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BINOMIAL MODELS FOR OPTION VALUATION { EXAMINING AND

IMPROVING CONVERGENCE

DIETMAR LEISEN AND MATTHIAS REIMER

Abstract. Binomial models, which rebuild the continuous setup in the limit, serve for approximative

valuation of options, especially where formulas cannot be derived mathematically. Even with the valua-

tion of Europeancall options distorting irregularities occur. For this case, sources of convergencepatterns

are explained. Furthermore, it is proved order of convergence one for the Cox{Ross{Rubinstein[79]model

as well as for the tree parameter selections of Jarrow and Rudd[83], and Tian[93]. Then, we de�ne new

binomial models, where the calculated option prices converge smoothly to the Black{Scholes solution

and remarkably, we even achieve order of convergence two with much smaller initial error. Notably,

solely the formulas to determine the constant up{ and down{factors change. Finally, all tree approaches

are compared with respect to speed and accuracy calculating relative root{mean{squared error of ap-

proximative option values for a sample of randomly selected parameters across a set of re�nements.

Approximation of American type options with the new models exhibits order of convergence one but

smaller initial error than previously existing binomial models.

1. Introduction

In the virtue of arbitrage pricing theory, the present value of a derivative security is derived by calculating

the initial cost of some dynamic perfectly replicating portfolio, consisting of proportions in the underlying

security and amounts of cash which change with time. Hence this portfolio is risklessly interchangeable

with the option itself regardless of the actually occuring states during the lifetime of the option. However,

an in�nite number of possible future states translating into supposed price movements of the underlying

security de�ne the portfolio's composition and variations. Now assume that these price movements are

described mathematically by a stochastic di�usion process. Then technically, any price change can be

decomposed into an in�nite sequence. Consequently, an arti�cial dynamic portfolio with a corresponding

sequence of proportion adjustments achieves the duplication task. Consistently, idealized �nancial mar-

kets must be assumed, where a continuous ow of supply and demand to assets arrives and clears at a

sequence of equilibrium prices instantly quoted. Evidently, it is this very assumption of continuous and

frictionless price movements in continuous time markets which allows for the duplication of any uncertain

income stream. Of course, trading at �nancial markets does not occur continuously in the strict sense.

Rather, the ow of multiple single deals translating into prices is modelled in this way mathematically.

Alternatively, describing the formation of uncertain future prices can be carried out much more sim-

pli�ed. Imagine, that a set of future prices is obtained by a decomposition consisting of a Bernoulli

sequence. Naturally, only a limiting lattice structure with an in�nite number of Bernoulli steps succeeds

to capture in�nite states of nature. But if this lattice is constructed correspondingly to the continuous

framework, both models may coincide in the limit. Marginally quoted, technically only models where

vertices recombine permanently are tracktable. This problem we assume away here.
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Actually, a binomial tree of �xed length approximates the continuous set of trading occurences and

security prices always by covering but some �nite range of security prices with a discrete grid structure

of constant log{steps at discrete equidistant trading instances. With every application of binomial trees,

one inevitably must examine the approximation quality by careful consideration of the approximation

result with changing tree re�nements. Incidentally stated, to our opinion such simulations do not describe

how discontinuities resolve at �nancial markets. Rather, solely properties of the approximation theme

are shown.

The approximation result is expressed by the parameters describing the dynamic replication strategy.

This study is restricted to the examination of the option price only.

Investigations reveal, that the acquired degree of precision in binomially computed option prices in

comparison to a continuously calculated option price varies with the re�nement of the binomial trees

in a bumpy manner. The option prices unsymmetrically oscillate with changing amplitude around the

Black-Scholes solution for a European call option.

Our paper goes beyond the �ndings of the existing literature in several ways. When considering lattice

approaches primarily as a means to design a limit distribution, we desire that an approximation method

should have a convergence speed as fast as possible which is measured by the degree of change with iterated

re�nement in absolute di�erence of binomial price and continuous solution. Furthermore, with smoothness

of convergence the approximation results improve with each increase of the re�nement regardless of the

given parameter constellation, especially independently of a special choice to the strike price.

For several existing lattice approaches the order of convergence is shown and proved. Astonishingly, con-

vergence speed of binomially computed option prices has not been examined technically so far, although

there exists a vast mathematical literature on convergence speed in connection with central limit theo-

rems. Furthermore, reasons for unsatisfactory convergence patterns are discussed. Then, the presentation

of methods to achieve models with smooth convergence patterns follows. Next, a model with a higher

order of convergence and smooth convergence pattern is presented. Moreover, all the presented models

have the same computation speed given the same tree re�nement, because only the formulas to calculate

the tree parameters change.

But importantly, lattice approaches establish much more than a vehicle to achieve a certain limit distri-

bution of future asset prices. Here, the arbitrage relationships which imply the replicating portfolio can

be characterised clearly, whereas this theoretical construction is somewhat concealed in the continuous

setup. Notably, these properties are retained entirely in the newly established models with improved

approximation properties. From the theoretical point of view all the considered models can be used in-

terchangeably. Consequently, we have shown how the applicability of lattice approaches can be improved

tremendously.

Finally, we give some numerical examples to underline the strength of the new approximation. A method

recently presented by Broadie and Detemple[94] follows, where option prices are computed for a large

sample of random parameters and then the relative standard deviation to the true solution is calculated

and compared to computation time with increasing re�nement. Graphically it is shown that previous

models stay behind drastically with respect to accuracy. On top, using the same sample of parameters

it is shown that our tree models perform better than all previous lattice approaches when computing

American type option prices. Here is the speci�c attraction of fast performing models, because binomial

models approximate prices for which explicit formulas cannot be derived in the continuous setup.

A binomial option pricing model was �rst developed simultaneously by Cox, Ross, and Rubinstein[79]

(CRR) and Rendleman and Bartter[79]. CRR presented the fundamental economic principles of option

pricing by arbitrage considerations in the most simplest manner. By application of a central limit theorem

they proved that their model merges into the Black and Scholes model when the time steps between

successive trading instances approach zero. Additionally, the model was used to evaluate American type

options and options on assets with continuous dividend payments.



EXAMINING AND IMPROVING CONVERGENCE 3

In the meantime, innumerable contributions to lattice approaches have been published. Therefore, we

must excuse that not all of them can be mentioned here.

Jarrow and Rudd[83] constructed a binomial model where the �rst two moments of the discrete and

continuous model coincide by construction. Furthermore, the probability measure is equal to one half.

Since in the CRR-model, the variance of the asset return converges towards the variance in the Black-

Scholes model only in the limit, they claim that their model should have a "better" convergence behavior.

The essence of better convergence behavior is not tackled.

Boyle[88] constructed a trinomial lattice, which is �xed up to some arbitrary parameter lambda, which

is determined heuristically. Although this model lacks a universal solution, he realizes indeed that there

are potentialities to improve lattice approaches by an ingenious choice of parameters.

Omberg[88] deduced a whole family of lattice trees using the technique of Gauss{Hermite quadrature as

solution to the backward recursive integration problem. Unfortunately, trees with four or more vertices

do not recombine properly and interpolation methods must be applied to keep a tracktable grid of asset

prices. Notably, he recognizes that even with a 20th order Gauss{Hermite jump process the location of

the exercise price within the tree structure may cause trouble.

Tian[93] proposed binomial and trinomial models where the model parameters are derived as unique

solutions to equation systems, established from su�cient conditions to acquire weak convergence due to

the Lindeberg theorem, supplemented to use remaining degrees of freedom to equalize further moments

of the continuous and discrete asset{distributions. Unfortunately, this interesting contribution lacks to

support the ideas by mathematical arguments.

A totally di�erent approach to improve the accuracy of binomial models was inaugurated by Hull and

White[88], who transfered the control{variate technique from the Monte Carlo method. An interesting

approach, but it di�ers entirely from the line of thought persued here.

Numerous adjustments have been introduced to apply lattice approaches to various types of options.

There is the broad �eld of exotic options. Cox, Rubinstein[85] presented an adjustment for the valuation

of Down{and{out calls. Hull and White[93] modi�ed the original CRR-modell for the pricing of path

dependent exotic options by linear or quadratic interpolation. Recently, Cheuk and Vorst[94] presented

a model where the payo� of Lookback options itself is modelled in a lattice, thus resolving the path

dependency. Whereas this paper does not focus directly on the pricing of complex payo� themes, we view

our contribution as a starting point for the derivation of methods with superior accuracy there. Further

extensions to the �eld of lattice approaches involve the transfer to the pricing of derivative contracts with

multiple underlying securities (see He[90]). Other authors devote research to the construction of "simple"

binomial lattices, that is construction principles where pricepaths recombine properly even when more

complex models such as models with state varying volatility functions are considered (e.g. see Nelson,

Ramaswamy[90], Li[92]).

2. Chopping up the continuous framework { construction principles of some previous

lattice approaches

Once again, Black and Scholes assume that trading at �nancial markets proceeds continuously in time,

the market rate of interest r is commonly known and �xed over time, payments out of underlying secu-

rities, e.g. dividends, do not exist. Stock-price dynamics are described by

dS(t) = rS(t)dt + �S(t)dW (t)(1)

where r is the instantaneous expected return of the underlying asset S if immediately the risk-neutrality

argument of Harrison and Pliska[81] is used, �2 is the instanteneous variance of the return, and dW is a

standard Gauss{Wiener process.

Within their model, a hedge portfolio can be constructed containing solely the underlying asset S and
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a savings account with riskless borrowing and lending at r, which perfectly replicates the value of a

European call option at each instant of time, having strike price K and time to maturity T � t0.

It is this equilibrium connection which results in the Black-Scholes di�erential equation where the expected

return on the option is expressed in terms of the option price function and its partial derivatives.

@c

@t
+ rS

@c

@S
+
1

2
�2S2

@2c

@S2
= r c(2)

The solution to the di�erential equation with boundary condition f = [S(T ) �K; 0]+ as payo� function

is given by the Black-Scholes option pricing formula:

c(t0; S) = S � N (d1)�K � e[�r(T�t0)]N (d1 � �
p
T � t0)(3)

d1 =
[ln(S(t0)

K
) + (r + 1

2
�2)(T � t0)]

�
p
T � t0

where N is the cumulative standard normal distribution function.

Transferring this framework into the simplifying binomial structure induces several adjustments. Here,

the model evolves step by step at certain spots of time ti 2 ft0; � � � ; tng. �t characterises a �xed

length of time passing by between sequential model events. Model events consist of price changes in the

underlying security and option price. Consistently, the replicating portfolio requires adjustments there

only. Continuous parameters, i.e. r and �2t are translated to per period variables r̂, �2(T=n). Central

signi�cance devolves upon the construction of price movements. Generally, within all binomial models

the stochastic price behavior is modelled by

S(ti; j; n) = S(t0)u(n)
j d(n)i�j(4)

where S(ti; j; n) denotes the asset price at time ti after j up-movements in a n-step binomial tree, with

T � t0 as length of the time axis. When we de�ne R̂i as the randomly distributed one-period return for

the underlying asset we have

R̂i =

(
u(n) with probability p(n)

d(n) with complementary probability 1� p(n) � q(n) i = 0; � � � ; n(5)

where n denotes that these parameters belong to a speci�c binomial tree and change with re�nement n.

Apart from that, these parameters remain constant throughout a tree. Evidently, a special ordering of

up{and down{movements does not a�ect terminal asset prices.

Within these models, a hedge portfolio can be constructed which perfectly replicates the value of a

European call option at each discrete point of time ti regardless whether the asset price increases to

S(ti+1) = u(n)S(ti) or decreases to S(ti+1) = d(n)S(ti). Payo� replication with respect to up- or

down-movements requires

� � u(n) � S(ti; j) + rB = C (S(ti+1; j + 1))

� � d(n) � S(ti; j) + rB = C (S(ti+1; j))

to hold.

From this, the proportion � of the underlying asset and amount B of cash in the replicating portfolio can

be derived, the value at ti is interpretable as discounted expected value of prices at ti+1 with martingale

measure equal to p(n) = (r̂ � d(n))=(u(n)� d(n)).

Here, this equilibrium connection is subsumed for all discrete steps in a binomial formula, of which the

�rst was presented by CRR:

C(t0; S(t0); n) = r̂�n
nX
j=0

�
n

j

�
p(n)(1� p(n))n�j[S(T; j; n) �K]+(6)
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and equivalently:

C(t0; S(t0); n) = S(t0)�[a;n; p
0(n)]�Kr�n�[a;n; p(n)](7)

where p =
r̂ � d(n)

u(n) � d(n)
p0 =

u(n)

r̂
� p(n) a = Int

�
ln(K=Sd(n)n

ln(u(n)=d(n))

�
and �[�] denotes the complementary binomial distribution.

Transition to the continuous model eventually implies transition from the binomial components to the

standard normal components which result from the terminal distribution of asset prices. The terminal

asset price distribution results from return sequences randomly changing between u(n) and d(n):

S(T ) = S(t0) � R̂i ,
S(T )

S(t0)
=

nY
i=1

R̂i

Consider a random Bernoulli variable with

X(i; n) =

(
1 when R̂i = u(n)

0 when R̂i = d(n)

which counts the number of up-movements. De�ning a sum variable we have

j(i; n) = X(1; n) +X(2; n) + : : :+X(i; n) + : : :+X(n; n) �(8)

Now consider

S(tn; j; n)

S(t0)
= u(n)jd(n)n�j

By transformation to

ln
S(tn; j; n)

S(t0)
= j ln

u(n)

d(n)
+ n lnd(n)(9)

we have j = B(n; p), which is a sum of independent identically distributed variables to which a central

limit theorem can be applied. By simple linear transformation the limit distribution for lnS(tn; j; n)=S(t0)

can be derived.

Consistently, due to the assumed asset price dynamics, we must have that lnS(T )=S(t0) is normally

distributed with

ln

�
S(T )

S(t0)

�
= N

��
r � �2

2

�
(T � t0); �

p
T � t0

�
Essentially, existing lattice approaches only di�er in the way how this limit result is acquired. The

proceeding involves di�ering de�nition of the tree parameters u(n) and d(n).

CRR[79] JR[83] TIAN[93]

u = exp
n
�
p
�t
o

u = exp
n
�0�t+ �

p
�t
o

u =
MV

2

�
V + 1 +

p
V 2 + 2V � 3

�

d = exp
n
��
p
�t
o

d = exp
n
�0�t� �

p
�t
o

d =
MV

2

�
V + 1�

p
V 2 + 2v � 3

�

�0 = r � 1
2
�2 M = exp fr�tg

V = exp
�
�2�t

	

The way of deduction for the parameters in the CRR-model is unknown, though dependency an volatility

and stepsize seems straightforward.
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The parameters of Jarrow and Rudd can be derived by solving an equation system equating �rst and

second moments of continuous and discrete model having �xed p(n) = �p = 1=2.

Tian explicitly derives the parameters by equating the �rst three moments and using p + q = 1. Inter-

estingly, rearranging the equation to derive the martingale measure yields

E

�
S(T )

S(t0)

�
= [p(n) � u(n) + q(n) � d(n)]n = r̂n(10)

which corresponds to

E

�
log

�
S(T )

S(t0)

��
= n

�
p(n) log

u(n)

d(n)
+ log d(n)

�
�!

�
log r � 1

2
�2
�
t(11)

when considering the logarithm of the return. Consequently, the �rst moment is �xed instantly for every

model which ful�lls the noarbitrage condition.

Equivalence with the second moment holds either by construction as well (see Jarrow, Rudd and Tian)

or is achieved in the limit (see CRR). With that, all requirements to acquire the same limit distribution

are given.

But beyond that, the distinct approaches do not reveal properties suggesting superiority or inferiority in

terms of convergence quality expect in some cases1. On the contrary, simulations indicate that the three

models behave similarily with respect to convercence speed, a result which will be stated and proved

in the next section. Essentially, equating moments merely assures convergence to a distribution with

matching parameters. Yet, computing option prices within a tree constructed this way does not lead to

the best achievable estimation results.

Crucially, also the accuracy of approximation is inuenced by a second fact, inherent in all tree models.

The entire probability mass is concentrated exclusively at the terminal nodes of the tree presuming that

outcomes deviating from these nodes cannot occur. Translating into a binomial distribution function we

have a piecewise constant function with jumps at each terminal node. Illustrating the discrete structure

take the set of probabilities connected with a corresponding set of terminal asset prices to construct a

histogram outlining the approximation of the continuous density.

Notice that the probability mass of each rectangular is con�ned to a terminal node.
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But the set of possible asset prices shifts with each iteration of the tree re�nement. Having �xed exoge-

nous strike price and uctuating locations of jumps in the distribution function, the separation of the

probability mass bounces back and forth with changing step patterns, because arbitrary locations can

occur.

Thus, the binomial structure itself in combination with a strike price located independently of the tree

1Trigeorgis [91] shows that in the CRR-model negative option prices may occur when there is a very long time to

maturity combined with low tree re�nement.
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grid induces irregularities which distort the approximation result. Except of special cases, the computed

option prices oscillate2, and convergence wavy to the Black-Scholes solution3. The remaining part of the

paper is devoted exactly to these two de�ciencies.

At the same time, actually these �ndings inspired to search for conditions under which uctuations in

option price approximation can be avoided and beyond that high accurancy achieved. In numerous cases

the approximations oscillate almost exactly around the true value. Furthermore, with changing amplitude

of the waves, the approximations accidentically approach the true value repeatedly.

3. Examining the order of convergence

In this chapter, we will �rst de�ne the order of convergence. Then we will prove a general result on the

order of convergence. The known lattice approaches �t into the framework of the main theorem; so it will

be applied to them. At the end, we will furthermore give some simulations and explain, how the results

could be used.

We will adopt the following notation:

1. We remember that the security follows the price process Xs;x
t which is the solution of the stochastic

di�erential equation

X
s;x
t = x+

tZ
s

rX
s;x
t0 dt0 +

tZ
s

�X
s;x
t0 dWt0(12)

The probability measure is denoted by PW .

2. f : x 7�! (x�K)+ shall be the payo�{function, K be the strike.

3. The discrete process is described by Y0; : : : ; Yn where Yk is the value of the discrete security price

process at time tk. They are random variables for k > 0. The probability measure is PB.

If examining a certain lattice approach for a speci�c security, the only changing parameter is the re-

�nement n or equivalently the step size �t. In fact, the option price in a discrete lattice approach is a

function of n. The Black-Scholes-value c(t; S) is the expected payo� at time T discounted to time t that

is

c(t; S) := e�r(T�t)EW
h
f(Xt;S

T )
i

(13)

The lattice value is the expected payo� at time T discounted to time t that is

e�r(T�t)EB [f(Yn)](14)

Since we are only interested in the option price, we will examine en as error at re�nement n de�ned by

the absolute value of the di�erence between discrete and continuous price.

2this property is sometimes called "even-odd-problem"
3In order to visualize that solely the uctuating separation causes existing convergence patterns take the Black-Scholes

formula and adapt the strike price in the normal components to the implicite separation rule of the binomial models, put

on top a continuity correction of one half. Interestingly, any existing convergence patterns can be reproduced, displaced

with respect to the distribution error only. Consequently, merely the separation problem signs responsible for all existing

convergence patterns. The distribution error can be quanti�ed indeed by adapting the Black-Scholes formula once more,

now with a series expansion. Thus, binomial option prices can be duplicated by this twofold adaptation. Oscillation is

produced because the strike jumps over rectangulars with even and odd re�nements, waves describe the relative movement

between surrounding terminal nodes, which change in value continuously though.
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De�nition. Let

en := e�rT jEW
h
f(X0;S

T )
i
�EB [f(Yn)] j(15)

be the error in price.

A lattice approach converges if and only if for all parameters K; r; �; T; Y0 we have

lim
n!1

en = 0

This concept of convergence is exactly that used in mathematical literature. In observing convergence

in the re�nement n, one typically observes wavy patterns. This was already discussed in the previous

section. An approximation which is rather close to the Black-Scholes value may follow another good or

even a worse approximation.

However we remember that convergence exactly says that in giving a certain error bound, we can �nd a

re�nement n0 such that each �ner one has an error which does not exceed the bound. But how does the

re�nement depend exactly ? To make things precise, we shall say:

De�nition. European call options, computed with a lattice approach converge with order r > 0 if

there exists a constant C > 0 such that

8n : en �
C

nr
(16)

Remark.

1. In our Theorem below we will see that the estimation of the error can be decomposed into a constant

C > 0 dependant of the speci�c option and the order r dependant of the chosen lattice approach.

2. Please note that convergence is implied by any order greater than 0. Moreover we remark that a

lattice approach with order r has also order ~r � r. A higher order means "quicker" convergence.

To achieve a certain precision level, the constant C and the order is of importance.

3. The most important fact is, that in plotting en against the re�nement n on a log-log-scale, the

bounding function C
nr

becomes a straight line with slope equal (�r) and shift C. In notifying this,

it becomes easy to observe the order-of-convergence in simulations.

Example.
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S = 100;K = 110; T = 1; r = 0:05; � = 0:3

In this case, the order{of{convergence is equal 1. The proof is given later in this chapter.

How could one determine the order of a lattice-approach mathematically?
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Using the representation of the discrete price with the cumulative binomial distribution mentioned in the

previous chapter, one could examine the order of approximation of the respective distribution function.

Berry [41] & Ess�een [45] examined this: thus getting order 1
2
.

However we have already suggested order 1 in the above example of the CRR approach. Since we prove

the better result by our theorem we are not going to present this idea in more detail.

Other approaches such as Ibragimov[66] are examining the characteristic function, thus using Fourier{

Analysis of the distribution function. This yields conditions which are di�cult to verify.

Since the option price is the discounted expectation of the �nal payo�, and the logarithms of the security

are normally (N) and binomially (B) distributed random variables respectively, one is led to examine the

order of the "weak convergence" of the DeMoivre-Laplace Theorem, that is formulas of the kind

E[g(N )]� E[g(B)] with g : IR+ �! IR+

By a more detailed examination, as was done by Butzer & Hahn [75], using the Operator-Method of

Trotter [59] to prove the central limit theorem, one gets the order of convergence of above terms. In

essence this requires the function g to be su�ciently smooth, in order to make a Taylor-expansion. Since

our payo� function is not di�erentiable at S = K at all, this idea is not applicable directly.

However these approaches do not make use of the fact, that we are in the special situation of a stochastic

process. In the case of a stochastic process and a function g with polynomial bounded derivatives (of

some order), Kloeden & Platen [92] proceed di�erently : They discretize the time axis. In this way they

are able to represent the above as a sum of the di�erences in each step. In each time step they evaluate

it by making a Taylor-Expansion as above. This is possible because in their case they can make use of a

theorem of Miculevicius ensuring su�cient di�erentiability for their purposes.

Unfortunately this is not the case here: however, observing that the Black{Scholes price is smooth, this

is the approach that allows to circumvent the problem of nondi�erentiability of our payo� function.

Remarkably, although we are valuing European call-options in this paper only, the approach here allows

to extend it to path{dependent options easily, because we make use of the whole price{process.

Distributions are completely characterized by their moments. For example the normal distribution by its

�rst moment ( the mean) and second moment (the variance). Therefore in the central limit theorem the

moments of the discrete random variable at least need to approximate those of the normal distribution.

Convergence is ensured by the Ljapuno� condition, which is a su�cient condition on the convergence of

one higher moment.

In a lattice approach, the order of convergence is completely determined by the following factors:

De�nition. We call

�m1
n := EB

�
Yk+1

Yk

��� Ak

�
� EW

�
Xk+1

Yk

��� Ak

�
(17)

�m2
n := EB

"�
Yk+1

Yk

�2 ��� Ak

#
� EW

"�
Xk+1

Yk

�2 ��� Ak

#
(18)

�m3
n := EB

"�
Yk+1

Yk

�3 ��� Ak

#
� EW

"�
Xk+1

Yk

�3 ��� Ak

#
(19)

our moments and

pn := EB

"�
ln
Yk+1

Yk

��
Yk+1

Yk
� 1

�3 ��� Ak

#
(20)

�pn := EW

"�
ln
Xk+1

Yk

��
Xk+1

Yk
� 1

�3 ��� Ak

#
(21)

our pseudo{moments
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Remark. Notice that moments and pseudomoments donot depend on speci�c k. �m1
n = 0 because of the

risk neutrality argument of Harrison & Pliska[81]

Theorem. Let fY n
0 ; : : : ; Y

n
n g with Y n

0 = Y0 = S denote the discrete price process of a lattice approach.

The order of convergence is the smallest order contained in �m2
n; �m

3
n or pn reduced by 1, but not smaller

than 1, that is :

There exists a constant C, only depending on S;K; r; �; T such that : en � C

�
�m2
n + �m3

n + pn + (�t)2

�t

�

Proof. is given in Appendix B We just note that the above mentioned Taylor{Expansion yields :

en �
�����
n�2X
k=0

e�rtk+1EB
h
~c1(tk+1; Yk)

��� A0

i����� �
�����m1

n

�����+
�����
n�2X
k=0

e�rtk+1EB
h
~c2(tk+1; Yk)

��� A0

i����� �
�����m2

n

�����
+

�����
n�2X
k=0

e�rtk+1EB
h
~c3(tk+1; Yk)

��� A0

i����� �
�����m2

n

�����+
�����EB

"
n�2X
k=0

e�rtk+1
n
EB

h
R3(tk+1; Yk+1; Yk)

��� Ak

i

+EW

h
R3(tk+1; Xk+1; Yk)

��� Ak

io ��� A0

#�����+O
�
1

n

�

where R3 are remainder{terms.

Remark.

1. The Theorem separates convergence into two parts:

- the constant is dependent on the type of option: here a Call-Option

- the moments and pseudomoments contain the di�erent lattice approach

2. Mainly the Theorem states that order of convergence one is inherently contained in all binomial

lattice approaches. Interestingly the next section shows how the order of convergence can be tuned

by a very speci�c construction principle.

3. In the later simulations we will see that order 1 cannot be improved in the approaches known in

literature. Moreover we will explain later in the simulations how to conduct e�ciently convergence

speed measurements in applications. Notably we proved only that order of convergence equals

at least one, possibly higher order could be contained, though simulations indicate the opposite,

entirely.

4. To achieve order of convergence one, the theorem states that the approximating moments of the

discrete process must converge with order two toward the moments of the continuous security pro-

cess, because one degree is lost with summation over time. Furthermore, one needs the same order

of convergence in the pseudomoments. This is not only a technical matter but explains why the

model proposed by Tian does not perform better.

Proposition. The CRR[79] model converges with order 1.

Proposition. The JR[83] model converges with order 1.

Proposition. The Tian[93] model converges with order 1.

The proofs all use the above Theorem and will be given in Appendix C.

Simulation. Notifying that we are getting always similar pictures for convergence in price, we will

present only two pictures with this topic.
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In what follows we will demonstrate the three lattice approaches with three di�erent strikes. One can

recognize in the simulations that the error can always be dominated by an upper bound of order 1
n
.
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12 DIETMAR LEISEN AND MATTHIAS REIMER

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 100 1000

er
ro

r

refinement n

JR
4/t

Figure 11. JR{error

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

10 100 1000

er
ro

r

refinement n

2nd moment
3rd moment

4th pseudo-moment
0.1/t**2

Figure 12. JR{moments
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Please note, that the lattice approach by Tian has explicitely �xed the �rst two moments, thus being

exactly 0. Moreover we remark that the method of determining the order{of{convergence from that of

the moments and pseudomoments works very well.

4. Construction of binomial models with improved convergence properties

So far, we described the sources of convergence patterns in existing lattice approaches. Moreover, we

derived the order of convergence in the previous section. Here alternative methods to construct binomial

trees will be discussed. Our aim: de�nition of binomial trees, which beforehand obey the sources of

irregularities simply by di�erent but only slightly modi�ed de�nition of tree parameters u(n) and d(n).

In section 2 we saw that irregularities evolve because the relative position of the strike within the tree

varies. Now, we suggest that this relative position should be �xed in some sense.

The construction of trees to achieve convergence to Black-Scholes does not depend on any particular grid

or grid sequence whatsoever. Vice versa we postulate that the construction of sequential trees may be

linked to achieve homogeneity with the location of the strike.

This concept brings up the question to the correct relative position of the strike. Without extending this

question, some reections speak in favor of a location precisely in the middle of two surrounding nodes.

This commitment results in �xing the random variable j to integer numbers with continuity correction

of one half. Moreover, in line with the histogram concept, rectangulars remain undivided.

But where should we �x the strike overall? Why not in the center of the tree? This proceeding implies

that the strike is always contained in the binomial tree grid. Consequently, the paths surrounding quantify

explicitly the probability for those asset prices which �nish in the near of the strike. Notably, here actually

the most sensible situations arise. Consequently, the model itself speaks in favor of this construction.

Besides, since most of the time trading in options occurs in at-the-money and near-the-money options

only, actually this requirement changes only minorly the structure. These reections leed to the de�nition

of the following model.

u(n)p(n) + d(n)q(n) = expfrT=ng �M(22:1)

u(n)2p(n) + d(n)2q(n) = expf�2T=ng �M2V(22:2)

p(n) + q(n) = 1(22:3)

u(n) � d(n) = expf2=nln(K=S)g(22:4)

In accordance to the approach of Tian we de�ne an equation system where (22:1) and (22:2) �x the �rst

two moments as su�cient but not necessary conditions to achieve convergence to the given continuous

distribution. Equation (22:3) expresses that the point probabilities sum up to one. Importantly, in
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di�erence to Tian, who wasted the remaining degree of freedom to �x the third moment, we implement

a condition guaranteeing that the strike is positioned at the center of the tree for every tree re�nement

at maturity. With even number of steps this position contains a terminal node and with odd number

of steps this position precisely separates two terminal nodes. Thus, we may restrict ourselfes to even or

odd re�nements only depending an the desired separation rule. This proceeding does not devaluate our

approach since tree calculations do not depend on any speci�c choice of re�nement. Besides, even and

odd re�nements converge monotonically, respectively. Below, we present the explicit expressions for the

tree parameters as unique solution of the equation system above.

u(n) = [g + (K +M2 V )
p
g]=[2M

p
g](23:1)

d(n) = K=u(23:2)

p(n) =
r̂ � d(n)

u(n)� d(n)
(23:3)

q(n) = 1� p(n)(23:4)

where g = K2 � 4KM2 + 2KM2 V +M4 V 2

Consider, the convergence pattern of the CRR-model for at-the-money options. There is merely oscillation

of the option price without any waves. Along even and odd re�nements alone, we have a monotonical

convergence pattern. Notably, this convergence pattern is conserved for any choice of the strike here.

Remarkably, such smooth convergence patterns can serve for the application of extrapolation methods.

Remember our reections earlier. Above all, we desired to improve the accuracy of approximation.

Unfortunately, the model above does not succeed in accelerating convergence speed. Here, we propose

an entirely new approach using fairly old �ndings of mathematical approximation theory. Because of its

simplicity, the binomial ditribution always has served as a very popular distribution. Notably, actually

the �rst central limit theorem was proved for this distribution type. Despite of the simplicity, the

application of the formula is cumbersome, because the computation might involve factorials of large

integers or the sumation of a large numer of individual terms. Therefor, normal approximations to the

binomial distribution were derived. Especially, the Camp-Paulson[51] method and the approximations

of Peizer and Pratt[68] reveal a remarkable quality of accuracy4. Summarising, eventually these normal

approximations determine the input of the standard normal function which supposedly approximates the

binomial formulawith small and decreasing error. But here, our problem represents the opposite direction.

Computation of binomial option prices eventually involves that normal components are approximated by

binomial components. Peizer and Pratt derived the inversion formula to the Camp-Paulson method and

speci�ed the inversion formula of their method in the case with identical number of successes and fails5.

Now, we will demonstrate how these �ndings can be used to construct CRR-like binomial models.

For a given re�nement the inversion formulas above specify the distribution parameter p to approximate

N (z) with B(n; p) when the separating variable j is �xed6. Consistently, �xing j implies positioning the

strike somewhere within a binomial tree. Once again, we locate the strike at the center of the tree as we

justi�ed in the reections earlier. Moreover, this principle allows the usage of the Peizer-Pratt method

with explicit inversion rule, when we restrict the set of re�nements to odd integers7.

4The reader will �nd some remarks to the derivation of these approximations and the citation of literature in the

appendix
5in the usual understanding of the binomial distribution
6In the usual setup j gives the number of successes in n trials; here, j is identi�ed with the number of up-movements.
7Otherwise the inversion could be achieved numerically. Since this inversion is generally valid to any parameter selection,

it could be tabulated or approximated polynomially for �xed n similar to the proceeding with the standard normal function.
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(A) Camp{Paulson{Inversion: (universally valid)

p =

�
b

a

�2 
[9a� 1][9b� 1] + 3z[a(9b� 1)2 + b(9a� 1)2 � 9abz2]

1
2

[9b� 1]2 � 9bz2

! 1
3

with a = n� j, b = j + 1, z as input of the standard normal function.

(B) Peizer{Pratt{Method{1{Inversion
�
case: j + 1

2
= n�

�
j + 1

2

�
; n = 2j + 1

�

p = 0:5�
"
0:25� 0:25 � exp

(
�
�

z

n+ 1
3

�2
�
�
n+

1

6

�)# 1
2

(C) Peizer{Pratt{Method{2{Inversion
�
case: j + 1

2
= n�

�
j + 1

2

�
; n = 2j + 1

�

p = 0:5�

2
40:25� 0:25 � exp

8<
:�

 
z

n+ 1
3
+ 0;1

(n+1)

!2

�
�
n+

1

6

�9=
;
3
5

1
2

Notably, the Camp-Paulson formula can be applied for arbitrary choice of re�nement.

Using approximation rule A, B, or C we obtain p and p0 as distribution parameters of the two binomial

components in the binomial option pricing formula. Then, we derive tree parameters u(n) and d(n) by a

simple trick. The noarbitrage condition implies that p(n) = (r̂�d(n))=(u(n)�d(n)) holds. Furthermore,

p0 is de�ned to p0 = u=r̂ � p. Taking these two relations as equation system which can be solved uniquely

with respect to u(n) and d(n), we succeed to acquire a new binomial model. The formulas below sum up

the model parameters. Notice, that f (z; j(n)) denotes the chosen inversion function.

p0 = f (d1; j(n))(24:1)

p = f (d2; j(n))(24:2)

u = r � p
0(n)
p(n)

(24:3)

d =
r̂ � p(n) � u(n)

1� p(n)
(24:4)

Seemingly, the resulting binomial tree parameters diverge only very little from those of previous models,

but astonishingly, the convergence properties with the computation of option prices changes dramatically.

Nevertheless, within this class of models the particular theoretical building blocks for which the CRR-

model became famous are entirely transfered by construction. But moreover, this model construction

pro�ts from the attributes of the chosen normal approximation. Below, the �gures demonstrate the

strength of the method in approximating option prices in comparison to previously existing models.
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At the moment we are not able to give a strict proof of the greater order of convergence. However, we

believe that it has become clear from the above simulations | especially if one compares them with the

previous simulations of the models in literature | , that our models behave much better :

{ the order of convergence is increased by one

{ the constant C is about 1
10

of the usual constant

{ the convergence shows very little oscillating patterns and is in fact monotonically converging to the

Black-Scholes price

Our theorem in the last section does not yield a proof for better convergence for technical reasons.

However, we can use it to explain the better convergence. The proof is mainly just using a Taylor-

Expansion. Since this one is exact, up to the unknown remainder terms, one expects that all convergence

patterns, such as oscillation and order are reected in the derivatives. We remember from the proof that

the error en is dominated by

en �
�����
n�2X
k=0

e�rtk+1EB
h
~c1(tk+1; Yk)

��� A0

i����� �
�����m1

n

�����+
�����
n�2X
k=0

e�rtk+1EB
h
~c2(tk+1; Yk)

��� A0

i����� �
�����m2

n

�����
+

�����
n�2X
k=0

e�rtk+1EB
h
~c3(tk+1; Yk)

��� A0

i����� �
�����m2

n

�����+
�����EB

"
n�2X
k=0

e�rtk+1
n
EB

h
R3(tk+1; Yk+1; Yk)

��� Ak

i

+EW

h
R3(tk+1; Xk+1; Yk)

��� Ak

io ��� A0

#�����+O
�
1

n

�

where

~c2(t; S) =
Ke�r(T�t)p
2��

p
T � t

expf� (d1 � �
p
T � t)2

2
g

~c3(t; S) = � Ke�r(T�t)p
2��2(T � t)

�
(d1 � �

p
T � t) + 2�

p
T � t

�
expf� (d1 � �

p
T � t)2

2
g

If we set ~K := Ke�(r+
�2

2 )(T�t) for t 2 [0; T ] (see Lemma 2 in Appendix B) we note that they are
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Figure 19. ~c2(t; S) and ~c3(t; S) for 1=100

symmetrical around ~K.

Moreover we remark, that ~c2(t; S) and ~c3(t; S) are critical in t as t �! T , that is as the remaining

time{to{maturity becomes 0.

The time{point t rules the maximum of the two functions; moreover, since the exponential function be-

comes dominating very quickly, it gives the "width" of the functions.

We also recognize, that ~c3(t; S) is positive for S > ~K and negative otherwise. The maxima are lying in
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a range less than ~Ke�
p
t.

We believe that this changing sign is responsible for oscilliating convergence patterns. It is extremely

critical for little values of t, since then they are even ampli�ed by 1p
t
respexctively 1

t

To summarize : the behaviour is extremely critical in a range of order ~Ke�
p
t.

At our last but one time point tn�1 = (n� 1)T
n
we have that this critical range is of order of u and d.

However, this does not need to present a problem, moreover correctly adjusted it is a chance to get

monotonically and quick convergence. Because of the symmetry of the functions we may even hope to

get EB[~c3(t; Yk)] = 0. Actually this is not possible, but there is need of the knowledge how to adjust

the parameters u, d properly, such that they �t best. This is done by the adjusting function within the

normal approximations (see Appendix A).

We are not going to extend this examination. But we want to present the e�ect in some simulations at

the most critical time point tn�1 :
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One sees very well that our approaches exhibit only neglecting oscillations in comparision to CRR.
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5. Numerical results

In this section we present computational results. We compare the three binomial methods considered in

section two with those newly developed. Below, there is a table containing example computations for

European call and put options with a speci�c selection of parameters. Computing binomial prices for a

�xed tree re�nement represents only a small window of the whole approximation theme with accidental

degrees of accuracy. Nevertheless, we give a table to the convenience of those readers prosecuting the im-

plementation of methods. Even with the very low tree re�nement of n = 25, the outstanding performance

of models using normal approximations can be recognized . Remarkably, more digits must be displayed

to catch the degree of accuracy. Notably, care must be taken of the method to calculate the standard

normal function in order to avoid distortion by the supposedly true solution. Thus, the chosen method

guarantees maximal error of 7 digits. Although the tree adjustment primarily served for the improved

approximation of European standard options, we show that valuable improvements for the pricing of

American type options are contained. True American option values were derived using the CRR{method

using 15000 tree{steps.

Strike CRR JR Tian smo. CP PP1 PP2 True

value

European Call Options

80 23.74082 23.76300 23.70657 23.86642 23.76050 23.75822 23.75875 23.75799

90 16.13376 16.08486 16.12494 16.21076 16.09619 16.09941 16.10037 16.09963

100 10.21317 10.20142 10.20418 10.22651 10.12545 10.13316 10.13440 10.13377

110 6.01218 6.02481 6.01304 6.03261 5.94162 5.94889 5.95015 5.94946

120 3.31890 3.33429 3.33318 3.37003 3.27993 3.28258 3.28366 3.28280

European Put Options

80 0.98926 1.01143 0.95500 1.11485 1.00893 1.00665 1.00719 1.00642

90 3.03825 2.98934 3.02943 3.11524 3.00068 3.00390 3.00486 3.00412

100 6.77371 6.76196 6.76472 6.78705 6.68599 6.69370 6.69494 6.69431

110 12.22878 12.24141 12.22963 12.24920 12.15821 12.16548 12.16675 12.16606

120 19.19155 19.20694 19.20583 19.24268 19.15258 19.15523 19.15631 19.15545

American Put Options

80 1.01842 1.03864 0.98396 1.15261 1.04231 1.04264 1.04317 1.037

90 3.16580 3.12447 3.14640 3.24107 3.11786 3.12832 3.12928 3.123

100 7.10823 7.10415 7.08701 7.12158 7.00982 7.02858 7.02981 7.035

110 13.00108 13.01511 12.98978 13.00907 12.90304 12.93136 12.93253 12.955

120 20.73344 20.74479 20.73566 20.73510 20.65254 20.67576 20.67649 20.717

Table 1. parameters S = 100; r = 0:07; � = 0:3; T = 0:5years; n = 25 for all

Each considered simulation result may depend signi�cantly on an accidentically chosen parameter set.

Thus we looked for a procedure to test simultaneously across a whole set of parameters. We stick to an

analysis recently conducted by Broadie and Detemple [1994] who tested several methods for the pricing of

American options. There, within one analysis several methods using a large sample of randomly selected

parameters are compared simultaneously over re�nements with measurement of computation speed and

approximation error. Computation speed is expressed by the number of option prices calculated per
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second. Since we stick to tree models with identical structure except for the tree parameters, for all

models here, we use the speed results of Broadie, Detemple for CRR. Thus, we need not care on tuning

our computer implementation of methods. The approximation error is measured by the relative root{

mean{squared (RMS) error. RMS{error is de�ned by

RMS =

vuut 1

m

mX
i=1

e2i

where ei = (ĉi � ci)=ci is the relative error, ci ist the true option value. ĉi ist the estimated option value.

To make relative error meaningful, that is to avoid senseless distortions because of very small option

prices, the summation is taken over options in the dataset satisfying Ci � 0:50.

We chose the following distribution of parameters. Volatility is distributed uniformly between 0:1 and

0:6. Time to maturity is, with probability 0.75, uniform between 0:1 and 1:0 years and, with probability

0:25, uniform between 1:0 and 5:0 years. We �x the strike price at K = 100 and take the initial asset

price S � S0 to be uniform between 70 and 130. Relative errors do not change if S and K are scaled by

the same factor, i.e., only the ratio S=K is of interest. The riskless rate r is, with probability 0:8, uniform

between 0:0 and 0:10 and, with probability 0:2, equal to 0:0. Each parameter is selected independently

of the others. This selection of parameters exactly matches the choice of Broadie, Detemple.

Figure 22 reports the results for European call options to which the analysis was devoted especially so far.

Of course, similar results could be presented for European put options. Amazingly, the newly developed
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Figure 22. testing e�ciency of binomial models for European call options

with ni = f25; 50; 100; 200;300;400; 500; 600;700;800; 900;1000g

methods outperform all tested approximations in terms of accuracy. We reproduced the �nding that

the speed{accuracy line for the CRR{model is linear in appearance. These �ndings take over to the

JR{model, Tian{model, and our approach for smooth convergence. Objecting, the smooth line develops

from the averaging over the results of the whole sample. Taking only a single parameter constellation

yields a picture, where the convergence patterns described earlier emerge again, whereas the lines for the

new methods remain stable.
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Figure 23. single selection of parameters with ni = [25; 500]
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Figure 24. testing e�ciency of binomial models for American put options

with ni = f25; 50; 100; 200;300;400; 500;600;700; 800; 900;1000g
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Finally, �gure 24 reports speed{accuracy properties with the calculation of American type options.

Whereas, similar results are obtained for the previous models, the new models contain order of con-

vergence one here only but with small initial error. Naturally, the design solely assured high accuracy

with respect to the terminal payo� distribution. Approximation of early exercise premiums involve origi-

nal sources of irregularities. Nevertheless, the unexpectable stability shows that the approximation error

chiey arises from de�ciencies in connection with the terminal payo� distribution.

6. Conclusion

Convergence speed and convergence patterns of three previously existing lattice approaches were ex-

amined. Generally, we �nd order of convergence one. Unfortunately, convergence is distorted by over

tree re�nements uctuating relative positions of the strike price. We succeeded to construct a binomial

model which exhibits smooth convergence. Moreover, we presented a smoothly converging model with

convergence order one but improved coe�cient. Chiey, we presented a smoothly converging model with

order of convergence two. Finally, we listed simulation results. Especially we conducted an examination

of computation speed and accuracy for a large sample of randomly selected parameter constellations.

Remarkably, price computation of American type option is improved. Transfering these �ndings to the

valuation of complex option types remains for future research.
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Appendix A: Normal Approximations

Camp-Paulson Approximation8. This approximation proceeds from the equivalence of a cumulative bi-

nomial probability to an incomplete beta-function ratio (Kendell, Stuart[77], p. 131) and thence to a

probability integral of the variance ratio , F (Kendall, Stuart[77], p. 407). Using an approximation to

the integral of F developed by Paulson[42] (Kendall, Stuart[77], p. 410) who in turn used Wilson and

Hilferty's[31] approximation for the distribution of chi-square(Kendall, Stuart[77], p. 399) and the result

obtained by Fieller[32] and Geary[30] concerning the ratio of two normally distributed variates (Kendall,

Stuart[77], p. 288), Camp[51] developed an explicit expression which may be written as follows:

B(j; n; p) = N
� �y
3 � pz

�

y =

�
(n � j)

p

(j + 1)
� (1� p)]

1
3 � [9� 1

(n � j)

�
+

1

(j + 1)

z = [(n� j)
p

(j + 1)
(1� p)]

2
3

�
1

(n� j)

�
+

1

(j + 1)

see also Gebhardt[69] and Peizer, Pratt[68]. Peizer and Pratt[68] derived the inversion formula presented

in section 4.

Peizer - Pratt Approximations9. Let z be the true but functionally unknown input of the standard

normal function to approximate a value of the cumulative binomial distribution function. Starting with

approximation z� = [(j + 1
2
) � np]=

p
rpq, where j + 1

2
denotes the number of successes in n Bernoulli

trials with continuity correction, they correct for misplacement of the median by

z� =

�
j + 1

2
� np+ q�p

6

�
p
npq

and further investigations suggest replacing n by n + 1
6
in the denominator. Thorough investigation of

approximation patterns with z=z� reveal functionally expressable simple patterns, which eventually lead

to the following adjustment:

z1 =
[(j + 1

2
) � np+ q�p

6
]q

(n + 1
6
)pq

�
�
1 + q � g

�
j + 1

2

n � p

�
+ p � g

�
n� (j + 1

2
)

n � q

�� 1
2

| {z }
G

where g(x) = (1� x)�2(1� x2 + 2x � lnx)

Further modi�cation to the �rst part delivers a second approximation

z2 =

n
[(j + 1

2
)� np+ q�p

6
] + 0; 02

�
q

j+1
� p

n�j
q�0:5
n+1

�o
q
(n+ 1

6
)pq

�G

In the case where j + 1
2
= n� (j + 1

2
) these formulas reduce to

z1 =
+

� (n +
1

3
)

��ln(4pq)
n+ 1

6

� 1
2

z2 =
+

� (n +
1

3
)

��ln(4pq)
n+ 1

6

� 1
2

where the sign is to be chosen to agree with the sign of q � 0:5.

Only then, inversion formulas as presented in section 4 can be derived.

8this description is obtained mainly from Ra�[56], especially references to Kendall, Stuart[77] were supplemented
9see Peizer, Pratt[68] and Pratt[68] for these approximations
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Appendix B:

In this Appendix we will prove the theorem from section 3 about order{of{convergence. The conduction

of the proof is rather cumbersome and sophisticated mathematics are involved. Unfortunately, further

introductory notation is needed. The proof is separated into several parts. The actual proof is ending

after making the Taylor{Expansion. Then convergence is already separated into an option dependent

and a lattice dependent part.

The following lemmata are rather technical. They give estimates for the "constant" in the de�nition of

order{of{convergence (see equation 16). We will adopt the following

Notation.

1. Xs;x
t shall be the solution of the stochastic di�erential equation

X
s;x
t = x+

tZ
s

rX
s;x
t0 dt0 +

tZ
s

�X
s;x
t0 dWt0 :

The probability measure is denoted by PW .

2. c(t; S) := e�r(T�t)EW
h
f(Xt;S

T )
i
is the Black{Scholes{Price of a call{option with stock value S at

time t and maturity at time T .

3. The time axis will be discretized in steps of length �t = T
n
. The discrete time points will be denoted

by ti := i ��t.
4. We use the abbrevation Xk+1 = X

tk;Yk
tk+1

for notational simplicity.

5. The information structure is modelled by Ak = �(Yi j j � k).

6. Let

c1(t; S) :=
@c

@S
(t; S) ~c1(t; S) := S � c1(t; S)

c2(t; S) :=
@2c

@S2
(t; S) ~c2(t; S) := S2 � c2(t; S)

c3(t; S) :=
@3c

@S3
(t; S) ~c3(t; S) := S3 � c3(t; S)

Please note : d1(S) =
ln S

K
+
�
r + �2

2

�
t

�
p
t

Subsequently we will make no di�erence between ci(t; S); ~ci(t; S) and ci(t; d
�1
1 (d1)) resp. ~ci(t; d

�1
1 (d1))

as functions in (t; d1). However, when taking partial derivatives one needs to pay some attention: In

our notation we have by the chain rule :
@ci

@S
=

@ci

@d1

@d1

@S
Since c4(t; S) :=

@c3

@d1

�
t; d�11 (S)

�
becomes

more signi�cant later, we will denote it by a special letter.

7. Let R3(t; z1; z0) :=

z1Z
z0

(z1 � S)3
@c3

@S
(t; S)dS 8 z0; z1 2 IR+ 8 t 2 [0; T ].

8. Let

M2(t) :=
Ke�rtp
2��

; M3(t) :=
Ke�rtp
2��2

(1 + �)

M4(t) := 4
e(2r+3�

2
)t

p
2� K2�2
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9. Let

m1
n := EB

�
Yk+1

Yk
� 1

��� Ak

�
�EW

�
Xk+1

Yk
� 1

��� Ak

�

m2
n := EB

"�
Yk+1

Yk
� 1

�2 ��� Ak

#
� EW

"�
Xk+1

Yk
� 1

�2 ��� Ak

#

m3
n := EB

"�
Yk+1

Yk
� 1

�3 ��� Ak

#
� EW

"�
Xk+1

Yk
� 1

�3 ��� Ak

#

pn := EB

"�
ln
Yk+1

Yk

��
Yk+1

Yk
� 1

�3 ��� Ak

#

�pn := EW

"�
ln
Xk+1

Yk

��
Xk+1

Yk
� 1

�3 ��� Ak

#

Notice that they donot depend on speci�c k.

10. We often need to evaluate intervals [Yk; Yk+1] with Yk+1 at random. So maybe there is even

Yk+1 < Yk; thus we use for simplicity the de�nition

[Yk; Yk+1] := [Yk+1; Yk] if Yk+1 < Yk :

We will now state the theorem; please note that we state it here in a sligtly more general form using

m2
n;m

3
n instead of �m2

n; �m
3
n

Theorem. Let fY n
0 ; : : : ; Y

n
n g be a lattice approach with Y n

0 = Y0 8 n.

Let en be the error in the price of a European call option that is

en := e�rT
���EB [f(Yn) j A0]�EW

h
f(X0;Y0

T ) j A0

i���
Then there exists a constant C, only depending on S;K; r; �; T such that :

en � C

�
m2
n +m3

n + pn + (�t)2

�t

�

Proof. Since f(Yn) = c(T; Yn) we get

EB [f(Yn) j A0] = EB [c(T; Yn) j A0] and

e�rTEW
h
f(X0;Y0

T ) j A0

i
= c(0; Y0) = EB [c(0; Y0) j A0]

Therefore :

en =
���EB �e�rT c(T; Yn) � c(0; Y0) j Ak

� ���
=

�����EB
"
n�1X
k=0

e�rtk
�
e�r�tc(tk+1; Yk+1)� c(tk; Yk)

	 ��� Ak

#�����
We next observe that the Black{Scholes price is riskless, which means

EW

h
e�r�tc(tk+1; Xk+1) � c(tk; X

tk;Yk
tk

) j Ak

i
= 0
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It follows :

en =

�����EB
"
n�1X
k=0

e�rtk
n
EB

h
e�r�tc(tk+1; Yk+1)� c(tk; Yk)

��� Ak

i

�EW
h
e�r�tc(tk+1; Xk+1) � c(tk; X

tk;Yk
tk

)| {z }
=c(tk;Yk)

��� Ak

io ����� A0

#�����
=

�����EB
"
n�1X
k=0

e�rtk+1
n
EB

h
c(tk+1; Yk+1)

��� Ak

i
�EW

h
c(tk+1; Xk+1)

��� Ak

io ��� A0

#�����
=

�����EB
"
n�1X
k=0

e�rtk+1
n
EB

h
c(tk+1; Yk+1)� c(tk+1; Yk)

��� Ak

i

�EW
h
c(tk+1; Xk+1)� c(tk+1; Yk)

��� Ak

io ����� A0

#�����
The last time point k = n � 1 is evaluated separatedly in Lemma 8 and 9 as O

�
1
n

�
. The other time

points are evaluated by a Taylor series expansion around Yk. This yields:

en � O
�
1

n

�
+

�����EB
"
n�2X
k=0

e�rtk+1
n
EB

h
c1(tk+1; Yk)(Yk+1 � Yk) + c2(tk+1; Yk)(Yk+1 � Yk)

2

+ c3(tk+1; Yk)(Yk+1 � Yk)
3 + R3(tk+1; Yk+1; Yk)

��� Ak

i
� EW

h
c1(tk+1; Yk)(Xk+1 � Yk) + c2(tk+1; Yk)(Xk+1 � Yk)

2

+ c3(tk+1; Yk)(Xk+1 � Yk)
3 +R3(tk+1; Xk+1; Yk)

��� Ak

io ��� A0

#�����
One has:

EB

h
c1(tk+1; Yk)(Yk+1 � Yk)

��� Ak

i
= ~c1(tk+1; Yk) EB

�
Yk+1

Yk
� 1

��� Ak

�

EW

h
c1(tk+1; Yk)(Xk+1 � Yk)

��� Ak

i
= ~c1(tk+1; Yk) EW

�
Xk+1

Yk
� 1

��� Ak

�
One gets analogous results for terms with ~c2 and ~c3. Therefore :

en � O
�
1

n

�
+

�����EB
"
n�2X
k=0

e�rtk+1
n
~c1(tk+1; Yk) �m1

n + ~c2(tk+1; Yk) �m2
n + ~c3(tk+1; Yk) �m3

n

+EB

h
R3(tk+1; Yk+1; Yk)

��� Ak

i
�EW

h
R3(tk+1; Xk+1; Yk)

��� Ak

io ��� A0

#�����
� O

�
1

n

�
+

�����
n�2X
k=0

e�rtk+1EB
h
~c1(tk+1; Yk)

��� A0

i����� �
�����m1

n

�����
+

�����
n�2X
k=0

e�rtk+1EB
h
~c2(tk+1; Yk)

��� A0

i����� �
�����m2

n

�����
+

�����
n�2X
k=0

e�rtk+1EB
h
~c3(tk+1; Yk)

��� A0

i����� �
�����m2

n

�����
+

�����EB
"
n�2X
k=0

e�rtk+1
n
EB

h
R3(tk+1; Yk+1; Yk)

��� Ak

i

+EW

h
R3(tk+1; Xk+1; Yk)

��� Ak

io ��� A0

#�����
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The proof now follows immediately from the following lemmata.

Lemma 1. Then

max
b2IR

���e� b2

2

��� = 1

max
b2IR

���be� b2

2

��� = e�
1
2

max
b2IR

���(b2 � 1)e�
b2

2

��� = 1

Further for t < 1 :

8 b =2
"
�
r
ln
1

t
;

r
ln
1

t

#
:

1p
t
e�

b2

2 < 1

8 b =2
"
�2
r
ln
1

t
; 2

r
ln
1

t

#
:

���� bpte� b2

2

���� < 1 and

����bt e� b2

2

���� < 1

8 b =2
"
�2
r
ln
1

t
; 2

r
ln
1

t

#
:

����b2 � 1

t
e�

b2

2

���� < 2

Proof. H0 � 1, H1(b) = b, H2(b) = b2 � 1 are the �rst three Hermite{Polynomials. The �rst part now

follows from the properties given in Abramowitz and Stegun [68]. Moreover one gets from there, that

the functions in the second part are strictly decreasing in their respective range. Therefore they can be

limited by their value at the boundary of their respective range. Since 8 1 > t > 0 :
���2qln1

t

p
t
��� < 1

this proves the lemma.

Lemma 2.

~c2(t; S) =
Ke�r(T�t)p
2��

p
T � t

e�
(d1��

p
T�t)2

2

~c3(t; S) = � Ke�r(T�t)p
2��2(T � t)

�
(d1 � �

p
T � t) + 2�

p
T � t

�
e�

(d1��
p
T�t)2

2

c4(t; S) =
e(2r+3�

2
)(T�t)

p
2� K2�2(T � t)

�
(d1 + 2�

p
T � t))2 � �

p
T � t(d1 + 2�

p
T � t) + 1� �2(T � t)

�
e�

(d1+2�
p
t)2

2

Moreover :

j~c2(t; S)j � M2(T � t)p
T � t

; j~c3(t; S)j �
M3(T � t)

T � t

jc4(t; S)j � M4(T � t)

T � t

Proof. We remark that

d1(S) =
ln S
K
+ (r + �2

2
)(T � t)

�
p
T � t

, S = Ke�
p
T�t d1�(r+ �

2

2 )(T�t)

which implies:
@d1

@S
=

1

S�
p
T � t

We secondly remark, that
@ci

@S
=

@ci

@d1

@d1

@S

by the chain{rule. Now one gets the derivatives by simple calculations. The estimates follow immediatly

from those.

Lemma 3. jR3(t; z1; z0)j �
�
ln
z1

z0

�
(z1 � z0)

3 max
S2[z0;z1]

jc4(t; S)j
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Proof. Writing �c3(t; d
�1
1 (S)) := c3(t; S) we can understand c3 as a Function in (t; d1). In this form we

get by the chain rule :

@c3

@S
(t; S) =

@(�c3 � d1)
@S

(t; S) =
@(�c3 � d1)

@d1
(t; S) � @d1

@S
(S) = c4(t; d1) �

@d1

@S
(S)

Thus we get :

jR3(t; z1; z0)j Def.
=

������
z1Z
z0

(z1 � S)3
@c3

@S
(t; S)dS

������
=

������
z1Z
z0

(z1 � S)
3
c4 (t; d1(S))

@d1

@S
(S)dS

������
=

�������
d1(z1)Z
d1(z0)

�
z1 � d�11 (S)

�3
c4 (t; S)) dS

�������
by the transformation S 7! d1(S).

Since d�11 is strictly decreasing, up to c4 the integrand is negative exactly when d1(z0) > d1(z1), z0 > z1.

However in this case the integration boundaries of the Riemannian integral need to be changed, which

compensates the minus sign. So one has:

jR3(t; z1; z0)j �
d1(z1)Z
d1(z0)

�
z1 � d�11 (S)

�3 ��c4 �t; d�11 (S)
��� dS

� (z1 � z0)
3 max
S2[z0;z1]

jc4(t; S)j
d1(z1)Z
d1(z0)

dy

This immediately implies the lemma.

Lemma 4. Let m :=
�
r � �2

2

�
� T
n
, CR :=

n
eb
��� b 2 h�5�q(ln 1

�t
)�t; 5�

q
(ln 1

�t
)�t

io
.

Suppose that m < �

q
T
n
and

q
(ln 1

�t
)�t > 4�.

Let Z be a random variable which is lognormally distributed, speci�cally

lnZ � N
�
m;�

q
T
n

�
.

Then : EW
�
I
Z=2CR(lnZ)(Z � 1)3

�
� 4e4jmjp

2�
�t4

q
ln 1

�t

Proof. Let ~Ru :=
n
eb jb > 5�

q
(ln 1

�t
)�t

o
~Rd :=

n
eb jb < �5�

q
(ln 1

�t
)�t
o

Let Ru :=
n
b jb > 4�

q
(ln 1

�t
)�t

o
2 ~Ru; Rd :=

n
b jb < �4�

q
(ln 1

�t
)�t
o
2 ~Rd

Then :

EW
�
I
Z=2CR(lnZ)(Z � 1)3

�
=

1p
2��2�t

Z
~Ru[ ~Rd

(lney)(ey � 1)3| {z }
<e4jyj<e4jy�mj+4jmj

e�
(y�m)2

2�2
��tdy

<
e4jmjp
2��2�t

Z
Ru

e4ye�
y2

2�2
�tdy +

e4jmjp
2��2�t

Z
Rd

e�4ye�
y2

2�2
�tdy

by a linear transformation.

Because of the symmetry, the second part is exactly identical to the �rst part; so we only need to estimate

the �rst part.

Since
q
(ln 1

�t
)�t > 4� one has 4�

q
(ln 1

�t
)�t > 16�2�t. For y > 16�2�t : 1 < y

16�2�t
) y < y2

16�2�t
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) y � y2

8�2�t
< � y2

16�2�t
) 4y � y2

2�2�t
= 4

�
y � y2

8�2�t

�
< 4

�
� y2

16�2�t

�
= � y2

4�2�t

Therefore:

1p
2��2�t

Z
Ru

e4ye�
y2

2�2�t <
1p

2��2�t

Z
Ru

e�
y2

4�2�t dy =
p
2

1q
2�(�

p
2�t)2

Z
Ru

e
� y2

2(�
p
2�t)2 dy

<
p
2

1p
2�

e
� z2

2(�
p
2�t)2| {z }

=e
� z2

4�2�t=(�t)4

��
p
2�t

z
with z = 4�

r
(ln

1

�t
)�t

=
2p
2�

�t4
r
ln

1

�t

The last inequality is an estimate for the "tail{probability" of the normal distribution. It is proven in

Feller [57] for variance = 1. The case needed here follows easily by a linear transformation.

Lemma 5.

n�2X
k=0

e�rtk+1EB
h
j~c3(tk+1; Yk)j

��� A0

i
�
�8�M3p

pq
2 +M3

�
� n where M3 = M3(0)

Proof. For the moment, suppose 0 < t < minfT; 1g.
As shown in Lemma 2 : j~c3(t; S)j = Ke�r(T�t)p

2� �2

���� (d1��pT�t)+2�pT�tT�t e�
(d1��

p
T�t)2

2

����.
Let ~K := Ke�(r+

�2

2 )(T�t).

One can easily verify: d1(S) � �
p
T � t = b, S = ~Keb�

p
T�t.

Let CR :=
n
~Keb�

p
T�t
���b 2 h�2qln 1

T�t ; 2
q
ln 1
T�t

io
.

Let � := �2�
q
(ln 1

T�t)(T � t); � := 2�
q
(ln 1

T�t)(T � t); x� := ��npp
npq

; x� := ��npp
npq

;� be the normal

distribution function. Since lnYk is binomially bistributed, we know from the DeMoivre-Laplace Theorem

(Feller [57], p. 172), that P [� � lnYk � �] can be approximated by �(x�)� �(x�).

Surely we have

P [� � lnYk � �] � 2 � (�(x�) ��(x�)) = 2

x�Z
x�

e
�x2
2| {z }

�1
dx � 2(x� � x�) = 2

� � �p
npq

= 8
�
q
(T � t)ln 1

T�tp
npq

� 8
�p
pq

p
T � t

For S =2 CR one gets from Lemma 1 and 2:

j~c3(t; S)j < M3

Then: EB

h
j~c3(t; Yk)j

��� A0

i
= EB

"
IYk2CR � j~c3(t; Yk)j| {z }

�M3� 1
T�t

��� A0

#
+ EB

"
IYk=2CR � j~c3(t; Yk)j| {z }

�M3

��� A0

#

� M3

T�t � P [Yk 2 CR] +M3 � 8�M3p
pq(T�t) +M3

Since
nP

k=1

1p
k
< 2

p
n we have proven the lemma.

Lemma 6.

n�2X
k=0

e�rtk+1EB
h
EB

h
jR3(t; Yk+1; Yk)j

��� Ak

i ��� A0

i
�
�12�M4p

pq
2 +M4EB[Y

3
k ]
�
� n where M4 = M4(0)
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Proof. As shown in Lemma 2 :

jc4(t; S)j =
e(2r+3�

2)t

p
2� K2�2

����(d1 + 2�
p
T � t)2 � �

p
T � t(d1 + 2�

p
T � t) + (1� �2(T � t))

T � t
e�

(d1+2�
p
T�t)2

2

����
.

Let ~K := Ke�(r�3
�2

2
)(T�t).

One easily veri�es: d1(S) + 2�
p
T � t = b, S = ~Keb�

p
T�t.

Let CR :=
n
~Keb�

p
T�t

��� b 2 h�3qln 1
T�t � lnu

�
p
T�t ;

lnd
�
p
T�t + 3

q
ln 1

T�t

io

For Yk =2 CR one has: Yk+1 =2
n
~Keb�

p
T�t

��� b 2 h�3qln 1
T�t ; 3

q
ln 1
T�t

io
so for y 2 [Yk; Yk+1]: max

y2[Yk;Yk+1]
jc4(t; y)j �M4 by Lemma 1 and 2.

Therefore, with Lemma 3:

EB

h
EB

h
jR3(t; Yk+1; Yk)j

��� Ak

i ��� A0

i

= EB

"
IYk2CR � Y 3

k �EB
h
jR3j

��� Ak

i
| {z }

� M4
T�tpn

��� A0

#
+EB

"
IYk=2CR � Y 3

k �EB
h
jR3j

��� Ak

i
| {z }

�M4�pn

��� A0

#

Since max
Yk2CR

Y 3
k < (2Y0)

3 one immediately gets the Lemma as in the proof of

Lemma 5.

Lemma 7.

n�2X
k=0

e�rtk+1EB
h
EW

h
jR3(t;Xk+1; Yk)j

��� Ak

i ��� A0

i

� 12�M4p
pq

� 2 � (2Y0)3 � �pn +EB
�
Y 3
k

�
�
 

4M4e
4jmj

p
2�(T � t)

(�t)4
r
ln

1

�t
+M4�pn

!

where M4 = M4(0) as in Lemma 6, m :=
�
r � �2

2

�
T
n
.

Proof. LetgCR(y) := nyeb ��� b 2 h�5�q(ln 1
�t
)�t; 5�

q
(ln 1

�t
)�t
io

CR :=
[
y

gCR(y); with y 2
(
~Keb�

p
T�t

��� b 2
"
�3
r
ln

1

T � t
; 3

r
ln

1

T � t

#)

where ~K as in Lemma 6.

As in Lemma 6 one easily proofs: For Yk =2 CR and Xk+1 2gCR(Yk) :
max

y2[Yk;Yk+1]
jc4(t; y)j < M4

Therefore and with Lemma 3 and 4 for Yk =2 CR:
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EW

h
jR3(t;Xk+1; Yk)j

��� Ak

i

� Y 3
k

 
EW

"
max

y2[Yk;Yk+1]
jc4(t; y)j �

�
ln
Xk+1

Yk

��
Xk+1

Yk
� 1

�3 ��� Ak

#!
(by Lemma 3)

= Y 3
k

 
EW

"
I
Xk+12gCR(Yk) max

y2[Yk;Yk+1]
jc4j| {z }

�M4� 1
T�t

�
�
ln
Xk+1

Yk

��
Xk+1

Yk
� 1

�3 ��� Ak

#

| {z }
� 4M4e

4jmj
p
2�(T�t)�t

4

q
ln 1

�t
by Lemma 4

+ EW

"
I
Xk+1 =2gCR(Yk) max

y2[Yk;Yk+1]
jc4j| {z }

<M4

�
�
ln
Xk+1

Yk

��
Xk+1

Yk
� 1

�3 ��� Ak

#

| {z }
<M4��pn

!

< Y 3
k

 
4M4e

4jmj
p
2�(T � t)

�t4
r
ln

1

�t
+M4�pn

!

For Yk 2 CR one gets from Lemma 3 and 4 as above

EW

h
jR3(t;Xk+1; Yk)j

��� Ak

i
<

M4

T � t
� �pn � max

Yk2CR
Y 3
k

<
M4

T � t
�pn(2Y0)

3

As in Lemma 6 one now immediately gets the Lemma.

Lemma 8. ���EB hEW [f(Xn)� f(Yn�1) j An�1]
��� A0

i��� = O( 1
n
)

Proof. Let m := (r � �2

2
)T
n
. Let ~Ku := Ke

3�

q
(ln 1

�t )�t, ~Kd := Ke
�3�

q
(ln 1

�t )�t.

Let Z be a log{normally distributed random variable, lnZ � N
�
m;�2T

n

�
.

We have

EW
�
maxfZ2; Z�2g

�
� e2jmjEW

�
maxf(Ze�m)2; (Ze�m)�2g

�
� 2e2jmjEW

�
(Ze�m)2

�
� 2e2jmje�

2�t

where the second inequality follows because ln(Ze�m) has mean 0 and is therefore distributed symmet-

rically.

Since 8 x 2 IR : jex � 1j � jxjejxj one has:

EW

h
jXn � Yn�1j

��� An�1
i

= Yn�1E [jZ � 1j] � Yn�1E
�
jlnZjmaxfZ; 1

Z
g
�

H�older{

Inequality

� Yn�1 �E
�
(lnZ)2

� 1
2| {z }

=(�2 T
n
+m2)

1
2

E
�
maxfZ2; Z�2g

� 1
2| {z }

�2e2jmje�2�t

� Yn�1

r
�2 + (r � �2

2
)2 2e2jmje�

2
�t

r
T

n
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Exactly as in Lemma 6 one proofs :

IYn�1< ~Kd
�EW

h
IXn>K �Xn

��� An�1
i

<
ejmjp
2�

� T
n
� Yn�1

and IYn�1> ~Ku
P [Xn < K] <

ejmjp
2�

� T
n

Therefore, since E
h
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��� An�1
i
=
�
er

T
n � 1

�
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��� An�1
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� EB

"
IYn�1> ~Ku

�
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��� An�1
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r
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��� A0
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�r T
n
e
r T
n

+
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h
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i
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2
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� 2e2jmje�2�t

r
T
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+

ejmjp
2�

T
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!

� const.

n

Since we can estimate as shown in the Proof of Lemma 5 :

P [ ~Kd � Yn�1 � ~Ku] �
12�

q
(ln 1

�t
)�t

p
npq

and
q
ln 1

�t
�
p
�t the Lemma is proven.

Lemma 9. ���EB hEB hf(Yn)� f(Yn�1)
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)

Proof.
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The second inequality follows since the probability of a single outcome can be estimated as 1p
npq

(Feller

[57]). The last inequality is H�older's.

Since EB

h
( Yn
Yn�1

� 1)2jAn�1
i 1
2 � m2

n + EW

h
(
Xn

Yn�1
� 1)2jAn�1

i 1
2

| {z }
=O( 1p

n
)follws as statement in Lemma 11

the Lemma is proven.

Lemma 10.
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i
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n

Lemma 11.

�pn = O
�
�t2

�
Proof. Let m := (r � �2

2
)�t

Let Z be a lognormally distributed RV, lnz = N
�
m;�2�t

�
.

For x 2 IR : jx� 1j � jlnzjmax
�
jxj;

��1
x

��	 ) j(lnx)(x� 1)3j � (lnx)4max
�
x4; 1

x4

	
Since ln(Ze�m) � N (0; �2�t) we have

�pn = E

�
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�
Z8;

1

Z8
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� e8jmjE

�
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�
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	�
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�
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2
�t

where the second inequality follows because ln(Ze�m) has mean 0 and is therefore distributed symmet-

rically.

This implies:
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�
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(lnZ)4max

�
Z4; Z�4

	�
� E

�
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p
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�
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2
�t
� 1
2

= O(�t2)
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Appendix C:

Proposition. CRR converges with order 1.

Proof. We only have to verify:

(1) �m2
n = O

�
1

n2

�

(2) �m3
n = O

�
1

n2

�

(3) pn = O
�

1

n2

�
For simplicity, set a := er�t, b := e�

2
�t

(1) Since pu+ qd = a one gets:

pu2 + q(ud) = ua and p(ud) + qd2 = ad

) pu2 + qd2 = a(u+ d)� (ud)(p+ q) = a(u+ d)� 1

) �m2
n =

��pu2 + qd2 � a2b
�� = a

��u+ d� a�1 � ab
��

= a � O
�

1

n2

�

= O
�

1

n2

�
from the series expansion of the Exponential{Function.

(2) �m3
n = O

�
1

n2

�
is proven in the same way.

(3) From a series expansion of the Exponential{Function one immediately gets:

u� 1 = O
�

1p
n

�
; d� 1 = O

�
1p
n

�

Since lnu = �lnd = �
p
�t one gets pn = O

�
1
n2

�
Proposition. JR converges with order 1.

Proof. We only have to verify:

(1) �m2
n = O

�
1

n2

�

(2) �m3
n = O

�
1

n2

�

(3) pn = O
�

1

n2

�
For simplicity, set a := er�t, b := e�

2�t

(1) As in the privious theorem one gets:

pu2 + qd2 = a(u + d)� (ud) = a(u+ d)� e2�
0
�t

) �m2
n =

��pu2 + qd2 � a2b
��

= ae�
0�t
���ue��0�t + de��

0�t � e�
0�te�r�te�(2r+�

2)�t
���

= ae�
0�t � O

�
1

n2

�

= O
�

1

n2

�
by a series expansion of the Exponential{Function.

(2) �m3
n = O

�
1

n2

�
is proven in the same way.
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(3) From a series expansion of the Exponential{Funktion one immediately gets:

u� 1 = O
�p

�t
�
; d� 1 = O

�p
�t
�

Since lnu = O
�p

�t
�
, lnd = O

�p
�t
�
this proves: pn = O

�
�t2

�
.

Proposition. Tian converges with order 1.

Proof. Since Tian has explicitely �xed the �rst three moments: �m1
n = �m2

n = �m3
n = 0, we only need to

verify pn = O
�
1
n2

�
.

For simplicity, set a := er�t, b := e�
2�t

For 0 < z � 0:5828 one has: jln(1 � z)j < 3
2
z (Abromowitz and Stegun [68]). That means for 0:4172 �

z < 1 : jlnzj � 3
2
jz � 1j. Moreover for z > 0 one has ln(1 + z) < z (Abramowitz and Stegun [68])

) 8 z > 1 : lnz < z � 1 ) jlnzj < 3
2
jz � 1j 8 0:4172 < z.

This is the case for n >. We have 0:8 < d < u < 1:2 and therefore (lnu)2 � 2(u� 1)2, (lnd)2 � 2(d� 1)2.
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�

Form a series expansion one gets:

V 2 + 2V � 3 = 1 + O(�t) + 2 + O(�t)� 3 = O(�t)
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2
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2
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In the same way one proves: d� 1 = O(�t).
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