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Abstract

In this study we consider a linear model with forecast feedback in which boundedly rational agents

are learning the parameter values of the rational expectations equilibrium by the OLS learning

procedure. We show strong consistency of the OLS estimates under much weaker assumptions

on the involved time series than the ones usually employed. This result extends the boundedly

rational learning approach to models including non-stationary time series, like processes with

polynomial trends or unit root autoregressive processes, and indicates that the idea that agents

can learn only stationary rational expectations equilibria is misleading.
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Chapter 1

Introduction

A speci�c feature of economic models is that expectations of agents matter and have to be modeled

in order to complete the model. But since the process which generates individual expectations

is neither observable nor completely understood and empirical results do not suggest one speci�c

expectations formation scheme it is tempting for a model builder to employ an ad hoc expectations

scheme. But, as it is well known, the choice of an expectations formation scheme is not only a

matter of taste or convenience. Dynamic models incorporating di�erent expectations formation

schemes can show substantially di�erent dynamic behaviour. Moreover, by introducing a suitable

expectations formation scheme it is possible to construct models which show almost any dynamical

behaviour and are able \to explain almost everything | and thus nothing" asGrandmont (1992,

p. 13) remarks.

The rational expectations hypothesis (REH) introduced byMuth (1961) which suggests that

agents' expectations \are essentially the same as the predictions of the relevant theory" (p. 315)

points out a way out of this dilemma. At �rst sight the REH seems to be an attractive way to

model agents' expectations since it is free from any ad-hoc assumptions and re
ects the common

point of view that \information is scarce, and the economic system does not waste it" (Muth

(1961, p. 316)). But the microeconomic foundation of the REH on the level of individual agents

has turned out to be problematic since it imposes extreme informational assumptions on agents.

To support the REH it was frequently argued that agents can learn somehow to form rational

expectations. More precisely, it was argued that \by observing the history of a stationary world,

people can eventually learn the objective probability distributions" of real outcomes \by using

Bayesian or classical statistical techniques" (Bray (1983, p. 124)). Unfortunately, this problem is

more di�cult than the formulation suggest since agents, during the learning phase, change their

behaviour in the light of what they have learned and thereby introduce non-stationarities into

the model. For that reason standard results of Bayesian theory and classical statistics cannot

provide a rigorous mathematical proof of the assertion that agents can learn to form rational

expectations. Since the late seventies several studies were contributed to the question whether

agents can learn to form rational expectations following a `reasonable' learning procedure but

there are still some questions open.

A point which was frequently stressed in the literature is that learning, in order to be suc-

cessful, requires a certain amount of stationarity of the economic environment. Therefore the

�rst analytical studies (Bray (1982, 1983), Bray/Savin (1986), Kottmann (1990), and Mohr

(1990)) were restricted to the case that the variables agents use to form their predictions (i.e. the

regressors of the OLS-procedure) are exogenous and follow a stationary and ergodic process1.

1Only Fourgeaud et al. (1986) consider the slightly more general case that the involved time series are stable

in the sense that the condition number of the matrix of moments remains bounded.
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In models in which agents' predictions are based also on lagged endogenous variables station-

arity and ergodicity of the involved times series cannot be assumed a priori since these properties

are endogenous. Nevertheless, since some kind of stability is needed in order to ensure con-

vergence of the estimates towards the RE parameters it is generally assumed that at least the

exogenous variables are stationary and ergodic processes (see, e.g.Marcet/Sargent (1989a,b)

and Kuan/White (1994)). In Zenner (1994b) the assumption of stationarity and ergodicity is

dropped but it is assumed that the exogenous variables are stable processes in the sense that the

condition number of the matrix of moments remains bounded. Hence the case that the exogenous

variables follow an integrated process or a process with some trend is excluded as well as it is

excluded that the RE solution possesses roots on or outside the unit circle2 .

In summary it may be said that virtually nothing is known about the performance of bound-

edly rational learning procedures in models in which the exogenous variables are not necessarily

stable processes in the sense mentioned above.

On the other hand it is well known that the least squares estimates in linear regression models

are strongly consistent under much more general conditions than stationarity and ergodicity of

the involved time series (see, e.g., Lai/Wei (1982)). It is only necessary that the orders of growth

of the several regressor variables (measured by the minimum and maximum eigenvalues of the

matrix of moments) do not di�er `too much'. Hence it is worthwhile to analyze whether this

property carries over to models with forecast feedback.

In this paper we show that this is, in fact, the case. We show that in a simple linear model

with a single forecast term agents can learn to form rational expectations with probability one

under assumptions corresponding to the weakest possible assumptions in linear regression models.

This result which has, to our knowledge, no counterpart in the literature extends the boundedly

rational learning approach to a larger class of models. It covers processes with polynomial trends

as well as autoregressive processes with unit roots for the exogenous variables. This extension

might prove to be useful especially in macro-economics.

The paper is arranged as follows. In Chapter 2 we present the model, specify the learning

procedure, and list the assumptions underlying our convergence analysis. The main convergence

result is proved in Chapter 3. Since the conditions ensuring convergence di�er from standard

assumptions Chapter 4 is devoted to some applications for which these conditions are met. These

applications include processes with polynomial trend variables and autoregressive models with

unit roots for the exogenous variables. Finally, in Chapter 5 we give some concluding remarks.

2Only the studies by Marcet/Sargent (1989c) and Zenner (1992a,b, 1994a) consider the case that the RE

solution is an autoregressive process with roots on or outside the unit circle. But these studies are restricted to

univariate �rst order autoregressive models and the convergence analysis relies crucially on that special structure.



Chapter 2

The Model

We consider a linear model with forecast feedback given by its reduced form equation

yt+1 = �0zt + ayet+1 + wt+1; t � 0;(2.1)

where

� yt is the time t real valued endogenous variable,

� zt is an n-dimensional random vector with n � 1,

� wt is the time t disturbance term,

� yet is the aggregate or market prediction of yt made by agents at time t � 1, and

� � 2 IRn and a 2 IR are model parameters.

We make the following two assumptions specifying the required properties of the disturbance

terms wt and the random variables zt.

Assumption (A.1):

The disturbance terms fwtgt�1 form a martingale di�erence sequence with respect to a �ltration

fFtgt�0, i.e. E[wt+1jFt] = 0 a.s., such that

sup
t�0

E[jwt+1j
2+�jFt] <1 a.s.(2.2)

for some �xed � > 0. 2

Assumption (A.2):

The random variables zt are Ft-measurable for all t � 0 and satisfy

1X
t=0

kztk
2 =1 a.s.(2.3)

and

T � := infft 2 IN jZt is nonsingularg <1 a.s.(2.4)

where ZT is de�ned as ZT :=
PT

t=0 ztz
0

t. 2
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Assumption (A.1) is a standard assumption on disturbance terms in econometrics. It general-

izes the common assumption that the disturbance terms form a white noise process with bounded

(2 + �)th moments1.

Assumption (A.2) is a minimum assumption on the variables zt and it should be noted that

it is not su�cient for our convergence results. But since the additional assumptions ensuring

convergence arise quite naturally in the course of the convergence analysis in Chapter 3 we

decided to introduce them lateron. The conditions (2.3) and (2.4) are very weak in that they

only require that zt does not vanish too rapidly as t ! 1 and that there are no exact linear

dependencies among the variables contained in zt.

Notice that the random variable T � is measurable. In fact, it is a stopping time with respect

to the canonical �ltration of fZtg.

Since we adopt the point of view that the �-algebra Ft contains all information about the

model (2.1) available at time t the measurability assumption in (A.2) imposes no restriction on

the variables zt. Nevertheless, Assumptions (A.1) and (A.2) together rule out the possibility of

autocorrelated disturbance terms and correlations between wt+1 and fzsgs�t.

Notice that Assumption (A.2) does not require the variables zt to be exogenous. The vector

zt may contain lagged endogenous variables but, unlike to our recent study (Zenner (1994b)),

we are not able to verify the conditions required for convergence in that case.

In order to complete the model we still have to specify the predictions of agents. We assume

that at time t, the time when agents form their predictions yet+1, the realization of zt is observable

and known by agents and that the predictions yet+1 are based on the information set2

It = fzt; yt; : : : ; z1; y1; z0g � Ft:(2.5)

If all agents know the equation (2.1) and the parameters a and � and, additionally, it is

common knowledge that the knowledge of (2.1), a, and � is common knowledge then agents

can calculate the so-called rational expectations E[yt+1jIt], thus the conditional mathematical

expectation of yt+1 with respect to the information set It. In our model the rational expectations

are uniquely given as

E[yt+1jIt] =
1

1� a
�0zt;(2.6)

provided that a 6= 1. If the agents' predictions in (2.1) are given as yet+1 = (1�a)�1�0zt then the

model (2.1) is called to be in a rational expectations equilibrium and the process fytg is called a

rational expectations solution.

Since we assume the variables zt to be known by agents at time t agents have to learn only

the parameter

�� =
1

1� a
�(2.7)

in order to form rational expectations. The learning procedure is made explicit in

1The reason why we require wt to have slightly more than bounded second (conditional) moments is, more
or less, a didactical one. The slightly stronger assumption enables us to obtain a slightly stronger convergence

result and reduces the notational complexity in some proofs. Nevertheless, the technique used to show convergence

applies also for the weaker assumption of bounded second (conditional) moments, but in that case we need slightly
stronger assumptions on the variables zt. This tradeo� between the di�erent assumptions will be described in more

detail in Chapter 3.
2We thus assume that the agents know which variables determine the endogenous variable. Hence we rule

out the possibility that agents are poorly informed. But since we do not require that the parameter vector � is

non-zero in each component we include the possibility that agents consider also sun-spot variables which in
uence

the endogenous variable only via the agents' expectations. These sun-spot variables are then contained in zt.
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Assumption (A.3):

Agents' predictions yet+1 are given by

yet+1 = �t
0zt; t � 0;(2.8)

with

�t =

 
t�1X
s=0

zsz
0

s

!�1 t�1X
s=0

zsys+1(2.9)

where the stochastic inverse is de�ned as the Moore{Penrose inverse if necessary3. 2

In order to motivate an assumption like (A.3) is is usually assumed that agents believe in an

auxiliary model

yt+1 = �0zt + et+1(2.10)

with some parameter � 2 IRn and a disturbance term et+1 which is independent from the in-

formation set It. Based on this model agents estimate the unknown (hypothetical) parameter �

by the ordinary least squares (OLS) procedure and predict yt+1 by yet+1 = �t
0zt, where �t is the

time t OLS-estimate of �. Given the belief of agents that (2.10) is the correctly speci�ed model

the use of the OLS{learning procedure is rational.

One can interpret the auxiliary model as re
ecting the agents' beliefs concerning their eco-

nomic environment. Hence agents do not fully understand the economic system they are part

of. In particular, they do not take into account that the market expectation a�ects the outcome

of the endogenous variable4. But one can also think of the agents' behaviour in a more naive

way. Suppose that agents are aware that there exists a relationship between yt+1 and zt, either

because they know roughly how the economic system works or that explorative data analysis has

revealed such a relationship. In order to extract the information on yt+1 contained in zt agents

simply carry out a regression of yt+1 on zt.

3The convention that the stochastic inverse be given by the Moore{Penrose inverse ensures that �t is well-de�ned
and measurable on the full !{space. In practice other conventions might be more convenient such as replacing a

singular matrix Zt by �I+Zt with some �xed � > 0. Since T � is a stopping time with respect to the �ltration fFtg

one can easily allow for a split-case de�nition of �t for ! such that t � T � and t < T �, resp.
4The main methodological problem of the boundedly rational learning approach consists in justifying that agents

neglect the forecast feedback. Clearly, this problem cannot be solved without imposing some amount of irrationality

on agents' behaviour. Some arguments to support this lack of rationality are the following.
Since expectations are generally not observable agents cannot �nd out what other agents expect and, in general,

they cannot even deduce ex post what the other agents did expect. In addition, gathering information about other

agents' expectations can be too costly. Hence it is impossible to include expectations into an auxiliary model like

(2.10). Even if there exists some institution which reports ex post the past market expectation there remains the

problem to predict the current market expectation.

In a competitive market in which a single agents' prediction has no impact on real outcomes agents may believe

that the market expectation, as an aggregate, is already rational, either because agents believe that the other agents

are more sophisticated or that the average expectation is more accurate than an individual one (an argument which

was already used by Muth (1961) based on empirical evidence).
But agents can also be aware of the problem of in�nite regress of expectations yet do not know how to solve

it since they do not know the parameter values of (2.1). (In the rational learning approach it is usually assumed

that agents know at least the parameter values which have to be known in order to solve the problem of in�nite
regress.)

Finally, since we allow sun-spot variables among the variables contained in zt the auxiliary model (2.10) can

contain some kind of `rumour variables' re
ecting some economy-wide collective beliefs about future events.



Chapter 3

Convergence Analysis

We comply with the following notational conventions. Multivariate variables and multivariate pa-

rameters are denoted by boldface letters. The transpose of a (column) vector z will be denoted by

z0. By kzk2 we denote the Euclidian norm, thus kzk2 = z0z. For a matrix A, �min(A); �max(A)

denote the minimum and maximum eigenvalue in modulus. By kAk we denote the operator norm,

thus kAk2 = �max(A
0A). By jAj we denote the determinant of A and by tr(A) its trace. Let at

and bt be two sequences of non-negative real numbers. We employ the Landau symbols o(�) and

O(�) in the usual sense, thus at = o(bt), at=bt ! 0 and at = O(bt), suptjat=btj <1.

In this chapter we show the following result which determines the order of convergence or

divergence of the OLS-estimates.

Theorem 3.1:

Suppose that (A.1){(A.3) hold and a < 1=2. Let �t be given by

�t = z0tZ
�1
t zt:(3.1)

If

lim sup
t!1

�t <
1� 2a

(1� a)2
a.s.(3.2)

then

k�t+1 � ��k2 = O

�
log �max(Zt)

�min(Zt)

�
a.s.:(3.3)

The following corollary is then obvious.

Corollary 3.2:

Suppose that (A.1){(A.3) hold and a < 1=2. If the condition (3.2) is satis�ed and

log �max(Zt) = o (�min(Zt)) a.s.(3.4)

then �t ! �� a.s.

7



8

The proof of Theorem 3.1 is based on the analysis of the quadratic form

Vt = (�t � ��)0Zt�1(�t � ��):(3.5)

We show that the non-negative process Vt is an extended stochastic Lyapunov function in the

sense of Lai (1989), i.e. we show that Vt has the `almost supermartingale' property as introduced

by Robbins/Siegmund (1971). This enables us to use a re�nement of the almost supermartingale

convergence theorem by Lai (1989) in order to show that Vt = O(log�max(Zt�1)) a.s. under the

assumptions of Theorem 3.1.

Proposition 3.3: (Lai (1989))

Let fwtgt�1 be a martingale di�erence sequence with respect to some �ltration fFtgt�0 such that

supt�0 E[w
2
t+1jFt] < 1 a.s. Let Vt, �t, �t, �t, and ut be non-negative Ft-measurable random

variables such that
P
1

t=0 �t <1 a.s. Suppose that for t � 0

Vt+1 � (1 + �t)Vt + �t+1 � �t+1 + utwt+1 a.s.(3.6)

Then

(i) On the event [
P
1

t=1 E[�tjFt�1] <1], Vt converges a.s. and
P
1

t=1E[�tjFt�1] <1 a.s.

(ii) For every � > 0

max

(
VT ;

TX
t=1

�t

)
= O

0@ TX
t=1

�t +

 
T�1X
t=0

u2t

!1=2+�
1A a.s.(3.7)

We need some more auxiliary results. The �rst one is a simple lemma known as the theorem

of Abel/Dini (see Knopp (1964)).

Lemma 3.4:

Let (dt)t�0 be a sequence of non-negative real numbers with d0 > 0 such that Dt :=
Pt

s=0 ds !1

as t!1. Let � � 0, then

1X
t=0

dt

D�
t

<1 () � > 1:(3.8)

The following result is the keystone in the martingale di�erence approach. It is based on the

local convergence theorem for martingales by Chow (1965) and provides a kind of deterministic

reduction for weighted sums of martingale di�erence sequences.
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Lemma 3.5: (Lai/Wei (1982))

Suppose that fwtg is a martingale di�erence sequence with respect to some �ltration fFtg such

that supt�0E[w
2
t+1jFt] <1 a.s. and futg is a sequence of Ft-adapted random variables. Then

(i)
TX
t=0

utwt+1 converges a.s. on the event

"
1X
t=0

u2t <1

#
,

(ii)
TX
t=0

utwt+1 = o

 
TX
t=1

u2t

!
a.s. on the event

"
1X
t=0

u2t =1

#
,

(iii)
1X
t=0

jutjw
2
t+1 <1 a.s. on the event

"
1X
t=0

jutj <1

#
,

(iv)
TX
t=0

jutjw
2
t+1 = o

 
TX
t=0

jutj

!1+�

a.s. on

"
1X
t=0

jutj =1

#
for every � > 0.

If fwtg satis�es also supt�0 E[jwt+1j
2+�jFt] <1 a.s. for some � > 0 then

(v)
TX
t=0

jutjw
2
t+1 = O

 
TX
t=0

jutj

!
a.s. on

"
sup
t�0

jutj <1

#
.

The last auxiliary result concerns the quadratic form �t.

Lemma 3.6: (Lai/Wei (1982))

Let (zt) be a sequence of n-dimensional vectors. Let Z t and T
� be de�ned as in Assumption (A.2)

and �t as in (3.1) with Z�1t the Moore{Penrose inverse if necessary. Suppose that T � <1. Then

�t =
jZtj � jZt�1j

jZtj
for t � T �(3.9)

and
TX
t=0

�t = O (log jZT j) = O (log�max(ZT )) :(3.10)

In the following lemma we show that the sum
P
1

t=0 �t is a.s. unbounded under Assumption

(A.2), a property we need lateron.

Lemma 3.7:

Let fztg be a sequence of random vectors in IRn such that (A.2) is satis�ed. Then

1X
t=0

z0tZ
�1
t zt =1 a.s.(3.11)

with Z�1t the Moore{Penrose inverse if necessary.
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Proof:

We argue pathwise. Since T � < 1 a.s. by Assumption (A.2) it is su�cient to show (3.11) with

the sum starting at t = T �. Let t � T �. Since Zt is symmetric and positive de�nite we know

that

z0tZ
�1
t zt � z

0

tzt�min(Z
�1
t ) =

z0tzt

�max(Zt)
(3.12)

and since �max(Zt) � tr(Zt) we obtain

1X
t=T �

z0tZ
�1
t zt �

1X
t=T �

z0tztPt
s=T � z0szs

=1(3.13)

where the equality follows by Lemma 3.4.

Proof of Theorem 3.1:

Due to the split-case de�nition of �t in (A.3) we have to argue pathwise. For �xed t let t � T �.

Then we have the following recursive representation for the least squares estimates

�t+1 = Z�1t

tX
s=0

zsys+1

= Z�1t

 
t�1X
s=0

zsys+1 + ztz
0

t(� + a�t) + ztwt+1

!
= Z�1t

�
Zt�1�t + ztz

0

t(�+ a�t) + ztwt+1

�
(3.14)

= �t �Z
�1
t ztz

0

t(�t � (�+ a�t)) + Z
�1
t ztwt+1

= �t � (1� a)Z�1t ztz
0

t(�t �
��) +Z�1t ztwt+1

using the equality � = (1� a)��. Hence

�t+1 � �� =
h
I � (1� a)Z�1t ztz

0

t

i
(�t � ��) +Z�1t ztwt+1:(3.15)

De�ne

Vt = (�t � ��)0Zt�1(�t � ��):(3.16)

Then we obtain

Vt+1 = (�t+1 � ��)0Zt(�t+1 � ��)

= (�t � ��)0
h
I � (1� a)Z�1t ztz

0

t

i
0

Zt

h
I � (1� a)Z�1t ztz

0

t

i
(�t � ��)

+2(�t � ��)0
h
I � (1� a)Z�1t ztz

0

t

i0
ztwt+1 + z

0

tZ
�1
t ztw

2
t+1

= Vt + (�t � ��)0ztz
0

t(�t �
��) + �tw

2
t+1 + utwt+1(3.17)

�(�t � ��)0
h
2(1� a)ztz

0

t � (1� a)2�tztz
0

t

i
(�t � ��)

= Vt + �tw
2
t+1 + utwt+1

�
h
1� 2a� (1� a)2�t

i
[zt(�t � ��)]2

with

ut = 2[1� (1� a)�t](�t � ��)0zt:(3.18)
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Furthermore de�ne

~�t+1 = [1� 2a� (1� a)2�t][z
0

t(�t �
��)]2;

�t+1 = ~�t+11[~�t+1�0];(3.19)

�t+1 = �tw
2
t+1 � ~�t+11[~�t+1<0]

to obtain

Vt+1 = Vt + �t+1 � �t+1 + utwt+1:(3.20)

on the event [t � T �].

If 0 � t < T � we de�ne Vt+1 by (3.16) and set �t+1 = Vt+1, �t+1 = Vt, and ut = 0. Also set

V0 = 0 for all !. Then Vt, �t+1, �t+1, and ut are well-de�ned random variables satisfying (3.20)

and the measurability assumption of Proposition 3.3.

In order to verify the assumptions of Proposition 3.3 we remark �rst that ~�t(!) < 0 holds

only for �nitely many t for almost all ! 2 
. This is easily seen because

~�t+1 � 0 () �t �
1� 2a

(1� a)2
;(3.21)

hence by assumption (3.2) we can infer that ~�t < 0 holds only for �nitely many t.

But this implies
TX
t=1

�t = O

 
T�1X
t=0

�tw
2
t+1

!
+O(1) a.s.(3.22)

By Lemma 3.7 we know that
P
1

0 �t = 1 a.s. Hence, since �t � n, Lemma 3.5 (v) and Lemma

3.6 imply that
TX
t=1

�t = O (log�max(ZT�1)) a.s.(3.23)

Now we determine the order of
PT

0 u
2
t . By assumption (3.2) we can infer that there exists a

positive constant � = �(!) such that 1 � 2a � (1 � a)2�t > � for all but �nitely many t. This

implies that u2t � C�t+1 for all but �nitely many t with some positive constant C. Hence

T�1X
t=0

u2t = O

 
TX
t=1

�t

!
a.s.(3.24)

Now we can apply Proposition 3.3. We obtain

max

(
VT ;

TX
t=1

�t

)
= O

0@ TX
t=1

�t +

 
TX
t=1

u2t

!1=2+�
1A a.s.(3.25)

for every � > 0. This implies, using (3.23) and (3.24) with some � < 1=2, that

max

(
VT ;

TX
t=1

�t

)
= O (log �max(ZT�1)) a.s.(3.26)

Since

VT+1 = kZ
1=2
T (�T+1 � ��)k2 � �min(ZT )k�T+1 � ��k2(3.27)

we �nally obtain

k�T+1 � ��k2 = O

�
log�max(ZT )

�min(ZT )

�
a.s.(3.28)

and the proof is complete.
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Since the proof of Theorem 3.1 applies in a pathwise manner we can formulate Theorem 3.1

also in the following way.

Theorem 3.8:

Suppose that (A.1){(A.3) hold and a < 1=2. Then, on the event where

lim sup
t!1

�t <
1� 2a

(1� a)2
and

log�max(Zt)

�min(Zt)
= o(1) a.s.(3.29)

holds, �t ! �� a.s.

Remark:

There exists a tradeo� between the assumptions imposed on the disturbance terms and the order

of �t � �� in the following way. If we relax Assumption (A.1) in that we only require

sup
t�0

E[w2
t+1jFt] <1 a.s.(3.30)

we obtain by the same reasoning as in the proof of Theorem 3.1, but with Lemma 3.5 (iv) instead

of (v), the slightly weaker result

k�T+1 � ��k2 = O

 
(log�max(ZT ))

1+�

�min(ZT )

!
a.s.(3.31)

for every � > 0.

It is worth noting that Theorem 3.1 and Theorem 3.8 apply for any choice of random vari-

ables zt such that Assumption (A.2) is satis�ed. We do not a priori restrict zt to contain only

exogenous variables. Nevertheless, whenever zt contains also lagged endogenous variables the

conditions (3.2) and (3.4) are endogenous and have to be veri�ed. Unfortunately, we failed in

doing so although computer simulations suggest that (3.2) and (3.4) are satis�ed for some range

of parameter values a and �. See Chapter 5 for some details.



Chapter 4

Convergence Results

Although the convergence results of the preceding chapter are satisfactory from the mathematical

point of view it is not at all clear which kind of time series fztg satisfy the assumptions of Theorem

3.1 or Corollary 3.2, especially the condition (3.2) for the quadratic form �t. In this chapter we

present some examples, including stationary and ergodic processes, processes with a polynomial

trend, and autoregressive processes with unit roots. As already mentioned we con�ne ourselves

to the case that zt contains only exogenous variables.

Stationary and Ergodic Processes

In models with forecast feedback the exogenous variables are usually assumed to be stationary

and ergodic. In such a case we obtain the following result.

Corollary 4.1:

Suppose that (A.1){(A.3) hold and a < 1=2. If

1

T

TX
t=1

ztz
0

t �! Z� a.s.(4.1)

with Z� a (possibly pathdependent) positive de�nite matrix. Then �t ! �� a.s.

Proof:

We show �rst that �t ! 0 a.s. By Lemma 3.6 we know that for t su�ciently large

�t = z0tZ
�1
t zt = 1�

jZt�1j

jZtj
= 1�

�
t � 1

t

�n j 1
t�1Zt�1j

j1tZtj
:(4.2)

Hence �t ! 0 a.s. by (4.1) and condition (3.2) holds true. Moreover, (4.1) implies that �max(Zt) =

O(�min(Zt)) a.s. Hence also condition (3.4) is met and Corollary 3.2. applies.

13
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Corollary 4.1 gives a result which is somewhat weaker than the results of Bray/Savin (1986),

Marcet/Sargent (1989a,b), and Kottmann (1990) which show a.s. convergence if a < 1.

This indicates that the approach proposed in this paper is not the optimal one for this class

of processes. Nevertheless, Theorem 3.1 gives a slightly stronger result determining the rate of

convergence (k�t+1� ��k2 = O(log t=t)) than the result k�t� ��k2 = o(t) obtained by Fourgeaud

et al. (1986) and Kottmann (1990).

Corollary 4.1 indicates that the condition (3.2) for the quadratic form �t does not mean any

restriction in a stationary and ergodic environment. Therefore it is worthwhile to ask whether

condition (3.2) can be dispensed with under more general conditions than (4.1). The answer

is negative as the following example shows. If we relax the condition (4.1) slightly to �max =

O(�min) a.s. we cannot conclude that �t ! 0 a.s. without imposing further assumptions on fztg.

Example 4.2:

Consider the (deterministic) process zt de�ned by

zt =

( q
9
10
t if t = 10m; m 2 IN;

0 otherwise:
(4.3)

It it easy to see that

lim sup
t!1

�t =
9

10
and

1

T

TX
t=1

z2t 2 [0:1; 0:9]:(4.4)

Hence �max(Zt) = O(�min(Zt)) but �t 6! 0. Nevertheless, Corollary 3.2 implies that �t ! �� a.s.

if

�

 r
10

81
+

1

9

!
< a <

r
10

81
�
1

9
:(4.5)

This shows that our approach provides convergence results in situations where almost all other

approaches fail. 2

Stable Processes

Fourgeaud et al. (1986) have shown that if a < 1=2 and

(i) �min(ZT )!1 a.s.,

(ii) �max(ZT ) = O(�min(ZT )) a.s.,

(iii) kZ�1T (ZT �ZT�1)k ! 0 a.s., and

(iv) kZ�1T
PT

t=0 ztwt+1k ! 0 a.s.

then �t ! �� a.s. We show now that their result is a special case of Corollary 3.2.

Assumption (i) is stronger than Assumption (A.2), and (ii) is stronger than (3.4). In view of

Lemma 3.5 Assumption (iv) is implied by (i) and (ii). (Fourgeaud et al. make the slightly
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di�erent assumption that the disturbance terms satisfy the orthogonality condition E[ztwt+1] =

0.) Since

kZ�1T (ZT � ZT�1)k
2 = kZ�1T zTz

0

T k
2

= �max(zTz
0

TZ
�2
T zTz

0

T )

= z0TzTz
0

TZ
�2
T zT(4.6)

� (z0TZ
�1
T zT )

2

= �2T ;

where the inequality follows by the Cauchy-Schwarz inequality, the condition (iii) implies �t ! 0

a.s.

We de�ne a process fztg as stable if it satis�es

�max(Zt) = O(�min(Zt)) = O(t) a.s.(4.7)

and

kztk
2 = o(t) a.s.(4.8)

Then, since �t � kztk
2=�min(Zt), we obtain

Corollary 4.3:

Suppose that (A.1){(A.3) hold and a < 1=2. Suppose furthermore that fztg is a stable process,

thus (4.7) and (4.8) hold. Then �t ! �� a.s.

It is an interesting question whether a < 1=2 is a necessary condition for a.s. convergence or

just a su�cient one. We do not know. The coincidence of the condition a < 1=2 in our result and

the result of Fourgeaud et al. (1986) may rely on the fact that both approaches are, more or

less, based on algebraic properties of the involved time series. But it is as well possible that it

relies on deeper mathematical or probabilistic properties.

To conclude this section we want to remark that the preceding results hold also if the distur-

bance terms satisfy (3.30) instead of (2.2). Clearly, in that case the rate of convergence reduces

to k�t+1 � ��k2 = O((log t)1+�=t) a.s. for every � > 0.

Non-Stable Processes

Now we consider processes fztg which do not satisfy (4.7)and hence are not stable. Instead, we

assume that

lim inf
T!1

1

T
�min(ZT ) > 0 a.s. and �max(ZT ) = O(T�) a.s.(4.9)

with some � > 1. Since n�1tr(Zt) � �max(Zt) � tr(Zt) this implies that some components of

zt grow with at most an algebraic (i.e. polynomial) order. In the sequel we prove a result which

implies that �t ! 0 a.s. can hold also for these processes and Corollary 3.2 applies.



16

Our analysis relies on the following partitioning. Suppose that there exists a partition z0t =

(zmt
0; : : : ; z1t

0
) where zit is qi� 1 and

Pm
1 qi = n. For i = 0; : : : ; m� 1 de�ne uit

0
= (zmt

0; : : : ; zi+1
t

0

)

and

P i
T :=

TX
t=0

uitu
i
t
0

:(4.10)

Also de�ne

Qi
T :=

TX
t=0

zitz
i
t
0

(4.11)

for i = 1; : : : ; m� 1.

The following result shows that the behaviour of the quadratic form �T is determined by the

behaviour of the same kind of quadratic forms involving only the subvectors uiT , z
i
T and the

submatrices P i
T , Q

i
T , provided that the matrix ZT can be partitioned in an appropriate way.

Proposition 4.4:

Let fztg be a sequence of n-dimensional random vectors and ZT =
PT

t=0 ztz
0
t. Suppose that the

vectors zT and the matrices ZT can be partitioned as above such that

(i) �max(Q
i
T ) = O

�
�min(P

i�1
T )

�
a.s. for i = 1; : : : ; m� 1,

(ii) kziT k
2 = o

�PT
t=0 kz

i
tk

2
�

a.s. for i = 1; : : : ; m� 1, and

(iii) lim
T!1

um�1T
0
(Pm�1

T )�1um�1T = 0 a.s.

Then �T ! 0 a.s.

The proof of Proposition 4.4 relies crucially on the following result.

Lemma 4.5: (Lai/Wei (1983))

Let A be a positive de�nite symmetric n� n matrix. Let A be partitioned as

A =

 
P H

H0 Q

!
(4.12)

where P , Q are p� p and q � q matrices such that n = p+ q. Then for every u 2 IRp 
u

0

!
0

A�1

 
u

0

!
� u0P�1u

�
1 + kAk�1tr(Q)

�
:(4.13)

Proof of Proposition 4.4:

Let uiT , z
i
T , P

i
T , and Q

i
T be de�ned as above. Then

z0TZ
�1
T zT =

 
u1
T

z1T

!0
Z�1T

 
u1
T

z1T

!

� 2

 
u1
T

0

!0
Z�1T

 
u1
T

0

!
+ 2

 
0

z1T

!0
Z�1T

 
0

z1T

!
(4.14)

= 2

 
u1
T

0

!
0

(P 0
T )
�1

 
u1
T

0

!
+ 2

 
0

z1T

!
0

(P 0
T )
�1

 
0

z1T

!
:
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Since ZT = P 0
T we obtain for the latter quadratic form by (i) and (ii) 

0

z1T

!
0

(P 0
T )
�1

 
0

z1T

!
� kz1T k

2 1

�min(P
0
T )

= O

 
kz1Tk

2

tr(Q1
T )

�max(Q
1
T )

�min(P
0
T )

!
(4.15)

= o(1) a.s.

since tr(Q1
T ) � q1�max(Q

1
T ).

For the former quadratic form Lemma 4.5 implies 
u1
T

0

!
0

(P 0
T )
�1

 
u1
T

0

!
� u1

T
0
(P 1

T )
�1u1

T

�
1 + kP 0

Tk
�1tr(Q1

T )
�

= O

 
u1
T
0
(P 1

T )
�1u1

T

 
1 +

�max(Q
1
T )

�min(P
0
T )

!!
(4.16)

= O
�
u1
T
0
(P 1

T )
�1u1

T

�
:

Since

P 1
T =

 
P 2

T H2
T

(H2
T )
0 Q2

T

!
(4.17)

with some matrix H2
T we can proceed inductively in the same way and �nally obtain

z0TZ
�1
T zT = O

�
um�1T

0
(Pm�1

T )�1um�1T

�
+ o(1) a.s.(4.18)

Now condition (iii) implies the desired result.

Proposition 4.4 can be applied to the following kind of situations. Suppose that zt consists of

random variables with di�erent asymptotic behaviour, for example, zt = (z3t
0
; z2t

0
; z1t

0
)0 such that

z1t follows a stable process and z
2
t ; z

3
t show some di�erent trends. In that case we have m = 3.

In the �rst step we set u1
t = (z3t

0
; z2t

0
)0. Then condition (i) of Proposition 4.4 requires that

�max

 
TX
t=0

z1tz
1
t
0

!
= O (�min(ZT )) a.s.(4.19)

and condition (ii) requires that

kz1Tk
2 = o

 
TX
t=0

kz1t k
2

!
a.s.(4.20)

Suppose that �min(ZT ) is of minimum order O(T ) a.s. Then (4.19) is satis�ed while (4.20) is

satis�ed since z1t follows a stable process.

In the second step we set u2
t = z3t . Then condition (i) requires that

�max

 
TX
t=0

z2tz
2
t
0

!
= O

 
�min

 
TX
t=0

 
z3t

z2t

! 
z3t

z2t

!0!!
a.s.(4.21)
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and condition (ii) requires that

kz2Tk
2 = o

 
TX
t=0

kz2t k
2

!
a.s.(4.22)

While (4.22) it is generally not very di�cult to verify the veri�cation of (4.21) can cause some

problem since the minimum order of the minimum eigenvalue is generally di�cult to determine.

Nevertheless, in some applications (4.21) can be shown with some e�ort, for example if z2t and

z3t are two di�erent trends. See also Example 4.6.

Finally, condition (iii) requires that

z3T
0

 
TX
t=0

z3tz
3
t
0

!�1
z3T �! 0 a.s.(4.23)

Although this is, basically, the same kind of problem as the original one (i.e. to show that �t ! 0)

it is generally easier to solve since z3t is of a lower dimension than zt, possibly of dimension one.

If the minimum and maximum eigenvalues of the matrix in (4.23) are of the same order then

(4.23) reduces to a problem like in (4.20) and (4.22).

Now we present two examples of non-stable processes which satisfy the assumptions of Corol-

lary 3.2.

Example 4.6:

Let xt be a real valued stochastic process such that

�xT :=
1

T

TX
t=0

xt �! � a.s.(4.24)

and

1

T

TX
t=0

(xt � �xT )
2 �! �2 a.s.(4.25)

with some �xed � 2 IR, �2 > 0. Set zt = (xt; t)
0, thus zt contains xt and a linear trend. We

claim that

�max(ZT ) = O(T 3) a.s.(4.26)

and

lim inf
T!1

1

T
�min(ZT ) > 0 a.s.(4.27)

Hence the eigenvalue condition of Corollary 3.2 will be satis�ed.

In order to show (4.26) and (4.27) we de�ne eZT = 1
TZT . Since

�max( eZT ) � tr( eZT )

=
1

T

TX
t=0

x2t +
1

T

TX
t=1

t2(4.28)

= O(1) +
(T + 1)(2T + 1)

6
a.s.
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the property (4.26) is obvious. To show (4.27) we consider the inverse of eZT which is easily

calculated as

eZ�1T =
1

dT

0B@
(T+1)(2T+1)

6
� 1

T

PT
t=1 txt

� 1
T

PT
t=1 txt

1
T

PT
t=0 x

2
t

1CA(4.29)

with

dT =
(T + 1)(2T + 1)

6

1

T

TX
t=0

x2t �

 
1

T

TX
t=1

txt

!2

:(4.30)

We shall show that

dT =
(T + 1)(2T + 1)

6
(C + o(1)) a.s.(4.31)

with some positive constant C and

eZ�1T �!

 
C 0

0 0

!
a.s.(4.32)

Hence �max( eZ�1T )! C a.s. and (4.27) is shown.

To show (4.31) we consider the sum 1
T

PT
t=1 txt. By partial summation we obtain

1

T

TX
t=1

txt = �xT (T + 1)�
1

T

TX
t=1

t�xt:(4.33)

Using assumption (4.24) it is not di�cult to show that

1

T

TX
t=1

t�xt = �
T + 1

2
+ o(T ) a.s.(4.34)

as T !1. Hence

1

T

TX
t=1

txt = �
T + 1

2
+ o(T ) a.s.(4.35)

On the other hand we have by (4.25) 
1

T

TX
t=1

t2
! 

1

T

TX
t=1

x2t

!
=

(T + 1)(2T + 1)

6
(�2 + �2) + o(T 2) a.s.(4.36)

With some elementary calculations we �nally obtain

dT =
(T + 1)(2T + 1)

6

�
�2 +

1

4
�2 + o(1)

�
a.s.(4.37)

Hence
log�max(ZT )

�min(ZT )
= O

 
logT 3

T

!
= o(1) a.s.(4.38)

In addition Proposition 4.4 implies �t ! 0 a.s. by (4.24) and Corollary 4.1. Hence �t ! �� a.s. if

a < 1=2. 2
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Remark:

Example 4.6 can be generalized in several directions. Firstly, the trend variable in zt may be any

polynomial trend. Secondly, the variable xt may be multivariate as long as conditions equivalent

to (4.24) and (4.25) are satis�ed. Finally, the vector zt may include several trend variables,

provided that they are not linear dependent. Of course, if zt is of dimension larger than two the

proof of (3.2) and (3.4) will be not as simple as in our example.

Since autoregressive processes with unit roots are quite popular, especially in macro-economics,

we show in the following example that these processes satisfy the assumptions of Corollary 3.2.

Example 4.7:

Let xt be an AR(p) process, i.e.

xt = �1xt�1 + � � �+ �pxt�p + et(4.39)

with fetg a martingale di�erence sequence with respect to some �ltration fGtg such that

sup
t�1

E[jetj
�jGt�1] <1 a.s.(4.40)

for some � > 2 and

lim inf
T!1

1

T

TX
t=1

E[e2t jGt�1] > 0 a.s.(4.41)

Suppose furthermore that the initial values x0; : : : ; x1�p are G0-measurable and that the charac-

teristic polynomial

�(x) = xp � �1x
p�1 � � � � � �p�1x� �p(4.42)

possesses roots inside as well as on the unit circle. Let � be the largest multiplicity of all the dis-

tinct roots on the unit circle and set xt = (xt; : : : ; xt�p+1)
0. Then it is well-known (cf. Lai/Wei

(1983) or (1985)) that

�max

 
TX
t=0

xtx
0

t

!
= O

�
T 2� log log T

�
a.s.;(4.43)

lim inf
T!1

1

T
�min

 
TX
t=0

xtx
0

t

!
> 0 a.s.(4.44)

and

lim
T!1

x0T

 
TX
t=0

xtx
0

t

!�1
xT = 0 a.s.(4.45)

Now let zt = xt and suppose that Gt � Ft for all t � 0. Then the assumptions of Corollary 3.2

are satis�ed and we can conclude that �t ! �� a.s. if a < 1=2. 2

We wish to remark that Example 4.7 can be generalized without further considerations to

multivariate autoregressive processes with possibly multiple unit roots.



Chapter 5

Conclusions and Remarks

In this study we have shown that agents can learn to form rational expectations even in an

environment in which the rational expectations equilibrium is a non-stationary process. This

result extends the class of models for which the boundedly rational learning approach applies

and indicates that the presumption that learning, in order to be successful, requires a stationary

environment is misleading.

From the mathematical point of view our result is not surprising since it is well known that the

OLS estimator in linear regression models is strongly consistent under more general conditions

than the `classical' ones which require that the regressors are stationary and ergodic1. Therefore

it was to be expected that this feature carries over to linear models with forecast feedback if the

e�ect of forecast feedback is su�ciently small.

But also from the economic point of view it is not surprising that agents can learn rational

expectations in non-stationary models since learning in the context of the boundedly rational

learning approach means learning of parameter values, thus learning of the law of motion of the

endogenous variable. Although in our model the REE can be a non-stationary process the law of

motion of the REE is time invariant and the law of motion of fytg is time dependent only because

agents persistently change their predictive behaviour during the learning phase. Therefore, if the

feedback between the perceived law of motion and the true law of motion is damped, it is not

surprising that agents can learn this law of motion by following a learning procedure which would

be appropriate to learn the law of motion in the REE.

Since agents are learning about relationships between economic variables which they observe

it is not necessary that the variables themselves are stationary. It is only necessary that these

relationships are `stable' and the observed variables satisfy the requirements of the information

extraction mechanism by which agents learn. As mentioned above the OLS procedure is able to

deal with non-stationary variables. Other learning procedures, like the Stochastic Gradient (SG)

procedure2 analyzed by Zenner (1994b), lack this ability3.

To summarize this discussion we want to point out that our results do not actually refute

1If we set a = 0 in our model, thus if there is no forecast feedback, then Corollary 3.2 gives the strong consistency

of the OLS estimates in a linear regression model satisfying the eigenvalue condition (3.4). Notice that if a = 0 the
condition (3.2) is always satis�ed. As Lai/Wei (1982) have shown the condition (3.4) is in some sense the weakest

possible ensuring strong consistency.
2The SG procedure is a parameter estimation procedure which possesses a recursive representation like (3.14)

with the matrix Zt replaced by its trace. It is well known and popular in the theory on recursive identi�cation

and control since it is computationally less demanding than the OLS procedure and sometimes easier to analyze

theoretically.
3On the other hand Zenner (1994b) recently showed for the SG learning procedure that if jaj < 1 and the

characteristic polynomial of the REE possesses roots only inside the unit circle then fztg is a stable process

whenever the exogenous variables follow a stable process.

21
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the intuitively appealing idea that learning can be successful only in an environment which is

stable or regular in some sense. What they show is that one has to be careful in using terms

like `stationary' which possess di�erent meanings in di�erent contexts. In statistics `stationarity'

means a speci�c and well de�ned property of a time series while in colloquial language and in

economics `stationary' is sometimes used synonymously to `time invariant' or `regular'.

Since the performance of the least squares learning procedures in autoregressive models with

forecast feedback is not yet solved in a satisfactory manner4 we want to add some remarks on

the behaviour of the OLS procedure in our model when the random vector zt contains lagged

endogenous variables. Since we failed in verifying the assumptions of Corollary 3.2 in that case

these remarks are based on some computer simulations.

Firstly, we observed that if jaj < 1 (thus if the feedback function which maps the perceived

law of motion �t into the true law of motion � + a�t is contracting) and if the REE is a stable

process (thus if the characteristic polynomial of the REE possesses roots only inside the unit circle

and the exogenous variables follow a stable process) agents following the OLS learning procedure

cannot destabilize the system and learn the RE parameter values with probability one. Even

if agents start with totally implausible initial estimates the process fytg stabilizes after some

transient phase and the estimates converge. This �nding corresponds to the convergence result

for the SG learning procedure shown by Zenner (1994b).

Secondly, we observed the same kind of stability of rational expectations with respect to the

OLS procedure if the characteristic polynomial possesses unit roots or the exogenous variables

incorporate trend variables. But in the latter case a < 1=2 seems to be a necessary condition for

a.s. convergence.

Finally, we also observed convergence if the REE possesses roots outside the unit circle. In

that case the condition (3.2) is crucial since �t does not converge to zero but remains positive.

The limit point of �t then depends on the roots of the REE. If this limit point satis�es the

inequality (3.2) the OLS procedure seems to converge a.s. for stable exogenous variables as well

as for variables with a trend.

To conclude this study we want to remark that it is straightforward to generalize the re-

sults to multivariate (simultaneous equations) models. For notational convenience and since this

generalization incorporates no new ideas we decided to omit it.

4The ordinary di�erential equation (ODE) approach by Ljung (1977) adopted by Marcet/Sargent

(1989a,b) seems to be widely accepted in economic theory (see, e.g., Woodford (1990), Moore (1993), and

Fuhrer/Hooker (1993)) although it has a few short-comings. The main problem consists in justifying the use

of the so-called `projection facility' on the level of individual agents. Without this facility no global convergence
results can be obtained for autoregressive models.

Zenner (1994a) provides global convergence results of the OLS procedure in autoregressive models without using

this facility but the underlying analysis is restricted to univariate generalized AR(1) models.
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