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Chapter 1

Introduction

ARCH models have become very popular in the recent theory of �nancial mar-

kets because they have proven useful in explaining the empirical �ndings of

volatility clustering and fat tailed distributions.

Since on the other hand �nancial time series typically consist of a large number

of observations, the employment of nonparametric procedures, or more speci-

�cally of kernel estimators in order to identify the underlying data generating

process is a natural approach. Not surprisingly this has been done extensively

in literature. However, to our knowledge, no rigorous investigation of the

asymptotic behaviour of the estimators employed in an ARCH framework is

available. To �ll this gap at least partially we here study the consistency of a

modi�ed kernel estimator provided the real data generating process is given by

a solution of a parametric ARCH(q) model as introduced in the econometric

literature by Engle(1982). But this can only be seen as a �rst step, since

we have in mind an extension to nonparametric models in order to exploit

the full 
exibility of kernel estimators. Consequently, the main purpose of the

current analysis is to reveal the particular problems of nonparametric ARCH

estimation the narrow but well-known class of parametric ARCH(q) models.

The rest of the paper is organized as follows: In chapter 2 we introduce the

classical ARCH(q) model and discuss some aspects of the corresponding solu-

tion theory. In chapter 3 we describe the prediction and estimation problem

motivating the current analysis and propose a modi�ed kernel estimator. The

consistency of this �lter in the ARCH(q) context is studied in chapter 4. The

technique employed to prove the main results goes back to Bierens(1983)
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Chapter 2

The ARCH(q) Model

2.1 Basic assumptions and vector representation

Let �t denote a discrete time stochastic process of i. i. d. real-valued random

variables with moments E�0 = 0 and E�20 = 1. The ARCH(q) model is then

given by the stochastic di�erence equation

�t = �t �
p
ht; t 2 Z (2.1)

ht := h(�t�1; : : :�t�q)

:= �0 +

qX
i=1

�i�
2
t�i;

where

q > 0

�0 > 0 �i � 0 i = 1; : : : ; q:

Instead of following Engle (1982) in assuming the conditional distribution

of the �0ts to be normal, we admit a more extensive class of distributions, only

restricted by some mild regularity conditions.

The following set of assumptions speci�es the class of models 2.1 we deal

with in this paper:

(A. 1)
Pq

i=1 �i < 1.

(A. 2) The distribution of the �0ts is absolutely continuous with re-

spect to Lebesgue measure. The corresponding density f�(u)

is continuous and bounded on IR.
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(A. 3) E�40 < +1.

(A. 4) The density f�(u) is twice continuously di�erentiable on IR.

2.2 Aspects of solution theory

Following an equivalent approach by Bougerol/Picard (1992) for more

general GARCH models, we start our solution analysis introducing an in
ated

state representation of equation 2.1 squared:

�2t = �2t � ht; t 2 Z (2:2)

Without loss of generality we assume that q � 2 (adding some �i equal to 0 if

needed) and de�ne, allowing for overparametrization in the regression problem

we will deal with later, for some k � q, nonnegative (k+2)-dimensional vectors

Zt := (ht+1; �
2
t ; �

2
t�1; : : : ; �

2
t�k)

T ;

D := (�0; 0; : : : ; 0)
T ;

and nonnegative (k + 2)� (k + 2) random matrices

At :=

0
BBBBBBBBBB@

�1�
2
t �2 � � � � � � � � � �q 0 � � � 0

�2t 0 � � � � � � � � � 0 0 � � � 0

0 1 0
. . .

. . .
. . .

. . .
. . .

...

0 0 1
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 � � � � � � � � � � � � � � � 0 1 0

1
CCCCCCCCCCA
:

We notice that f�2t gt2Z is a solution of 2.2 if and only if fZtgt2Z is a

solution of

Zt = AtZt�1 +D; t 2 Z (2:3)

The existence of strictly stationary and integrable solutions of system 2.3

obviously depends on the limit behaviour of the product of i. i. d. random

matrices

Mt;� := AtAt�1 : : :At��+1 (2:4)

for � !1. Bougerol/Picard(1992) demonstrated how convergence results

found by Kesten/Spitzer(1984) can be exploited to analyze the asymptotics

of Mt;� . We follow their procedure and present a �rst auxiliary result we shall

extensively make use of in a later section:

4



Lemma 1

Suppose that (A.1) holds. Then,for some constants m1 > 0;

m2 > 0 and 8t 2 Z

(i) kMt;�k = o(e�m1�) a: s:

(ii) EfMt;�g = o(e�m2�)

(iii) EfkMt;�kg = o(e�m2�)

where k � k denotes the in�nity-norm.

Proof:

(i) The spectral radius �0 of EfA0g is less than one under (A.1). Thus we can

apply inequality (1.4) in Kesten/Spitzer (1984) to obtain 8t 2 Z

lim
�!1

1

�
log kMt;�k � log �0 < 0 a: s:

which implies (i) for some m1 > 0.

(ii) is obviously valid for m2 < � ln �0.

(iii) The matrix Mt;� is nonnegative1. Hence, the result follows immediatly

from (ii).

An immediate consequence of the preceding Lemma is the following result:

Lemma 2

Suppose that (A.1) holds. Then

(i) equation 2.3 has a strictly stationary and integrable solution fZtgt2Z,
(ii) equation 2.1 has a strictly stationary, square-integrable solution f�tgt2Z.

Proof: (see Theorem 1. 3 in Bougerol/Picard (1992)).

(i) Lemma 1 (i) implies that the series

1X
s=1

Mt;sD

converges absolutely a. s. for any t 2 Z. Therefore the sequence

Zt = D +
1X
s=1

Mt;sD t 2 Z (2:5)

1i.e. all entries are nonnegative.
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is a well-de�ned nonnegative solution of 2.3 which can be written as

Zt = F (At; At�1; : : :)

for some measurable function F independent of t. Moreover, the process

fAtgt2Z is strictly stationary. This shows the strict stationarity of the solution

2.5. Its integrability follows from Lemma 1 (ii) and the monotone convergence

theorem.

(ii) Let

�t := 1�t�0

q
�2t � 1�t<0

q
�2t (2.6)

= 1�t�0

q
Z
(2)
t � 1�t<0

q
Z
(2)
t ;

where Z
(2)
t is the second 2 component of the vector Zt that solves 2.3. Then

f�tgt2Z is a strictly stationary and square-integrable solution of 2.1.

A further aspect of ARCH processes we are interested in is the kind of

distribution of the variables that might serve as regressors in the estimation

problem we shall deal with later: We ask whether the continuity and smooth-

ness properties of the distributions of the innovations �t pass over to the col-

umn vector xt := (�t�1; : : : ; �t�k). The a�rmative answer is given in the next

auxiliary result:

Lemma 3

(i) Suppose that f�tgt2Z is a strictly stationary solution of 2.1 and that (A.2)

holds. Then the distribution of the random vector xt := (�t�1; : : : ; �t�k) is

absolutely continuous with respect to Lebesgue measure with continuous density

f(u1; : : : ; uk).

(ii) If in addition (A.4) holds , this density is twice continuously di�erentiable

on any compact subset E � IRk.

Proof:

(i) We start showing the existence of a density: Let �l := (��1; : : : ; ��l) for any

l � 1. Using algebraic induction and the usual rule for density transformation,

it can be seen that for any B 2 B�lZ
B

~f�l(u1; : : : ; ul j ��l�1; : : : ; ��l�q)du1 : : :dul

2We could de�ne �t := �t

q
Z

(1)
t

as well. For later purposes, however, representation 2.6

is advantageous.
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where ~f�l : IR
l � IRq ! IR is the nonnegative Baire function given by

~f�l(u1; : : : ; ul j v�l�1; : : : ; v�l�q) :=
lY

j=1

fh�
1
2

�j � f�(ujh
� 1

2
�j )g;

h�j := �0 +

qX
i=1

�if1fl�j�igu2i + 1fl�j<igv
2
�j�ig;

is a version of the conditional probability Pf�l 2 B j ��l�1; : : : ; ��l�qg. There-
fore, using Fubini's theorem and the Tonelli-Hobson argument, we can write

for any B 2 B�l
Pf�l 2 Bg = EfPf�l 2 B j ��l�1; : : : ; ��l�qgg

= Ef
Z
B

~f�l(u1; : : : ; ul j ��l�1; : : : ; ��l�q)du1 : : : dulg

=

Z
B

Ef ~f�l(u1; : : : ; ul j ��l�1; : : : ; ��l�q)gdu1 : : :dul

=

Z
B

f�l(u1; : : : ; ul)du1 : : :dul;

say. With l chosen k this shows the existence of the density . Because the

function ~f�l(�) is continuous and bounded on IRl � IRq ,and l could be chosen

arbitrarily in the preceding argument, we look at the representation

f(u1; : : : ; uk) = f�k(u1; : : : ; uk)

=

Z
IRq

~f�l(u1; : : : ; uk j uk+1; : : : ; uk+q)f�q(uk+1; : : : ; uk+q)duk+1 : : : duk+q
to obtain the continuity using a well known result from analysis (see e.g.

Apostol (1977),10.38)

(ii) The second part of the Lemma follows similarly (see e.g. Apostol (1977),

10.39).
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Chapter 3

Prediction and estimation in

ARCH models

3.1 Prediction problems

The conditional variance var(�t j Ft�1), where Ft := �(�t; �t�1; : : :), of any

stochastic process f�tgt2Z that ful�ls 2.1 is well de�ned and given by

var(�t j Ft�1) = E(�2t j Ft�1) = h(�t�1; : : : ; �t�q) a: s: ; (3:1)

since f�tgt2Z itself is a sequence of martingale di�erences.1 The random vari-

able 3.1 can be interpreted as best L2 -approximation of �2t given its predeces-

sors if it is square-integrable or, to put it another way, if the fourth moment of

�t exists.To ensure the square-integrability of 3.1, however, rather restrictive

additional assumptions which involve jointly the parameters and the distribu-

tion of the innovations are required2. Therefore, one has to be careful speaking

of a "best" (in the mean squared error sense) prediction in connection with

the conditional variance. Yet we shall accept 3.1 as a reasonable prediction,

which is at least unbiased.

Instead of elaborating this point here, we turn to the main question we deal

with in this paper: How can we identify the function h : IRq ! IR , which

is typically unknown in an economic framework, in order to be enabled to

1In the context of the parametric ARCH model studied here, one could equally well

choose �(�2t ; �
2
t�1; : : :) as conditioning �-�eld. However,in more general ARCH models to

be analyzed in future, we possibly would give away information, since �(�2t ; �
2
t�1; : : :) �

�(�t; �t�1; : : :).
2In the ARCH(1) model with normal innovations 3�2

1 < 1 is required (see Engle (1982))
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calculate predictions based on observed past values ? Most of the literature is

devoted to (Pseudo-) Maximum-Likelihood estimators. We propose a modi�ed

kernel estimator, because there is some reason to believe that in this way we

can detach ourselves from the little 
exible parametric formulation of ARCH

models.

3.2 A nonparametric �lter

Given a data set fyt; xtgt=1;:::;T , where yt := �2t and xt := (�t�1; : : : ; �t�k), the

standard kernel estimator of the regression function m(x) := Efyt j xt = xg
can be written as 3

m̂T (x) =
ĝT (x)

f̂T (x)
; (3.2)

ĝT (x) :=
1

T

TX
t=1


�kT ytK

�
x� xt


T

�
;

f̂T (x) :=
1

T

TX
t=1


�kT K

�
x� xt


T

�
;

where the kernel K(u) is a real function on IRk and f
TgT2IN is a (possibly

stochastic,i. e. data driven) decreasing sequence of positive numbers with limit

zero. The class of admissible kernels is restricted by certain conditions which

are listed in the introductory section of the next chapter.

We observe that whenever k � q,any restriction g jIRq
�fug; u 2 IRk�q of the

Baire function g(x) coincides with a Baire function representing the condi-

tional variance.

When analyzing the asymptotic behaviour of the �lter proposed, we are con-

fronted with (at least) two particular problems: Firstly, we have to ensure

that the underlying data generating process has an asymptotically vanishing

memory. This can be achieved assuming the process to ful�l certain mixing

conditions. The veri�cation of mixing conditions is a hard task, however. Thus

we follow an alternative approach introduced by Bierens(1983), that relies

on the weaker concept of �-stability.

Secondly, in view of the preceding section, we cannot assume, as is standard,

that the dependent variable yt is square integrable,or, to put it another way,

3The in
ated representation elucidates that the denominator can be seen as an estimator

for the k-dimensional marginal density of the data generating process. Its consistency is
implicitly contained in the results of chapter 4.
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that the data generating process 2.1 possesses fourth moments. Hence we

have to use a truncation procedure. We introduce a truncation function

� : IRk ! IR

�(u) :=

(
1 : kuk � C

C2

kuk2
: kuk > C

where C is a positive constant, and de�ne the modi�ed kernel estimator

m̂T (x) =
ĝT (x)

f̂T (x)
; (3.3)

ĝT (x) :=
1

T

TX
t=1


�kT �(xt)ytK

�
x� xt


T

�
;

f̂T (x) :=
1

T

TX
t=1


�kT K

�
x � xt


T

�
:

We notice that the truncation function together with assumption (A.1) guar-

antees that 8t 2 Z

�(xt)yt = �(xt)�
2
t f�0 +

qX
i=1

�i�
2
t�ig (3.4)

� �2t f�0 +
qX

i=1

�iC
2g

< �2t f�0 + C2g
= �2tC0;

say, and therefore implies Ef�2(xt)y2t g � C2
0 � E�40 < +1 under (A.3). An

additional truncation of the regressors xt is not required because this is done

by the kernel. The estimator 3.3 is the usual kernel estimator applied on

the data generating process with the dependent variable transformed by the

truncation function.

For later purposes we notice that the truncation function is bounded by unity,

continuous on IRk , twice di�erentiable with continuous derivatives on fu 2
IRk : kuk < Cg and ful�ls the following easily veri�ed inequality:

j �(u)u2i � �(v)v2i j�j u2i � v2i j +
kX

j=1

j u2j � v2j j (3:5)

for i = 1; : : : ; k:
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Chapter 4

Consistency Results

4.1 Basic assumptions

For clarity, we start by listing all assumptions concerning the �lter 3.3 needed

somewhere in the current chapter:

(K. 1) K(u) is a nonnegative, bounded, continuous and symmetric

real-valued function on IRk that integrates to one.

(K. 2) kukkK(u)! 0 for kuk ! +1:

(K. 3) K(u) has an absolutely integrable characteristic function

�(v) :=
R
IRk exp(iv

0u)K(u)du, for which the additional in-

tegrability conditionZ
IRk

kvk j �(v) j dv < +1

holds.

(K. 4) 







Z
IRk

uu0K(u)du








 < +1:

(K. 5) kukk+2K(u)! 0 for kuk ! +1:

To connect estimator 3.3 to the model in regard we formulate the
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Working Hypothesis 1

The data set f(yt; xt)gt=1;:::;T = f�2t ; �t�1; : : : ; �t�kgt=1;:::;T stems from a strictly

stationary solution of 2.1 with q � k under assumptions (A.1) to (A.3).

Observe that in view of Lemma 2 this hypothesis is always meaningful.

4.2 The forgetfulness of ARCH(q) processes

This section has preliminary character. As indicated in section 3.2 we have to

ensure that the data generating process has a vanishing memory in a sense that

has to be made precise. Our de�nition of stochastic forgetfulness, implicitly

given in the following Lemma, corresponds to the concept of exponential �-

stability in L1.

Lemma 4

(i) Let Ft;� denote the �-�eld �(At; At�1; : : : ; At��+1). Suppose that (A.1)

holds. Then a constant m > 0 exists such that 8t 2 Z

�(�) := EkEf(�(xt)yt; xt) j Ft;�g � (�(xt)yt; xt)k = o(e�m� ):

Proof:

Step 1

De�ne the Ft;� -measurable random vector Zt;� :=
P��1

s=1 Mt;sD +D and note

that

Zt � Zt;� = Mt;�Zt�� :

Then we can deduce from Lemma 1 that 8t 2 Z

EkEfZt j Ft;�g � Ztk (4.1)

� EkZt � Zt;�k+EkEfZt� Zt;� j Ft;�gk = o(e�m2� ):

Step 2

De�ne �t�i;� := Ef�t�i j Ft;�g; i = 1; : : : ; k. It is easy to see that 8� >

0; 8t 2 Z; 8� 2 IN; i = 1; : : : ; k,

E j
q
�2t�i;� �

q
�2t�i j

= Ef1�2
t�i;�

��[�2
t�i

�� j
q
�2t�i;� �

q
�2t�i jg

+ Ef1�2
t�i;�

��\�2
t�i

�� j
q
�2t�i;� �

q
�2t�i jg

� ��
1
2E j �2t�i;� � �2t�i j +2�

1
2
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Now let � = �(�) = e� ~m� for some ~m < m2. Then for any

m < 1
2
~m we obtain from Step 1

E j
q
�2t�i;� �

q
�2t�i j= o(e�m� ): (4:2)

Step 3

We note that �t�i;� ; i = 1; : : : ; k, and �t are Ft;� measurable and recall the

representation of �t in the proof of Lemma 2 (ii). Then we can deduce from

step 2 that for all i = 1; : : : ; k,

E j �t�i;� � �t�i j � E j 1�t�0(Ef
q
�2t�i j Ft;�g �

q
�2t�i) j

+ E j 1�t<0(Ef
q
�2t�i j Ft;�g �

q
�2t�i) j

= E j Ef
q
�2t�i j Ft;�g �

q
�2t�i) j

� E j Ef
q
�2t�i j Ft;�g �

q
�2t�i;� j

+ E j
q
�2t�i;� �

q
�2t�i) j

= E j Ef
q
�2t�i �

q
�2t�i;� j Ft;�g j

+ E j
q
�2t�i;� �

q
�2t�i) j

� 2E j
q
�2t�i;� �

q
�2t�i) j

= o(e�m� ):

Step 4

De�ne xt;� := Efxt j Ft;�g and yt;� := Ef�2t j Ft;�g. With arguments identical

to those in step 3 we can show that 8t 2 Z

E j Ef�(xt)yt j Ft;�g � �(xt)yt j� 2E j �(xt;�)yt;� � �(xt)yt j : (4:3)

Finally we can exploit 3.5 and the fact that �t is independent of xt;� as well

as of xt to obtain from step 1

E j �(xt;�)yt;� � �(xt)yt j

= E j �2t
qX

i=1

�i[�(xt;�)�
2
t�i;� � �(xt)�

2
t�i] j

� (q + 1)
kX

i=1

E j �2t�i;� � �2t�i j

� (q + 1)kEkEfZt j Ft;�g � Zt)k
= o(e�m2�):

The proof is complete if we choose the constant m as in step 2.
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4.3 Uniform consistency

The main result of the present analysis relies on three preparing Lemmata

that describe the limit behaviour of bias and variance of the estimator 3.3.

The underlying decomposition concept goes back to Bierens(1983).

Lemma 5 (Asymptotic Unbiasedness)

De�ne M(C; �) := fu 2 IRk : kuk � C � �g and let denote g(x) := m(x)f(x).

Suppose that Working Hypothesis 1 and assumptions (K.1) and (K.2) hold and

that f
TgT2IN is a sequence of positive numbers satisfying

lim
T!1


T = 0:

Then we have

(i)

lim
T!1

sup
x2M(C;0)

j EfĝT(x)g � g(x) j= 0: (4:4)

(ii) If in addition assumptions (A.4),(K.4) and (K.5) hold, we have for any

� 2 (0; C)

sup
x2M(C;�)

j EfĝT(x)g � g(x) j= O(
2T ): (4:5)

Proof:

Although most of the arguments used here are standard, we present the proof

in full length, since there are some small technical di�culties.

For notational convenience, we suppress the time index of the bandwidth and

simply write 
.

(i) Since the data set (yt; xt); t = 1; : : : ; T stems from a strictly stationary

solution of 2.1 with density f(u), we have for any 
 > 0, and 8x 2 IRk

j EfĝT(x)g � g(x) j
= j EfEfĝ1(x) j x1gg � g(x) j
=

����E
�

�k�(x1)Efy1 j x1gK

�
x� x1




��
� g(x)

����
=

�������
Z
IRk


�k�(z)g(z)K

�
x� z




�
dz � g(x)

������� :
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The special form of �(u) implies

sup
x2M(C;0)

�������
Z
IRk


�k�(z)g(z)K

�
x� z




�
dz � g(x)

�������
= sup

x2M(C;0)

�������
Z
IRk


�k�(z)g(z)K

�
x� z




�
dz � �(x)g(x)

�������
= sup

x2M(C;0)

�������
Z
IRk


�k~g(z)K

�
x� z




�
dz � ~g(x)

������� ;

where ~g(u) is the continuous function �(u)g(u). We can apply the classical

splitting technique to obtain

sup
x2M(C;0)

�������
Z
IRk


�k~g(z)K

�
x� z




�
dz � ~g(x)

�������
� sup

x2M(C;0)

sup
k
uk<�

j ~g(x+ 
u)� ~g(x) j

+ sup
x2M(C;0)

�������
Z

k
uk��

[~g(x+ 
u)� ~g(x)]K(u)du

������� :

Since ~g(x) is continuous on IRk, it is uniformly continuous on compact sub-

sets. Therefore the �rst expression can be made arbitrarily close to zero for

� su�ciently small. Having chosen � this way, the remaining integral can be

bounded by

sup
x2M(C;0)

Z
k
uk��

K(u)~g(x+ 
u)du+ sup
x2M(C;0)

~g(x)

Z
k
uk��

K(u)du:

The second term converges to zero for 
 # 0, since ~g(x) attains its maximum on

M(C; 0) and the integral can be made arbitrarily small choosing 
 su�ciently

small for � given.

The �rst integral is bounded by

sup
x2M(C;0)

Z
k
uk��

K(u)~g(x+ 
u)du

15



� sup
x2M(C;0)

sup
k
uk��

(kukkK(u))

Z
k
uk��

(kuk)�k~g(x+ 
u)du

� sup
k
uk��

(kukkK(u))

8><
>:��k
k

Z
IRk


�k~g(z)dz

9>=
>;

= o(1)��kEy1

= o(1):

for 
 # 0 under (K.2).

(ii)Using the same arguments as in the proof of part (i) (with the di�erence

that � is given here), we obtain

sup
x2M(C;�)

jEfĝT(x)g � g(x)j

= sup
x2M(C;�)

����
Z
[~g(x+ 
u)� ~g(x)]K(u)du

����
� sup

x2M(C;�)

�������
Z

k
uk<�

[~g(x+ 
u)� ~g(x)]K(u)du

�������
+ sup

x2M(C;�)

�������
Z

k
uk��

~g(x+ 
u)K(u)du

�������
+ sup

x2M(C;�)

�������
Z

k
uk��

~g(x)K(u)du

�������
= I1 + I2 + I3:

(1) We notice that the vectors x; x + 
u are in an open subset of IRk the

function ~g(z) is partially continuously di�erentiable on, as long as x 2M(C; �)

and k
uk < �. Therefore we can make use of the arguments in Lemma 2 of

Bierens(1989), together with (K.4) and the symmetry of the kernel, to see

that I1 = O(
2).

(2) We have

1


2
I2

� sup
kuk� �




1


2
kukkK(u)

�
��k

Z
~g(z)dz

�

16



� sup
kuk� �




��2kukk+2K(u)O(1)

= o(1):

under (K.5).

(3) Similarly we have I3 = O(
2) under (K.5).

Lemma 6

Suppose that the Working Hypothesis holds and that f�(T )g
T2IN is a sequence

of natural numbers. Then, for any sequence f
TgT2IN of positive numbers,


kTE sup

x2IRk

���Efm̂T(x) j Ft;�(T )g �Efm̂T(x)g
��� = O

0
@
s
�(T )

T

1
A : (4:6)

Proof:

(cf. Bierens(1983),Lemma 1)

The measurability of the supremum on the left-hand side of 4.6 follows from a

continuity argument (see Lemma 1 of Jennrich(1969)). The inversion formula

for characteristic functions and Proposition 1 in the Appendix yield that 8
 >
0 we have for the left-hand expression in 4.6

E sup

x2IRk

�����E
(
1

T

TX
t=1

�(xt)ytK

�
x� xt




�
j Ft;�(T )

)

�E
(
1

T

TX
t=1

�(xt)ytK

�
x� xt




�)�����
� 
k

�
1

2�

�k Z
IRk

wT (v) j�(
v)jdv

� sup

v2IRk

wT (v)

�
1

2�

�k Z
IRk

j�(v)jdv;

where

wT (v) := E

����� 1T
TX
t=1

h
E
n
�(xt)yt exp(iv

0xt) j Ft;�(T )

o
�E

�
�(xt)yt exp(iv

0xt)
	i����� :

17



Since for T and v given the sequences
n
E
h
�(xt)yt sin(v

0xt) j Ft;�(T )

io
t2IN

andn
E
h
�(xt)yt cos(v

0xt) j Ft;�(T )

io
t2IN

are '-mixing stochastic processes with

'(l) =

(
0 : l � �(T )

1 : l < �(T );

it can be shown (Bierens(1983),Lemma 1) that under (A.1)-(A.3),

sup

v2IRk

wT (v) = O

0
@
s
�(T )

T

1
A :

Together with the integrability of the characteristic function, the proof is

complete.

The next result characterizes the rate of convergence of the approximation

error that occurs when the actual random variables are replaced by conditional

expectations.

Lemma 7

Suppose that the Working Hypothesis and assumptions (K.1)and (K.3) hold

and that f�(T )g
T2IN is a sequence of natural numbers. Then, for any sequence

f
TgT2IN; 
T > 0; with limT!1 
T = 0 and some constant m > 0,

E sup

x2IRk

���Efm̂T(x) j Ft;�(T )g � m̂T (x)
��� = o(e�m�(T )


�(k+1)
T ): (4:7)

18



Proof:

We can make use of Proposition 1 in the Appendix and the inversion formula

for characteristic functions to obtain

E sup

x2IRk

����
�kT

�
E

�
�(xt)ytK

�
x� xt


T

�
j Ft;�(T )

�

��(xt)ytK
�
x� xt


T

������
�

�
1

2�

�k Z
IRk

~wT (v) j�(
Tv)jdv;

where

~wT (v) := E
���E n�(x1)y1 exp(iv0x1) j F1;�(T )

o
� �(x1)y1 exp(iv

0x1)
��� :

We recall the notation and technique used in the proof of Lemma 4 and 3.4.

Moreover we note that j eiu � 1 j�j u j for all u 2 IR. We apply Lemma 4 to

obtain

~wT (v) � 2E
���Ef�(x1)y1 j F1;�(T )g exp(iv0x1;�(T ))� �(x1)y1 exp(iv

0x1)
���

� 2E
���(exp(iv0x1;�(T )))(Ef�(x1)y1 j F1;�(T )g � �(x1)y1)

���
+ 2E

����(x1)y1(exp(iv0x1;�(T ))� exp(iv0x1))
���

� 2E
���Ef�(x1)y1 j F1;�(T )g � �(x1)y1

���
+ 2C0Ekx1;�(T )� x1kkvk
= o(e�m�(T ))(1 + kvk):

This impliesZ
IRk

~wT (v) j�(
Tv)jdv

= o(e�m�(T ))

2
64
�kT

Z
IRk

j �(v) j dv + 

�(k+1)
T

Z
IRk

kvk j �(v) j dv

3
75

= o(e�m�(T )

�(k+1)
T );

which completes the proof.

The Lemmata 5,6 and 7 enable us to formulate the following consistency

result for the estimator 3.3:

19



Theorem 1 (Uniform Consistency)

(i) Suppose that the Working Hypothesis and (K.1),(K.2) and (K.3) hold.

Then for any sequence f
TgT2IN satisfying


T = T��; � 2
�
0;

1

2k

�

and any pair 8<
:� 2

0
@0; sup

x2IRk

f(x)

3
5 ; C > 0

9=
; ;

we have

p lim
T!1

sup
x2ff(u)��g\M(C;0)

j m̂T (x)�m(x) j= 0: (4:8)

(ii) Suppose that in addition (A.4),(K.4) and (K.5) hold. Then,for any triple8<
:� 2

0
@0; sup

x2IRk

f(x)

3
5 ; � > 0; C > 0

9=
;

with C > � we have

p lim �T sup
x2ff(u)��g\M(C;�)

j m̂T (x)�m(x) j= 0 (4:9)

where �T = o(min(
�2T ; �T )); �T = o(
kT
p
T ):

Proof:

(i) The measurability of the supremum in 4.8 follows again from a continuity

argument (Lemma 1 of Jennrich(1969)). Choosing e. g. �(T ) =
h
T

1
2
��k

i
, we

can link Lemmata 6 and 7 to obtain

lim
T!1

E sup

x2IRk

jĝT (x)�EfĝT(x)gj = 0:

Combining this last implication with Lemma 5 yields

lim
T!1

E sup
x2M(C;0)

jĝT (x)� g(x)j = 0

and, since all results remain valid if we replace yt by 1 8t 2 Z,

lim
T!1

E sup
x2M(C;0)

���f̂T (x)� f(x)
��� = 0:

20



Since we can write

j m̂T (x)�m(x) j= 1

f(x)

���m̂T (x)(f(x)� f̂T (x)) + f̂T (x)(ĝT (x)� g(x))
��� ;

the result follows.

(ii) follows from similar arguments.
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Appendix A

Proposition 1 Suppose that x; y are k1; k2-dimensional random vectors on a

probability space (
;A; P ) and that f : IRk2 � IRk ! IR and g : IRk ! IR are

Baire functions such that

sup

y2IRk2

j f(y; t) j� g(t);

Z
IRk

g(t)dt < +1:

Then

E

�Z
IRk

f(y; t)dt j x
�
=

Z
IRk

Eff(y; t) j xgdt Fx � a:s:;

where Fx denotes the distribution of x.

Proof:

We observe that both sides of the equation are �nite because of the bounded-

ness of f(y; t).Hence, by Fubini's Theorem,8C 2 �(x),Z
C

[

Z
IRk

Eff(y; t) j xgdt]dP

=

Z
IRk

[

Z
C
Eff(y; t) j xgdP ]dt

=

Z
IRk

[

Z
C
f(y; t)dP ]dt

=

Z
C

[

Z
IRk

f(y; t)dt]dP:

This shows that
R
IRk Eff(y; t) j xgdt is a version of the conditional expectation

E
nR
IRk f(y; t)dt j x

o
.
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