\langle d(i-1), v(i)^{3}\right\rangle d_{i}^{3} \sigma_{i}^{12}
\end{aligned}
$$

where
I)

$$
\begin{aligned}
a(0, i):= & d_{0}^{3} d_{i} \sigma_{0}^{6} \sigma_{i}^{6} v_{0, i}^{3} \quad \text { and for } j=1, \ldots, i-1 \\
a(j, i):= & a(j-1, i)+d_{j}^{3} d_{i} \sigma_{j}^{6} \sigma_{i}^{6} v_{j, i}^{3}+3 \cdot b(j-1, j, i) \\
& +3 \cdot\left(\sum_{k=0}^{j-1} d_{k} v_{k, j}^{2} v_{k, i}\right) d_{j}^{2} d_{k} \sigma_{j}^{6} \sigma_{k}^{6} v_{i, j}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
b(0, j, i):= & d_{0}^{2} d_{j} d_{i} \sigma_{0}^{2} \sigma_{j}^{4} \sigma_{i}^{6} v_{0, j}^{2} v_{0, i}^{2} v_{i, j} \text { and for } j=1, \ldots, i-1 \\
b(k, j, i):= & b(k-1, j, i)+d_{k}^{2} d_{j} d_{i} \sigma_{k}^{2} \sigma_{j}^{4} \sigma_{i}^{6} v_{k, j}^{2} v_{k, i}^{2} v_{j, i} \\
& +2\left(\sum_{l=0}^{k-1} d_{l} v_{l, k} v_{l, j} v_{l, i}\right) d_{k} d_{j} d_{i} \sigma_{k}^{2} \sigma_{j}^{4} \sigma_{i}^{6} v_{k, j} v_{k, i} v_{j, i}
\end{aligned}
$$

II)

$$
\begin{aligned}
c(0, i) & =d_{0}^{2} d_{i}^{2} \sigma_{0}^{2} \sigma_{i}^{10} v_{0, i}^{4} \quad \text { and for } j=1, \ldots, i-1 \\
c(j, i) & =c(j-1, i)+d_{j}^{2} d_{i}^{2} \sigma_{j}^{2} \sigma_{i}^{10} v_{j, i}^{4}+2\left(\sum_{k=0}^{j-1} d_{k} v_{k, j} v_{k, i}^{2}\right) d_{j} d_{i}^{2} \sigma_{j}^{2} \sigma_{i}^{10} v_{j, i}^{2} \\
\Rightarrow \quad & E^{T}\left[\left(\sum_{i=0}^{n-1} \beta_{i}\right)^{4}\right]=x(n-1)
\end{aligned}
$$

For the second moment of the sum of the logarithmic β_{i} a similar algorithm can be given. Set

$$
\begin{aligned}
\tilde{\beta}_{i} & :=\ln \beta_{i}-\ln \mu_{i}=X_{i}+Y_{i}+Z_{i} \\
\tilde{\sigma}_{i}^{2} & :=2 \ln \sigma_{i} \\
\tilde{v}_{i, j} & :=\ln v_{i, j} \\
\Rightarrow \quad & E^{T}\left[\tilde{\beta}_{i} \cdot \tilde{\beta}_{j}\right]=E^{T}\left[\tilde{\beta}_{j}^{2}\right]+\tilde{v}_{i . j} \\
\quad E^{T}\left[\tilde{\beta}_{i}^{2}\right] & =\tilde{\sigma}_{i}^{2}
\end{aligned}
$$

2. Moment

$$
\begin{aligned}
& x(0):=\tilde{\sigma}_{0}^{2} \quad \text { and for } i=1, \ldots, n-1 \\
& x(i):=x(i-1)+\tilde{\sigma}_{i}^{2}+2 \sum_{j=0}^{i-1}\left(\tilde{\sigma}_{i}^{2}+\tilde{v}_{j, i}\right) \\
& \Rightarrow \quad V^{T}\left[\sum_{i=0}^{n-1} \ln \beta_{i}\right]=V^{T}\left[\sum_{i=0}^{n-1} \tilde{\beta}_{i}\right]=x(n-1)
\end{aligned}
$$

Alternative calculation for $V^{T}\left[\ln G\left(t_{n}\right)\right]$ for an equidistant discretisation

$$
\begin{aligned}
V^{T}\left[\ln G\left(t_{n}\right)\right] & \left.=\frac{1}{n^{2}} V^{T}\left[\sum_{i=0}^{n-1}-\sigma\left(T-t_{1}\right) W_{1}^{T}(t) i\right)+\int_{t_{i}}^{T}\left(\sigma_{1}\right)-(T-u) \sigma d W_{t}^{T}(u)\right] \\
& +\frac{1}{n^{2}} V^{T}\left[\sum_{i=0}^{n-1} \int_{t_{i}}^{T} \sigma_{2} d W_{2}^{T}(u)\right]
\end{aligned}
$$

I)

$$
\begin{aligned}
\frac{1}{n^{2}} V^{T}\left[\sum_{i=0}^{n-1} \int_{t_{i}}^{T} \sigma_{2} d W_{2}\right] & =\frac{1}{n^{2}} V^{T}\left[\sum_{i=0}^{n-1} \sigma_{2}\left(W_{2}^{T}(T)-W_{2}^{T}\left(t_{i}\right)\right)\right] \\
& =\frac{1}{n^{2}} V^{T}\left[\sum_{i=0}^{n-1} \sigma_{2}(i+1)\left[W_{2}^{T}\left(t_{i+1}\right)-W_{2}^{T}\left(t_{i}\right)\right]\right] \\
& =\frac{1}{n^{2}} \sigma_{2}^{2} \sum_{i=0}^{n-1}(i+1)^{2}\left(t_{i+1}-t_{i}\right) \\
& =\frac{1}{n^{2}} \sigma_{2}^{2} \sum_{i=0}^{n-1}(i+1)^{2} \Delta t
\end{aligned}
$$

II)

$$
\begin{aligned}
& \frac{1}{n^{2}} V^{T}\left[\sum_{i=0}^{n-1}-\sigma\left(T-t_{i}\right) W_{1}^{T}\left(t_{i}\right)+\int_{t_{i}}^{T}\left(\sigma_{1}-(T-u) \sigma\right) d W_{1}^{T}(u)\right] \\
= & \frac{1}{n^{2}} V^{T}\left[\sum_{i=0}^{n-1}-\sigma \Delta t(n-i) W_{1}^{T}\left(t_{i}\right)+(i+1) \int_{t_{i}}^{t_{i+1}}\left(\sigma_{1}-(T-u) \sigma\right) d W_{1}^{T}(u)\right] \\
= & \frac{1}{n^{2}} V^{T}\left[\sum_{i=0}^{n-1}-\sigma \Delta t \cdot a_{i+1}\left[W_{1}^{T}\left(t_{i+1}-W_{1}^{T}\left(t_{i}\right)\right]+(i+1) \int_{t_{1}}^{t_{i+1}}\left(\sigma_{1}-(T-u) \sigma\right) d W_{1}^{T}(u)\right]\right. \\
= & \frac{1}{n^{2}} \sum_{i=0}^{n-1} V^{T}\left[\int_{t_{i}}^{t_{i+1}}\left(\left(\sigma_{1}-(T-u) \sigma\right)(i+1)-\sigma \Delta t a_{i+1}\right) d W_{1}^{T}(u)\right]
\end{aligned}
$$

where $a_{n}:=0$ and for $k=n-1, \ldots, 1 \quad a_{n-k}:=k+a_{n-k-1}$

With some standard reformulation this leads to

$$
\begin{aligned}
V^{T}\left[\ln G\left(t_{n}\right)\right] & =\frac{1}{n^{2}} \sum_{i=0}^{n-1}(i+1)^{2} \Delta t\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) \\
& -\frac{1}{n^{2}} \sum_{i=0}^{n-1}(i+1)^{2} \sigma_{1} \sigma\left[\left(T-t_{i}\right)^{2}-\left(T-t_{i+1}\right)^{2}\right] \\
& +\frac{1}{n^{2}} \sum_{i=0}^{n-1}(i+1)^{2} \frac{\sigma^{2}}{3}\left[\left(T-t_{i}\right)^{3}-\left(T-t_{i+1}\right)^{3}\right] \\
& -\frac{2}{n^{2}} \sum_{i=0}^{n-1} a_{i+1} \cdot(i+1) \sigma_{1} \sigma \Delta t^{2} \\
& +\frac{1}{n^{2}} \sum_{i=0}^{n-1} a_{i+1} \cdot(i+1) \sigma^{2} \Delta t\left[\left(T-t_{i}\right)^{2}-\left(T-t_{i+1}\right)^{2}\right] \\
& +\frac{1}{n^{2}} \sum_{i=0}^{n-1} \alpha_{i+1}^{2} \Delta t^{3} \sigma^{2}
\end{aligned}
$$

which up to some possible simplifications of the first three terms is a linear problem.
Table 4: Monte Carlo simulation and standard deviation for the fair premium with normal initial term structure

	込 8 品

Table 5: Monte Carlo simulation and standard deviation for the fair premium with flatt initial term structure

maturity:		10				12				15			
a	age		2		,		2		12		2		12
0.40	25	77.478	.0672	19.672	6.5723	.783	2.4277	16.358	5.445	. 031	5.6304	13.354	4.3388
		0.45	0.1624	. 07	0.02	1968	0.3429	. 12	0.0	.9704	0.8279	. 4	14
0.40	30	77.71	39.19	19.73	6.594	65.058	32.571	16.432	5.470	53.365	25.8037	13.44	4.3687
		0.4568	0.1624	0.0734	0.0274	1.1977	0.3434	0.12	0.0559	2.9726	0.8295	0.4	0.1316
	35	78.104	39.3979	19.8418	6.6298	508	32.8074	. 55	5.5113	. 91	26.0867	13.5888	4.4176
		0.4569	0.1625	0.073	0.0274	1.198	0.3444	. 12	0.05	2.9761	0.8	. 42	19
	25	79.28	39.92	20.10	6.7112	67.09	33.49	16.8949	5.618	5.95	26.7673	14.0397	4.5343
		0.547	19	09	03	47	42	0.15	0.069	3.8289	1.03	0.5352	0.1634
0.45	30	79.52	05	20.16	6.7337	67.37	. 64	16.970	5.6438	\%.29	6.94	14.13	4.5651
		0.5475	0.1925	. 09	0.0327	1.478	0.4225	. 15	, 66	3.831	1.0349	53	36
0.45	35	79	40.2	20.27	6.7704	67.841	33	17.095	5.6858	56.8587	. 2	14.281	55
		0.548	0.1928	0.092	0.0	1.4805	0.4232	0.1595	0.0693	3.8322	1.0376	. 5	0.164
0.5	25	81.49	40.97	20.623	6.88	69.84	34.748	17.532	5.82	59.44	28.0867	14.84	4.7614
		0.662	0.23	0.11	0.03	. 84	0.51	0.19	0.08	4.9	1.290	0.67	0.2031
	30	81.7	41.10	20.69	90	70.14	34.90	17.61	. 84	59.7	28.2713		33
		0.663	0.2338	0.1114	0.039	1.8433	0.5145	0.19	0.0849	4.9	1.2928	0.6795	0.2033
	35	82.16	41.32	20.804	6.9418	70.618	35.152	17.7402	5.8927	60.37	28.5725	15.0969	4.8454
		.66	0.23	0.111	0.039	1.84	0.51	0.194	0.085	4.97	1.296	0.6798	0.2037
	25	84.17	42.24	21.25	7.0859	73.14	36.24	18.290	06	. 67	29.628	. 8128	. 0278
		0.8056	0.2805	0.1318	0.0465	2.295	0.6294	0.2379	0.1037	6.5399	61	0.8699	0.2528
	30	84	42	21	7.1101	73	36	18	6.09	4.0	29.8195	5.9113	09
		0.80	0.2806	0.132	0.0466	2.295	0.6298	0.238	0.1039	6.53	1.6194	0.8701	0.253
	35	84	42.607	21.442	7.14	73.938	36.6642	18.50	6.13	64.62	30.1318	16.0716	5.1151
		0.8066	0.281	0.1322	0.04	29	0.6308	0.23	0.1042	6.5245	1.62	0.8699	0.2534
	25	87	43	22.02	7.3368	77.12	38	19.20	6.3567	. 9	31.4665	16.9857	55
		0.984	0.3371	0.1597	0.0561	2.9026	0.7799	0.2974	0.1276	8.8294	2.0438	1.1263	0.3181
	30	87.72	43.93	22.099	7.3622	77.44	38.2116	19.2893	6.38	69.31	31.6661	17.0878	5.3801
		. 98	. 33	0.1601	0.05	.90	0.78	0.298	0.12	8	2.0456	1.1258	0.3184
	35	88.17	44.17	22.22	7.40	77.959	38.48	19.429	6.43	69.9211	31.9915	17.2541	5.4365
		0.985	兂	0.1605	0.056	.905	. 78	0.29	0.128	. 18	2.0484	1.1249	0.3187
	25	91.51	45.6982	22.975	7.6455	82.03	40.2375	20.3162	6.7103	75.7743	33.6929	18.4439	5.7307
		1.2155	0.4189	0.1975	0.0685	3.75	0.9785	0.3748	0.1599	12.4314	2.6182	1.4881	0.4056
0.65	30	91.805	45.8517	23.054	7.6724	82.3653	40.4126	20.4066	6.7409	76.1493	33.9013	18.5499	5.767
		1.2162	0.4195	0.1978	0.0686	3.753	0.9794	0.3755	0.1601	12.3929	2.6197	1.4865	0.4057
65	35	92.2754	46.1023	23.1831	7.7162	82.9032	40.6981	20.5539	6.7908	76.7592	34.2409	18.7223	5.826
		1.2178	0.4201	0.198	0.0688	3.7528	0.9811	0.3766	0.1605	12.3304	2.6218	1.4837	0.4059

Table 6: Monte Carlo simulation and standard deviation for the fair premium with invers initial term structure

References

Aase, K.K., and S.A. Persson (1992): Pricing of Unit-Linked Life Insurance Policies, WP, Norwegian School of Economics and Business Administration, Bergen.

Bacinello, Anna Rita and Fulvio Ortu (1993): Pricing equity-linked life insurance with endogeneous minimum guarantees, Insurance: Mathematics and Economics, 12, pp. 245-257.

Brennan, M.J., and E.S. Schwartz (1976): The Pricing of Equity-linked Life Insurance Policies with an Asset Value Gurantee, Journal of Financial Economics, 3, pp.195-213.

Brennan, M.J., and E.S. Schwartz (1979): Pricing and Investment Strategies for Equitylinked Life Insurance Policies with an Asset Value Guarantee, Journal of Financial Economics, 3, pp. 195-213.

Brennan, M.J., and E.S. Schwartz (1979): Pricing and Investment Strategies for Equitylinked Life Insurance, Huebner Foundation Monograph, 7, Wharton School, University of Pennsylvania, Pennsylvania

Delbean, F. (1990): Equity Linked Policies, Bulletin Association Royal Actuaires Belge, pp. 33-52.

Caverhill, A., and L. Clewlow (1990), Flexible Convolution, Risk, 3, No.4, pp. 25-29.
Ho, T.S.Y., and S. Lee (1986): Term Structure Movements and Pricing Interest Rate Contingent Claims, Journal of Finance, 41, pp. 1011-1029.

Kemma, A.G.Z., Vorst, A.C.F. (1990): A Pricing Method for Options Based on Average Asset Values, Journal of Banking and Finance, 14, pp. 113-129.

Persson, Svein-Arne (1993): Valuation of a Multistate Life Insurance Contract with Random Benefit, The Scandinavian Journal of Management, 9S, pp. 73-86.

Reimer, M.: Arithmetic-Average-Price Options (1993): Bewertungsverfahren und Simulationsstudie, University of Bonn, Discussion Paper B-240

Turnbull, S.M., Wakeman, L.M. (1991): Quick Algorithm for Pricing European Average Options, Journal of Financial and Quantitative Analysis, pp. 77-389.

Vorst, A.C.F. (1992): Prices and Hedge Ratios of Average Exchange Rate Options; International Review of Financial Analysis, 1, pp. 179-193.

[^0]: ${ }^{1}$ Financial support from the Danish Natural \& Social Science Research Council by the first author and by the Deutsche Forschungsgemeinschaft Sonderforschungsbereich 303 at the University of Bonn by both authors, is gratefully acknowledged. The plots were produced using GNUPLOT 3.5. Document typeset in LAT E^{X}.

[^1]: ${ }^{2}$ In other words, we assume a Black-Scholes type behavior of the reference portfolio. This is from the empirical point of view more robust than the assumption of lognormal distributed stocks.
 ${ }^{3}$ For simplicity, we assume that $\lambda_{1}(t)$ and $\lambda_{2}(t)$ are independent of $r(t)$

[^2]: ${ }^{4}$ In the case of mortality, we have to calculate a series of option prices. Remark that the forward risk adjusted measure P^{t} depends on n^{*}. This implies that we have to consider the change of measure dependent on the death distribution.

[^3]: ${ }^{5}$ This implies 2000 paths using antithetic technique for each simulation

[^4]: ${ }^{6}$ Again, the results for the normal and invers initial term structure are the same

