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Chapter 1

Introduction

In a recent paper (CRON(1995)) we showed the uniform consistency of a modi-
fied kernel estimator provided the data generating process is given by a strictly
stationary solution of the univariate parametric ARCH(q)-model introduced
in the econometric literature by ENGLE(1982). There the decisive property
of the underlying data generating process to guarantee the consistency of the
modified kernel estimator was its exponential v-stability in L;. Therefore it is
natural to look for more general processes to fulfil this condition in order to
exploit the full flexibility of kernel estimators. In this paper a class of mul-
tivariate nonparametric models is studied. Our main attention is directed to
the solution theory of such models.

We consider a system of m difference equations

m(t) = a®himi(t—1). .02t — q)md(t— 1), ni(t —gq)) (1.1)

() = en(DRAMEE— 1), 0t — q) 2t —1),... A (t = q)),

t € 7, where {e(t)}iez = {e1(t), ..., €n(t) }1ez denotes a sequence of i. i. d.
random vectors with mean zero and finite variances and h; : IR?™ — IR any
measurable positive function. While the expectation of any vector solving the
nonparametric VARCH(q,m)-model above conditioned on past values of
the solution process is zero, its contemporaneous conditional covariances are
given by

E{ni(D)n;(6) |t —=1),...onm(t — q)}



= E{c(D) (03— 1), 2 (= ) (30 = 1), k(=) s

2,7 = 1,...,m, which in the case of ¢« = j can be simplified to
E{n(t) [ m(t = 1), ona(t =)} = hi(ni(t = 1),... ot —q)) a.s.
if we assume the normalization E{e}(t)} = 1,7 = 1,...,m, as will be done

hereafter.

We can imagine that system 1.1 describes the price changes of m assets. While
these changes are serially uncorrelated both conditional on past values and
unconditional, their conditional variances and mutual conditional covariances
depend on past price changes. Therefore we are interested in identifying the
Baire functions

mij(x) = E{ni(t)n;(t) | m(t = 1) = 21, nm(l = @) = Tgm},
2,7 = 1,...,m, which represent these conditional variances and covariances,
e. g. ,in order to evaluate the risk of a portfolio consisting of these m assets
based on observed past price changes of these assets !. For this purpose we
make use of a modified kernel estimator.

(1) := ( ( D,..,m(t—q)), and x() :=
"t = , 1" denote the data set and ¢ : IR™ — IR

Let y; ;(t) := m:(t)n; (1),
(m(t=1),...,nm(t —q)
the truncation function

)

L el <c
= 1.2
¢(u) { ﬁ e (1.2)
where (' is a positive constant and || || denotes the Euclidean norm. We define
the modified kernel estimator by
igr(e) = bigale) (1.3)

fr(z)

'From a theoretical point of view one could equally well consider the functions
E{ni(m; (@) | ni(t = 1) = @1,...,n%( — ¢) = x4} instead of the symmetric func-
tions m; j(x), provided the data generating process is indeed given by 1.1. In prac-

tice, however, one would give away information when replacing the conditioning o-field
o({m(t— k)}z':l,...,m,keﬂVJr) by its subset o({n?(t — k)}z':l,...,m,keﬂVJr) when the (unknown)
real data generating process is given e. g. by a solution of the asymmetric model we deal
with in chapter 5.



() = K (_T(t))
= gz ()

with the usual properties of the kernel K(u) and the bandwidth sequence
{VT}TGW‘

In the following chapter we present a solution theory for system 1.1 under
certain conditions on the functions h;. Chapter 3 provides consistency results
for the kernel estimator 1.3. In the final chapter we generalize model 1.1 re-
placing the squared lagged values which serve as arguments for the functions
h; by ordinary lagged values allowing in this way for asymmetric behaviour.



Chapter 2

The nonparametric

VARCH(q,m)-model

2.1 Basic assumptions

The following assumptions specify the class of models 1.1 we deal with in this
paper:

(A. 1) The sequence of random vectors {e1(t),...,en(t)} ez is 1. 1.
d. with mean zero and variances E{e?} =1 fori=1,...,m.
Moreover,

E{e!} <+occfori=1,...,m.

(A. 2) The distribution of ¢;,1 = 1,...,m, is absolutely continuous
with respect to Lebesgue measure. The corresponding density
fei(w) is twice continuously differentiable and bounded on IR.

(A. 3) The nonnegative functions h; : RY" — IR,2 = 1,...,m,
have unbounded support and are continuously differentiable
on IR?™. The derivatives are bounded, i. e.

dhi(u)
8uk

SUP, ¢ [RI™ =: a1, k) < +o0

fore=1,....mand k=1,...,gm.
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(A. 4) Define the ¢ X ¢g-matrix
alt,(j—Lg+1) ... coooale,7q)

A(lvj) = 52,],](1_1 0

Vi,5 =1,...,q and the gm X gm-matrix

A(LL)  A(L2) ... A(lm)
e
A(m,1) ... oo A(m,m)

The spectral radius p := p(A) is less than unity.

2.2 Solution theory
Under the assumptions made above the following results hold:

Lemma 1
System 1.1 has a strictly stationary, square-integrable solution.

Proof:
Define
I4(t) 0 0
2
0 1,4
1L, (%)
ni(t) Zy(t)
Zi(t) =] ¢ CX(1) = |
ni(t—q+1) Zm(1)
and functions
H,: IR"™ — IR?,



hi(ug, ...y tgm)

U(;i—

HZ(U) _ ( ‘1)q+1

Uig—1

and

H: R™ — R,

Hi(u)

H(u) = |
Hyp (u)

Then we obtain an equivalent representation of system 1.1 squared:
Xt =IHH(X(t-1)), teZ (2.1)

We solve this system first: Let IR?"*?" be the space of gm x ¢m real-valued
matrices and @, IRI™*? its 7-fold product space. We define by recursion for
any 7 € IN4

H @ Rym*am x [RI™ — JRI™,

HY(P;: X) = H(PH(X))
HO(Py, Py; X) = H(PLHY(Py; X))
H(T)(Pl,...,PT;X)‘ : ﬁ(PlH(T‘l)(PQ,...,PT;X)).
Note that
X() = HD(M(t—1),... .t —7); X(t —7 —1)). (2.2)

For notational convenience we introduce the symbol

|U1|

for any vector v € IR" and state some simple inequalities which hold compo-
nentwise:



(1) If A is a nonnegative n x n matrix, | Au [< A | u|.
@) Ju—v|<lu—s|+]zv]
B)[ul=lvisfu—wv]

Assumption (A.3) together with Taylor’s formula implies that
| H(w) — HE) |< A Ju—o], (23)

where A is defined in (A.4), and since H(0) is nonnegative, we obtain in
particular from (3)

| Hu) K HO)+ A |u|. (2.4)
Therefore,with

X0y =T HDT(t - 1),..., 10t — 7);0),
Xty =T HTY(I(t - 1),...,I(t — (7 4+ n));0),

teZ, 7€ Ny and , (t) := All(t) we have

‘X(T)(t) T-I—n ‘
< T, (1= 1) [HOD(I(E = 2), .. T = 7);0)
— HOP=O(I(t — 2),.. . TI(t — (7 4 n)); 0)] ,

since II(#) and II(# — 1) are nonnegative. By recursion, we obtain

T

XOw-x] < no T«

=1

><{ 3 ,(t—(r—|—1))...,(t—s)H(0)}.

s=7+1

Markoff’s inequality and the mutual independence of the I1(#) imply that

P (sup [0 = x>

< P(iti]gl) H(t)lj7(t_d){§ ,(t—(T—I-l))...,(t—S)H(O)} >6)




T T+n
< Plsup HtH,t—d‘ S (t=(r+1)..., (t—s)H(0)| >
nz1 d=1 s=741
1 T T+n
< —E{H H (t—d H} sup L (t=(r+1)...,t=9)H0) ¢,
¢ = n>l 5= T+1
where || - || denotes the infinity-norm. Moreover, we have
p{|no 110 - 0|
d=1
< s #{|11. o - o}
d=1

IA

E {1 —I—Zi:;e?(t)} E {%: (dli[l (1 — d)) (W)}

< (mA 1)) (A

kk*
= O(p")

and,if p is less than unity,Fatou’s lemma together with the strict stationarity

of {II(#)}1ez yields
E{iti]gl) _Z:l, (t—(r4+1))...,(t—s)H(0) }

E{ 5 H,(t—(r+1>>---7(t—s>H(0)H}

s=7+1

T+n

IA

S

H 7(t_d)

d=7+1

Il

IA

O S (E

s=7+1

LU (E

<  Hoc.

We conclude that

lim P (sup HX ( ) — X(T"'”)(t)H > 6) =0

T—00 n>1
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for all € > 0. Therefore X{7)(1) is a Cauchy-sequence a. s.
(cf. GAENSSLER/STUTE(1977)) and hence

X(t) = limX(T)(t) a. s.

EE;H(OO)(H(t —1),I0(t —2),...)
= FPII), It —1),...)

exists a. s. . It is a nonnegative solution of 2.1, since
X0() =Xt 1)),
whence
lim X () = (1) H(lim XDt - 1)).

Since {II(?) }1ez is a strictly stationary process and F'is a measurable and time-
independent function, {X(#)}iez is strictly stationary. Moreover, repeated
application of 2.4 yields

X() < H(t)Th_{gOZ, (t—=1)...,(t—=d)H(0) + II(t)H(0) a. s. .
d=1
Therefore the integrability of X(¢) follows from the monotone convergence

theorem.

Finally, define

ley@y>o 0 .0
1(t) := 0 lo@w>o oo -
0 coo a0

Then,with square roots taken positive,

n(t) X)(t) Xwy(t)

: — 1(t) ‘ X(q-l-l)(t) (] l(t)) X(q-l-l)(t) 7
L : :

) Xm-1)g41(1) Xin-1)g+1(t)

where X(;)(t) denotes thei-th component of X (%), is a strictly stationary,square-
integrable solution of 1.1. m

10



Lemma 2
Let Fy . denote the o-field o(e(t),e(t—1),...,e(t —7+1).Then for 0 < k < 5
and for allt € Z

(1)  EE{m)n;(#) | Fort —miltn(t)] = o(e™)
(12) EE{n:(1) | Firt —ni(1)] = o(e™)
Ve, g =1,...,m.
Proof:

We define the F; ;-measurable random vector
X(t,7) == MOHCN(E-1),... 0t —7+1); E{X(t —7)})

and note that

X0 =X < HOTLL (- )AIXG =) = B =)
Hence,
EIX(t) - X(t,7)] < AE|IX{t—7)— E{X(t—1)}
< 2ATB(X(0)}
= O(p")e.

Denote n?(t,7) = E{n? | Fi.}. Then we have for i,j =1,...,m,
ENE{i(0)ni(4) | Fird = ni(t)n;(1)]

= E|(lg@zo0 = Lam<o) (Lm0 = Lo @w<o)y/ni(t)y/ni (1)

— (L 20 = L <o) (e (iy20 = Leyy<o) E{y/ PO/ (8) | Fir )

< B0 — EGEOE0) | Fry
< 2B OV -\ ).

11



where the last inequality follows from the fact that for any integrable
F-measurable ¢

ElE—E{{| 7} < Ell—¢l+ Ele— E{{|F}]

= Bl —ol+ E|E{e -] F}
< 286 — ¢l

Finally, the Cauchy-Schwarz inequality yields

|\ (0m}(0) = 2t ot 7)|
¢ B (V@) e n)) B+ B (0 — i) Bk )
= 0 (max {¢E (\/n?(t) — \/7722(1577—))27 ¢E (\/77]2(15) - \/77]2‘(1577-))2})

IA

B (R0~ E6n) < Bl )
IEIX(8) = X (7|

N

foralle=1,...,m. Weobtainf0r0</<;<%

E1En(tn; () | Ford = ni(t)ni ()] = o(e™™7).

If we replace n;(t) by 1 in the preceding argument, we obtain the second
statement. m

Lemma 3
The distribution of (n1(t — 1),...,nm(t — q)) is absolutely continuous w. r. to
Lebesgue measure with twice continuously differentiable density f(uq, ..., Ugm)

on any compact subset £ C IRY™.
Proof:

It can be seen by algebraic induction and the rule for density transformation
that for any B € B*and ¢ =1,...,m,

R A YA U AR

12



is a version of the conditional probability P{n;(t) € B | m(t—1),...,nm(t—¢)}.
Therefore we can write
P{ni(t) € B}
= E{P{n(t) € B|m(t—1),....0m(t —q)}}
= E{/B hi 2 (i (t = 1), (t = @) fe (uhy (i (8 = 1), (T = q)))du}

= [ BT = D = @) by (= 1), (= )
= /B Joi(u)du,

say. This shows the existence of a marginal density f, (v) and implies imme-
diately the existence of a gm-dimensional density f(u1, ..., uyy,) of the vector
(m(t—=1),...,nm(t—¢q)). The further properties follow from well-known results
from calculus. (see e. g. APOSTOL(1977),10.39). m

2.3 Examples

The preceding section reveals that assumptions (A.3) and (A.4) are crucial
for the existence of strictly stationary and v-stable solutions of 1.1. These as-
sumptions restrict the effect of changes in squared lagged variables to changes
in mean of squared current variables. Therefore a closer look on conditions
that ensure the validity of (A.3) and (A.4) is of some interest. We give some
examples:

Example 1:
The parametric ARCH(q)-model

1
2

1(0) = (0 {0+ Yo -
with

is included.

13



Assume that the following examples meet the requirements of (A.3).

Example 2:
There is no interdependence, i. e. A(¢,5) = 0 if 7 # j. In this case a sufficient
condition for (A.4) is

k=(i—1)q+1
Vi=1,...,m.
Example 3:
The model is free from feedback, i. e. A(¢,7) = 0 if ¢ < j. This reduces the
eigenvalues of A to those of A(¢,2),2 = 1,...,m, and therefore the condition

given above is again sufficient.

Finally, we give a numerical (though insignificant in economic theory)
Example 4:

m(t) = e/l + 0452t — 1) + cos(0.5p3(t — 1))
ma(t) = e(t)h/1+0.552(t — 1) + sin(0.4n3(t — 1)).

0.4 0.5
A= ( 0.5 0.4 ) ’

and therefore the spectral radius of A is 0.9, as a simple calculation shows.

In this case we have

14



Chapter 3

Consistency results

3.1 Assumptions on the kernel

The subsequent results hold under the following assumptions concerning the

filter 1.3:

(K. 1) K(u) is a nonnegative, bounded, continuous and symmetric
real-valued function on IR?™ that integrates to one.

(K. 2) |[u||"™K(u)—=0 for |u]]— +oc.
(K. 3) K(u) has an absolutely integrable characteristic function 5(v) :=
Jpem exp(iv'u) K (u)du, for which the additional integrability

condition

[ 1ol 180) | dv < +oo
R
holds.

15



3.2 Uniform Consistency

Lemma 4
Define M(C,e) := {u € IR : ||u|| < C — €} and ¢, ;(x) := myj(x)f(x).
Suppose that {’VT}TGW is a sequence of positive numbers satisfying

lim 7 = 0.

T—co

Then we have for all 1,7 =1,...,m,

sup | B{gi (%)} — gi5(x) |[= o(1). (3.1)
z€M(V/C,0)

Proof:
See CRON(1995),Lemma 5. m

Lemma 5
Suppose that {T(T')},.pv is any sequence of natural numbers. Then, for any
sequence {1}y of positive numbers and 1,5 =1,...,m,
o . . (T)
WE sup [B{guir(e) | Foo} = Bgur(e)}| =0 [\ =7 ] (32)
r€
Proof:

In order to be able to apply BIERENS(1983), Lemma 1 and CRON(1995),
Lemma 6 !, respectively, only the square-integrability of ¢(&(¢)y; ;(t) is left
to be verified. But under (A.3),

| (2(2))yii(t) |
< d(&(1)) [ elt)e(t) |

x {hi0)h;(0) + hi(0)aa(t) + hy(0)asd(t) + (aid(t))(a;d(1))}?
< Cole(t)e(t) |,

'Lemmata 6 and 7 of CRON(1995) are notationally incorrect: Replace m(x), 7z (z) by
g(x) and gp(x), respectively.

16



say,where a; :== (a(i,1),...,a(i,gm)). Therefore,

E{6*(@(0)y?;(1)} < CREAE ()} < C3yE{ed )/ Elel(t)

from the Cauchy-Schwarz inequality. m

Lemma 6
Suppose that {T(T')} v s any sequence of natural numbers. Then, for any
sequence {yr}pcpy with limy_ooyr = 0,6,5 = 1,...,m and some constant
k>0,
B osup |E{giir(x) | Fory} = dign(e)] = o(e™ Daz ) (3.3)
celRT™
Proof:

To obtain a result equivalent to Lemma 7 and its underlying Lemma 4 of
CRON(1995), we start showing the Lipschitz-continuity of ¢(u)hZ(u)h? (u):

j
On {||lu|| £ C} the Lipschitz-continuity with constant L, follows from the
continuous differentiability of hf(u)hf(u) Moreover it is easy to check that
under (A.3) forall i =1,...,m,

o (It wrie)| y
||ur||nZaCX—e aUk = Bk < oo ( ' )

holds for e small, where || - || denotes the Euclidean norm and wuy the k-th
component of u € IR". Thus ¢(u)h?(u)h?(u) is Lipschitz-continuous with
constant Lz on {||lu|| > C},too. Finally, if ||u|| < C,|[v]| > C, there is a ¢*

with norm (' that lies on the line segment connecting v and v , such that

[ o(c)h
Lallu— ¢ + Lylle* = o]
max{La. Ls}Ju — v

INIAN + A

17



holds.
Similar to Lemma 4 ,Step 4, of CRON(1995) we then obtain from Lemma 2

E|E{o(2(1))yi (1) | Fer} — o(2()yi;(1)] = o(e™).

Lemma 7 of CRON(1995) follows directly. m

18



Theorem 1 (Uniform Consistency)
For any sequence {yr} .y satisfying

1
yr=MT™", pe (0,—) M >0
2gm

{56 (0, sup f(x) ,C>0}
xEqu

nigr(r) —mij(x) [= 0.

and any pair

we have
plim sup
e {f(u)>8}NM (VT 0)

Proof:
As in CRON(1995),Theorem 1, Lemmata 4 to 6 can be combined to prove the
assertion. m

3.3 The Rate of Convergence

Under the additional assumptions

(A. 5) The functions h; : IRY" — IR,i =1,...,m, are twice contin-
uously differentiable on IRY™.

(K. 4)

L{/ uu'[& Jdul|| < +oo.

(K. 5) ul["**K(u) =0 for [Jul] - +o0.
we have the following result:

Theorem 2
For any sequence {yr} .y satisfying

1
yr=MT™", pue€ (0,—),M>0
2gm

19



and any triple

{56 (0, sup f(:z;)] ,e>0,C > 0}
xEqu
with \/C > ¢ we have

plim (7 sup misr(x) —mg(x) =0

ce{f(u)>63NM (VT e)
where (7 = o(min(’ny,fT)),fT = O(V%M\/T).

Proof:
See CRON(1995),Theorem 1. m
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Chapter 4

Asymmetric Models

In this final chapter we generalize model 1.1 replacing the squared lagged values
which serve as arguments for the functions h; by ordinary lagged values. In
this way we allow for asymmetric reactions on lagged deviations of different

sign. Equations 1.1 become

m(t) = él(t)h%(m(t—1)7---,n1(t—q),nz(t—1)7---777m(t—q)) (4.1)

Ma(t) = en(Ohi(mt—1),...,m{t —q)mn(t —1),....,0m(t — q)),
t € Z. We replace assumption (A.3) by

(A. 3%) The nonnegative functions h; : IR — IR, = 1,...,m,
have unbounded support and are partially differentiable with
Lipschitz-continuous derivatives on IR?™. Moreover there

exist nonnegative constants a(i, k), i =1,...,m,k=1,...,¢gm,
such that
qm
(i) = hi(w)] < D7 ali, k) |sgn(u)ud — sgn(ve)vi]
k=1

Yu,v € IR and v =1,...,m.
With
Vi(t) := diag (sgn(ei(t)), sgn(ei(t —1)),...,sgn(e(t — g+ 1)),

21



Vi(t) 0

V(t) = 0 Va(t) 0
V()
and
H : R™ — R,
hi(sgn(ua)y/ us |, sgn(ugm)y/| tgm |)
Hi(u) = ot |
| wig—1 |

the inflated state representation of 4.1 squared becomes
Xt =MIHHV(E-1)X({t-1)), teZ (4.2)
With the arguments used to prove Lemma 1 one easily shows that 4.1 has

a strictly stationary, square-integrable solution. Moreover, if we redefine for

7% =7 — ¢, 7 > ¢ the F; ;-measurable random vector

X(t,7)

Y

= MOHTDVE-DIE=1),..., V(=7 + DIt — 7 +1); E{X(t — 7)}),
Lemma 2 carries over.

With the slightly modified estimator
. 1 & -t
drire) = 1Y otetos (0 (£
T t=1 7T
where
o(u) { L Ju| g0
u) = 2
ng 2 ull > C

all results of section 3. 2 remain valid.
Finally, we illustrate the model by a simple

22



Example 5:
The asymmetric ARCH(1)-model

(1) = (1) oo + Lygoysoonn?( - 1)}

with ag > 0, 0 < ay <1, is included.

23
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