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Abstract

The purpose of this paper is to analyse the effect of stochastic interest rates on the pricing of
Asian options. It is shown that a stochastic, in contrast to a deterministic, development of the
term structure of interest rates has a significant influence.

The price of the underlying asset, e.g. a stock or oil, and the prices of bonds are assumed to
follow correlated two dimensional Ito processes. The averages considered in the Asian options
are calculated on a discrete time grid, e.g. all closing prices on Wednesdays during the lifetime
of the contract. The value of an Asian option will be obtained through the application of Monte
Carlo simulation, and for this purpose the stochastic processes for the basic assets need not
to be severely restricted. However to make comparison with published results originating from

models with deterministic interest rates we will stay within the setting of a Gaussian framework.
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1 11niroauctelon

The basic economic setting in which pricing of Asian options has been analysed is characterized
by an underlying asset which adheres to a geometric Brownian motion and by a deterministic
development of the bond market. No easily implementable closed form solution to the pricing
problem has so far been developed in the literature. The suggested methods of pricing all builds
on different schemes of approximations.

Kemna and Vorst (1990) show that the Asian option price, subject to the boundary condition
characteristic for the option considered, is the solution to a second order partial differential
equation in three variables, time, spot price of the underlying asset and the known information
about the average value. Rather than solving the partial differential equation, Kemna and Vorst
apply Kolmogorov’s backward equation and obtain that the price of the Asian option can be
written as the discounted expected value of the maturity payment of the option. To solve the
pricing equation which involves knowledge of the distribution of a sum of correlated lognormal
distributions Kemna and Vorst apply Monte Carlo simulation.

Carverhill and Clewlow (1990) solve the pricing equation applying Fast Fourier Transform
techniques to obtain an approximation to the law of the average.

Levy (1992) argues that the sum of correlated lognormal random variables is well approxi-
mated by another lognormal distribution and applying Wilkinson’s approximation a lognormal
distribution with the first and second moment chosen in accordance to the correct distribution
is applied as a surrogate. In Turnbull and Wakeman (1991) an Edgeworth expansion, involving
the first four cumulants, is used to represent the approximating distribution by a lognormal
distribution.

Vorst (1992) uses the fact that the geometric average is never greater than its corresponding
aritmetic average, and due to the assumed geometric Brownian motion of the underlying asset
the geometric average is also lognormal and the price of the geometric Asian option can be found
in closed form. By means of this Vorst calculates a lower as well as an upper bound for the
arithmetic Asian option, and then chooses in an ad hoc manner the price of the Asian option in
a way which guarantees that the established bounds are fulfilled.

Geman and Yor (1993) succeed in obtaining a closed form solution for the Asian option but it
is unfortunately of a very complicated form. To determine the price an inversion of a nontrivial
Laplace transform has to be performed.

In this paper we will relax the assumption concerning the deterministic nature of the bond
market but retain the geometric Brownian motion for the underlying asset. The stochastic
interest rate enviroment will be assumed to be Gaussian which in accordance to e.g. Jamshidian
(1991) and El Karoui, Lepage, Myneni and Viswanathana (1991)implies a lognormal distribution
of the zero coupon bond prices. Pricing of standard options in this setting has been analysed in
e.g. Amin and Jarrow (1992) and Amin and Bodurtha Jr. (1995). The pricing of Asian options
and in particular the influence of the stochastic interest rate on the pricing will be analysed in
this paper.

The schedule of the paper is as follows. In section 2, the notation and the definition of the
contract is presented. Section 3 deals with the pricing of Asian options. A discussion of different

numerical approaches is given in section 4. Section 5 contains the simulation result. Finally,



section 6 concludes.

2 Notation and definition of the contract

The following notation will be applied:

X exercise price of the Asian option.
tn a date included in the average calculation, n = 1,2,..., N; ¢, = 0.
tn the maturity date of the option contract, ity = 7T.

S(t) the price of the underlying asset at time ¢.
D(t,t') the price at date ¢ of a zero coupon bond with maturity date ¢/, ¢ <.

n
A(t,)= 1% S(t;) the arithmetic average of the spot prices at the date t,; n=1....,N .
=1
n
G(t,) = ¢| Il 5(t;) the geometric average of the spot prices at the date ¢,; n=1.... ,N.
=1

N
Va(T') = max{% ;S(ti) — X,O} =max{A(ty)— X,0}

the benefit from the arithmetic Asian option received at maturity date T .

Va(T) = max{ A/ ﬁl S(ti) — X,O} = max {G(ty) — X,0}

the benefit from the geometric Asian option received at maturity date T .

r(t) the instantaneous risk free rates of interest at time ¢.

Next the option prices at time to, Va(to) and Vi(t), will be found in accordance to the
absence of arbitrage possibilities in the financial market. We restrict ourself to the pricing of
FPuropean type Asian call options where the averaging period still has to start. The value of
an Asian option during the averaging period can be calculated the same way by adjusting the
exercise price X, see e.g. Kemna and Vorst (1990) and Vorst (1992).

3 Pricing of the Asian option

Assume that the dynamics of the underlying asset S(¢) is determined by a lognormal diffusion
process with time dependent volatility. For the interest rate market we concentrate on a Gaussian
term structure model', which is well known from previous work by Jamshidian (1991) and El
Karoui, Lepage, Myneni and Viswanathana (1991). Under the absence of arbitrage opportunities
there exists a probability measure P* such that the stochastic behaviour of both markets are

related in the following way:

dS(t) = (St + oy () S(OAWF (1) + o9(t)S(1)dW3(1),
dD(t,t) = r(t)D(t,t")dt + o(t,¢")D(t,¢")dW{ (1),

1 As special cases we will discuss the Vasicek (1977) model and the continuous time limit of the Ho and Lee
(1986) model



where Wi and V¥, are independent standard Viener processes. 1ne volatility functions oy(t), 02(1)
and o(t,1") are assumed to be non-stochastic and satisfy the usual regularity conditions?, in par-
ticular o(¢,¢) = 0 and D(¢,t) = 1 with probability 1. In other words we are working under the

so called risk neutral martingale measure. Note that by — 210 __ t}he instantaneous correla-
Voi(t)+o3(t)

tion between both markets is determined. Due to the stochastic development of r(¢), it will be

convenient to work in the T-forward risk adjusted probability measure, denoted by PT, where

it is well known?, that the differential equations for D(t’t/)) and D‘?Et:)r) are respectively given by

D, T
D(t, ") _ D(t,t) ,
d(D(t T)) = o) -

o(t,T))dWy (1),

02 = PO - ot rnaio ot o)

where WlT and WQT are independent standard Wiener processes under the PT probability mea-
sure. The change to the forward risk adjusted measure PT implies that the stochastic discounting

is replaced by the time-t measurable discounting and in particular that

(1) oo = ety | = s

S(t) = E [exp {_ /t ! r(u)du} S(T)]

under the risk neutral probability measure. The solutions of the above stochastic differential

in contrast to

equations under the T-forward risk adjusted measure PT are given by:

t

S = Stto)- e { =5 [ ((on(w) = o) + o) du
+ (o) = ot TN () + [ oW .
% - 5&’% exp %/(U(u,t)—a(u,T))z du —/(U(u,t)—a(u,T))dWIT(u)

This allows us to express the the solution for the underlying asset as

50 = ot exp =5 [ (oa(w) - atu 1)+ otuiu

to

2) oxp {% /ti(a(u,ti) - a(u,T))%zu}

-exp / i(al(u) — o(u, t;))dW{ (u) + /O’Q(U)dWQT(U)

to
to

?In a general setup we could allow for stochastic volatility functions, see e.g. Geman, El Karoui and Rochet
(1995), but for the continuous time numerical procedure we will be forced to restrict ourselves to non-stochastic
functions.

®In a similar economic context see e.g. Nielsen and Sandmann (1995).



1L he value ol an Aslan option with the discrete average A(ly ) 1s determined by
(3) Va(to) = D(to, T)E" [max {A(tn) — X, 0}].

Under the specified Si-process and the Gaussian interest rate dynamics, we know that the
arithmetic average is determined by a sum of correlated lognormal distributed variables. So far,
there exists no closed form expression for the distribution of such a sum. Therefore, numerical
techniques have to be applied to approximate the value V4(tg) of an Asian option. Observe
that (2) turns itself into a much simpler equation if o(u,t) = 0Vu < tVt corresponding to a non
stochastic development of the term structure of interest rates. In this case easily implementable
techniques are available in the literature. In the following section these methods will be extended
to include the Gaussian term structure model, and we show that major differences appear. Then
in section 5, applying the formal analysis of section 4, we show that the parameter which mainly
influences the pricing of Asian options is the correlation between the underlying asset and the

term structure.

4 Numerical approximation for Asian options

In a similar economic setting, Carverhill and Clewlow (1990) solve the pricing equation for an
Asian option by applying the Fast Fourier Transformation technique in order to calculate the
distribution of the arithmetic average. Their idea is to rewrite the equation of the underlying
asset such that S(¢;) = S(t;—y) - a®(t;_1,1;) which implies that the arithmetic average can be

reformulated as
A(T) = S(to) [L+ al(to, t1) [L+ a” (tr1,t2) [L+ -+ al (tnv_a, tv—1) [+ ¥ (v, 1)) -]

where the random variables aT(ti_l,ti) in their case are pairwise independent. It can easily be

seen that for a Gaussian term structure model the coefficients aT(ti_l,ti) are defined as:

aT(ti_l,ti) = % - exp {—% /tl (o1(u) — U(u,T))2 + U%(u)du}

ti—1

(4) - exp {% /ti(a(u,ti) ~ o(u, T))2du — % / (o(u,ti 1) — a(u,T))%zu}

to to
t; t;

- exp / Ug(u)dWQT(u) + / (o1(u) — o(u,t;)) dWlT(u)

ti—1 ti—1

ti—1

- exp g — / (o(u,t;) — o(u,tiog)) dWi (u) 3 ,

to
which implies that the stochastic variables aT(ti_l,ti) are not pairwise independent unless
o(u,t;) =o(u,ti—1) Yu<ti1<t;, = o(u,t)=0 VYu<t.

For this reason the Fast Fourier Transformation cannot be applied to calculate the distribution

of the arithmetic average.



lurnbull and Vakeman (1991) suggest to approximate the unknown density p~ ol the sum
of lognormal distributed variables by the following Edgeworth expansion:
c20%f(z)  c3Pf(z) g f(x)

T ~ Ta _ 2 -
(5) P~ @)+ T T3 e T o

where f(z) denotes the lognormal density function, i.e.

B 1 1 (Inz — pys)?
f($) - \/ﬂ()’f weXp - 20_? ’

and = K(2,p0)-K(2,
3 = IC(37pT) - IC(
cs = K(4,p7) = K(4, f)+ 32

K(i, f) = Ef[(X — Ef[X])!] equals the i-th central moment with respect to the lognormal dis-
tribution given by f, resp. IC(i,pT) with respect to the unknown distribution given by P7T.
To calculate these moments, the first four non—central moments of the average A(7T') must be
computed. The parameters piy and oy are chosen such that the first two non-central moments
under both measures are identical. Given the moments and a vanishing error term, the value of

the arithmetic Asian option at time ?g is approximated by:

D(to,T) -ET [max {A(T) - X,0}]
Cc3 8f

o2 c ¢y 07
©) & Doty { N - XN o+ F00 - 5200+ 95000 )

-1 o2
% and N(.) denoting the standard normal distribution.

with d =
Since the a®(t;_1,t;) in (4) are stochastic dependent variables, it is not possible to calculate
the moments of A(7") as in Turnbull and Wakeman (1991). A generalized but much slower
algorithm is given in the Appendix.
Based on the strong relationship between the arithmetic and the geometric average, Vorst
(1992) suggests an alternative approximation of the arbitrage price for an Asian option and
furthermore derives upper and lower bounds for these prices. The Vorst (1992) approximation

and the bounds on the price of the Asian option are given by

>

st o)
ET [max {A(T) — X, 0}]
(7o N (dy) - XN (d - 6))

(to, T)
D(to,T)
(tOvT)
(to, T)

S
2
S

IN

Dito, T) (¢"* 37N (dy) = X N(dy — o) + ET[A(T)] - ET[G(T)])

where
_ mg—hl(X')—I—cré
oG ? oG ?

X' =X — (ET[A(T)] - ET[G(T)),

mg = ET[InG(T 1 9
2 - VTEnGETﬂ } = pla= et ot}



L hus the vVorst (1992) approximation only involves the computation ol the nirst moment Ior the
arithmetic average and the mean and variance of the logarithmic geometric average. We notice
that the approximation is derived by transforming the probability measure of a lognormal distri-
bution with support R to a lognormal distribution with support [ET[A(T)] — ET[G(T))], oo[.
Since the support of the random variable A(7) is RT the distance ET[A(T)] — ET[G(T)] > 0
is important for the approximation error. Furthermore the discounted difference is an upper

bound for the approximation error.

4.1 Arithmetic and geometric averages under the P7 measure

To derive the Vorst (1992) approximation for the arbitrage price of an Asian option the expec-
tation under the T-forward risk adjusted measure of the arithmetic and geometric averages have
to be calculated. Due to the stochastic behaviour of the interest rate, the computation of the
values is different from the one Vorst (1992) proposed. Furthermore it will turn out that the
behaviour of the expected values depends crucially on the term structure model. Although this
is mainly the case if we consider an unrealistic long time to maturity of the Asian option, this is
a critical point with respect to the assumption of lognormal bond prices respectively a Gaussian
term structure model. On the other hand we have to assume lognormality of bond prices to
derive the closed form expressions for the expected values of these averages in a straightforward

manner. The following theorems do summarize the results for these averages?.

Theorem 1 Let T(N):={0=1 <t < .. <ty =T} be a fized discretization of the time axis
and suppose that the time T-forward price dynamics of the underlying asset is given by (2). The

expected value of the arithmetic mean under the T-forward risk adjusted measure is given by:

N :
ET[A(T)) = Sg\tfo) z_: D(tivti) . eavp{/to [o1(u) — o(u,t;)][o(u, T) — o(u,t;)] du} .

If moreover the grid size is given by At = t;41—1; = % and the initial term structure is integrable

and bounded away from zero we have

At—0 to

T
lim ET[A(T)] = S(;:O) / D(ti, m - exp {/ [o1(u) — o(u,v)][o(u, T)— o(u,v)] du} dv.
to
The consequence of a stochastic interest rate implied by Theorem 1 is interesting. Suppose that

the interest rate is deterministic, then Theorem 1 implies that

N T
ETA(T)] = Sg\tfo) ; D(ti,ti) — S(;O) / D(ti,u)du for At — 0.

In the case of a flat initial term structure, i.e. D(to,t) = exp{—rt}, which is usually assumed
within the Black-Scholes framework, this implies that the forward value of the expected arith-
metic mean is strictly increasing in 7" with:

T
lim ET[A(T)] = S(to) / e du =

At—0 T

*For convenience to the reader the proofs are given in the Appendix.



UI course the ig value oI the expected arithmetic mean 1s strictly decreasing in 1 with

D(to, TYET[A(T)] = S(o) l[1 —e7 =0 for T — .

If the interest rate is stochastic, i.e. o(t,t') > 0 the situation is more complicated. Observe first
that for a reasonable Gaussian term structure model the price volatility differential o(u,T") —
o(u,v) should be either always positive® or negative Vu < v < T. Due to the symmetry of the
Brownian motion we therefore assume without loss of generality that o(u,T)—o(u,v) >0 Vu <
v < T. Therefore ET[A(T)] is strictly increasing in oy(u), and for non positive correlation, i.e.
o1(u) <0 Vu we have

T

This means that the expected arithmetic mean for a non-stochastic interest rate is an upper
bound for ET[A(T)]. We therefore can expect lower option values due to stochastic interest rates
in this situation.

If the correlation is positive, i.e. oy(u) > 0 Vu a sufficient condition for ET[A(T)] >

T
S(t .
(TO)JD(tlo,u)du is

/ [o1(1) — o, )] [o(u, T) — o(u, )] du > 0 Vo < T.
to

In the case of a Vasicek (1977) model with constant mean reversion a > 0, i.e o(u,v) =
2 (1 —exp{—a(v—u)}) and o1(u) = oy this is satisfied if Vo < T

z —av _ —aT 2 oav i _
0 < - (e e ) {a (e 1)+ 3 (1 — cosh(av))

. 571 o 2 cosh(av) — 1
o a e -1

— v for a—0.

This indicates higher prices of Asian options due to stochastic interest rates for small time to
maturities 7. For @ — 0,1i.e. the Ho and Lee (1986) model this condition is satisfied for 7" < 27L.
For time to maturities 7' > 22L simulations show that the expected arithmetic mean begins to
decrease® for a long time period followed by an increase at around 80 years.
To calculate the expected value of the geometric mean we use that under the Gaussian term
structure model the geometric mean is lognormally distributed. Therefore
1
ETIG(T)] = exp {ET InG(T)]+ 5 - VT[lnG(T)]} :
Theorem 2 Suppose that the initial term structure D(tg,-) : [0,T] — IRs¢ is integrable and
bounded away from zero. Let T(N) be a fized discretization of the time axis and suppose that

S(t) is given by (2). The expected value and the variance of the logarithmic geometric mean

°F.g. this is the case for the generalized Vasicek (1977) model and the continuous time limit of the Ho and
Lee (1986) model.
5This behaviour is illustrated in Figures 1 to 4.



unaer the - measure are qiven 0y

ETnG(T)] = InS(t iizptt» ii ti[Q 2(u)] d
(WG] = inStto) = - 32 DGt = 53 [ et + o] du

1 oL [t
+ﬁ z:; /to (20(u,T)[o1(u) — o(u, t;)] + o*(u, t;)) du

T
— B 1 / 1 /T / 2 2
AI?EOE [InG(T)] = nS(ty) T InD(to, u)du T [07(uw) + 03 (w)] dudv
to

T rv
—I—% /to /to (20(u,T)[o1(u) — o(u,v)]+ 0*(u,v)) dudv

If the interest rate is deterministic, the volatility functions oy /,(.) are constant and the initial

term structure is flat, i.e. D(%g,t) = exp{—rt} we get

1 1
. T _ 2 2
AI;I_I}OE InG(T)] = InS(t)+ §TT 7 [0f + 03] T.
Depending on the size of the volatility of the underlying asset, y/o? + o2, this either converges
to plus or minus infinity as the time to maturity T approaches infinity.

Since the sign of ET[InG(T)] for T — oo is determined by the last integral there is a strong
tendency to reverse the above result in the case of a stochastic interest rate, i. e. o(u,v) > 0.

To illustrate this consider the Vasicek (1977) model with constant parameters. Then

T
1 1 1a2T? 4 (aT + 1)e 0T — 1
: T
AI;I_I}OE InG(T) = InS(ty) — T /lnD(to, w)du — 1 (0} +03) T + 0102 3T
0
9 —a?T? — 4aTe 0T ¢ %(1 — e_MT) + aT
+o .
4T ot
For a flat initial term structure this can be simplified to:
i ETIG(TY] = S(to)+ 2 (r= 2 (o2 +02) + 22— Z )14 T ()
arto I N S P PP 108 T

where Tlim g(T) = 0. Therefore the Vasicek model approaches the same limit as in the deter-

mistic interest rate case for sufficiently large mean reversion coeflicient a. If instead the mean

reversion coefficient o is small, i.e. in the limit we get the Ho and Lee (1986) model, then

T

1 1 1 1

. . T

clyl{n}0 A%IEOE InG(T)] = InS(ty) — T /lnD(to,u)du 7 (07 +03) T + galaTz — EUQT3
0

— —0 for T — oo,

as long as D(tg,t) > exp{—kt®} Vt for some constants & > 0 and § < 3.



1 heorem o Unaer the assumpiions of 1heorem < we have

N-1 N

VG = 53 | [T =@+ (V=D - Y () | do
i=0 |7t j=i+1
) I 2 (.2 2
I VG = g [0 =0 (ol + o3 du

- : [/uT(T— u)-al(u)-a(u,v)dv] dut 7 tOT [/uT U(u,v)dvrdu

Consider again the Vasicek (1977) model and assume that a > 0 and 4/, are constant. Solving

in this situation the integral for the variance yields

33 22 —aT
lim VI nG(T)] = %(Uf +03)T — a0 - (2a (i 3045;05T+ D 6)
o (20373 —12aTe™ T — 3e729T 4 6aT(1 — aT) + 3
o ( 6a T2 )
1 2 2 1 2 1 23
— g(al + 05T — ZUIUT + %O' T for a — 0.

To clarify the impact of the stochastic interest rate consider as a border case a flat initial term
structure and deterministic interest rate, which imply
1 1
lim ET[G(T)] = S(to)- —(r—=(ci+03))T
Jim BTG = St)-exp {3 (7 - ot + o

and depending on the sign of r — (o7 4 03) this either converges to zero or plus infinity for
T — +oo. If instead the interest rate is stochastic, i.e. o(t,t') > 0 the convergence behaviour
may be different. Consider once again the Vasicek model with constant a > 0 and oy, and a
flat initial term structure, then

2

1 1 10 o2 10 o
' e = . “r- (o2 oy 22 2 S A
Aly—rioE [GT)] = 5(to) - exp { 2 (T 6(01 +ao2)+ 3a 6a2) '+ 202 4da3 + g(T)} ’

where lim7_., g(7) = 0. If the mean reversion coefficient « is large then the behaviour for
T — oo of the Vasicek model and the determistic interest case is the same. If instead « is small,
then the expected geometric average under the T-forward risk adjusted measure converges to

zero. As the extreme case consider the Ho and Lee model, i.e.

a—0 At—0

T
lim lim ET[G(T)] = S(to) - exp {—% D(ty, u)du — %(O‘% + )T + 3010T2 — LO'2T3}

which converges to zero for T — +oc as long as D(tg,1) > exp{—kt°} V¢ for k>0 and § < 3.
Suppose that the total volatility of the underlying asset og is fixed, i.e. 05 = \/m is
assumed to be constant. In this situation the expected value of the geometric average is a strictly
increasing function in ¢y. In other words, fixing og the expected geometric average under the
T-forward risk adjusted measure increases in the instantaneous correlation.
To summarize our results at this point, Figures 1 to 4 do show some of the effects. In these
figures we have chosen a flat initial term structure with D(to,t) = (1.06)~". Furthermore the

volatility of the underlying asset is equal to 25 %, i.e.

oddt := V[dS(1)|S(t)] = (of + 03) dt = 0.25%dL.



Expected Arithmetic Average

Arith. Ho-Lee (@) —

Arith. Vasicek a=0.1 (b) -----
Avrith. Vasicek a=0.75 (c)

Arith. det (d) -

S(T) =100 (e) -

O

1 0

15 Corr(Bond, Equity)

Time to maturity

Figure 1: Expected arithmetic averages for T' < 3 years, 120 realizations of the underlying asset
per year with S(tp) = 100, 05 = 25% and ¢ = 10%.

Expected Geometric Average

Geo. Ho-Lee (@) —
Geo. Vasicek a=0.1 (b) -----
Geo. Vasicek a=0.75 (c)
Geo. det (d) -~
)

1

0
Corr(Bond, Equity)

15

Time to maturity

Figure 2: Expected geometric averages for T' < 3 years, 120 realizations of the underlying asset
per year with S(tp) = 100, 05 = 25% and ¢ = 10%.

As model of the term structure we concentrate in Section 5 our price simulation of the Asian
option on the continuous time limit of the Ho and Lee (1986) model. With respect to Figures
1 to 4 this model is the extreme case of the Vasicek (1977) model. We regard the Ho and Lee
model as the most sensitive case. Therefore we set in Section 5 the price volatility of the zero
coupon bonds equal to o(u,v) = 0 - (v — u) with ¢ = 0.1. Furthermore note that by oy and o9

the instantaneous correlation between the underlying asset and the term structure is defined by

(8) poi= =L

Voi+oi 0s

10



Expected Arithmetic and Geometric Average

Avrith. Vasicek a=0.75 (a) ——
Arith. det (b)

Avrith. Vasicek a=0.1 (c)
S(T) = 100 (d)

)

)

Arith. Ho-Lee (e) -
Geo. Ho-Lee (f

(d)

0
Corr(Bond, Equity)

. . 15
Time to maturity

Figure 3: Expected arithmetic and geometric averages for T < 25 years, 120 realizations of the
underlying asset per year with S(#p) = 100, o5 = 25% and o = 10%.

Expected Arithmetic and Geometric Average

Avrith. det (a) —

Avrith. Vasicek a=0.75 (b) -----
Avrith. Vasicek a=0.1 (c) -~
Arith. Ho-Lee (d) ------

Geo. Ho-Lee (e) -

S(T) = 100 (f)

25 0.1

Time to maturity

Interest rate vol.

Figure 4: Expected arithmetic and geometric averages for T < 4 years, 120 realizations of the

underlying asset per year with S(#p) = 100, 05 = 25% and p = 0.

It means that we can parametrise 07 and oy in terms of the correlation such that the (total)

volatility of the underlying asset is always equal to o5 = 25%:

o1:[-1,+1] — [—0s,04]
(9) p v o1(p):=pos

and p = oxp):=(1-p*os.

11



I DlINuUIAt1on resuits 10r Aslian options

In this section we compare the different approximations proposed by Turnbull and Wakeman
(1991) and Vorst (1992) for the pricing of Asian options with the results obtained by a Monte
Carlo simulation. The starting point for the Monte Carlo simulation is the formulation of the
asset price dynamics as in (4). In the case of the Ho and Lee (1986) model and constant volatility

functions oy, this can be reformulated to:

St = S(tia) - % exp {—éfﬂ [(fior = T)?tioy — (1 — T)Qti]}

1

(10) exp {3 ot 4 o] (1~ ti0) = 5 ovo = goT| (7 =17 - (T - 107] |

exp {oy (WY (t;) = W (i) + o2 (WS (1) — Wi (ti-1)) }
exp{ —o [LWE(t) =t Wi (ti_q) — / w AW (u)

ti—1
To simulate the last part of equation (10) we notice that

t; t;
(11) tiWIT(ti) — ti_lwlT(ti_l) — / U dWlT(u) = / WlT(u) du
ti—1

ti—1

which is a normal distributed variable.

For the below simulations we have chosen ¢ = 10%, os = 25% and 120 time periods per
year, i.e. At = 1207, Furthermore we have chosen four different maturity dates corresponding
toT'=10.5,1, and 3 years.

The approximation of the Asian option by Turnbull and Wakeman (1991) involves the com-
putation of the non—central moments of the arithmetic mean up to order four. These moments
can be calculated using the algorithms proposed in the Appendix. On the other hand we could
estimate them by Monte Carlo simulation. Table 1 shows some results obtained by the algo-
rithms and the Monte Carlo simulation. The Monte Carlo simulation leads to a reasonable
approximation of the first and second moment and therefore also of the variance. Although the
approximation of the higher moments is not as good, the skewness and the leptokursis of the
unknown distribution are approximated quite satisfactorily. If not otherwise specified we use
100.000 paths and the antithetic technique” for the simulation, a flat initial term structure with
D(tg,t) = (1.06)7%, and the initial value of the asset S(¢y) = 100.

In line with Theorems 1 to 3 Table 1 shows the increase of the expected arithmetic and
geometric average as a function of the instantaneous correlation. Beyond this we see that the
variance of the arithmetic and geometric average decreases as a function in p. Therefore we
have two opposite effects which do influence the pricing of Asian options. The decrease of the
variance of the geometric average is for the chosen parameter constellation a direct consequence
of Theorems 2 and 3. However we should mention that there are parameter values for og, o and

T such that the variance is an increasing function in p. This is typically the situation if the

"This implies in total 200.000 paths
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time to maturity 1s extremely long. For the arithmetic average these Nndings are based on the

implementation of the numerical procedure but so far no analytical results can be given.

Density resp. histogram, correlation -0.25, pathes 10.000

\ Histogram Monte Carlo ——
i o Dénsity geometric mean (a) ===

(d)/ e o [ Vorst appr. (b) -
i ' N Q) TW without correction term (c)

Turnbull Wakemann appr. (d) ---

0.015

0.005

i
-0.005 i
|

i
40 60 80 100 120 140 160 180 200
Arithmetic mean

Figure 5: Densities of the arithmetic and geometric average with og = 0.25, Ho-Lee term
structure model with ¢ = 0.1,p = —0.25,7 = 3, D(tp,t) = 1.06™" and T = 3.

Both the Turnbull and Wakeman (1991) and the Vorst (1992) approximation of the Asian
option can be interpreted as an approximation of the distribution resp. probability density
function of the arithmetic mean of lognormal random variables. The approximation of Turnbull
and Wakeman (1991) is given by (6) whereas the one used by Vorst (1992) is given by pricing
formula (7). Since we price under the T—forward risk adjusted measure we can compare these
approximations with the density function obtained by the Monte Carlo simulation. Note, that
by multiplying with D(to,T") these functions do represent the implied state prices underlying the
different numerical approximations. The influence of the correlation, which already can be seen
in Table 1, seems to be quite important for the Turnbull and Wakeman (1991) approximation,
as indicated by Figure 5. Furthermore the Vorst (1992) approximation seems to be better than
the Turnbull and Wakeman (1991) approximation even if we do neglect the correlation term; but
nevertheless there is an underestimation of lower and an overestimation of higher realizations
relative to the Monte Carlo simulation.

Finally we can consider the pricing of Asian options. In addition to the antithetic technique we
use the arbitrage price of a geometric average option as a control variate. Thus the Monte Carlo

value for the Asian option is obtained by:

_I_
M N-T +
- _ D(tO,T) . 1 ) N-T
{T,.X) = sz:; W;S(tz)—X - +9(T, X)
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where the arbitrage price ol the geometric average option 1s equal to

9(T, X)

D(to, T) - exp {mG(T) + %aé(T)} N(d) = XN(d— o(T))

(12)  with  mg(T) = ET[InG(T)]
o&(T) = VIInG(T)]

—InX + ma(T) + o4(T)
oa(T)
As before we choose M = 100.000, N = 120 and T € {0.5,1,3}. Table 2 to 4 do summarize the

results for some values of the exercise price X where the initial asset value 5(%g) is equal to 100.

d =

The pricing of the Asian option is sensitive to the instantaneous correlation coefficient p.
The arbitrage price of an Asian option obtained by the Vorst (1992) formula is decreasing in p.
Define p(Vorst), as the implied correlation coefficient such that the Vorst (1992) solution equals
the simulated value of the Monte Carlo simulation. As Tables 2 to 4 in the Appendix show,
this implied correlation is not only substantially different for out-of-the-money options, but also
for-in-the-money options from the one used by the Monte Carlo simulation. Furthermore we can
conclude that for the out-of-the-money options the Turnbull and Wakeman (1991) approximation
gives prices in excess of the other methods independently of the correlation coefficient. For a high
correlation and out-of-the-money options the three methods give approximately equal prices. For
other correlations the simulated prices of out-of-the-money options are between those obtained
by the two approximation methods. Looking at deep-in-the-money options we furthermore
observe that the Monte Carlo simulation leads to the highest prices. These conclusions are also
obvious looking at the numerical results in Table 4. Taking e.g. p = —0.5 and the exercise
price equal to 115 the prices obtained by applying Turnbull-Wakeman, Vorst and the simulation
are 9.31,8.25 and 8.86 respectively. These differences are of a nonnegligible size. In general
the Turnbull-Wakeman prices seem to be better supported by the simulations than the prices
derived by the Vorst approximation. The same conclusion can be reached for a time to maturity
of 2 years whereas the differences between the different methods are nonessential for smaller
time to maturities.

The three last columns in Tables 2 to 4 represent the standard deviations of the simulated
arithmetic Asian options and the geometric average options. Applying the control variate tech-
nique for the Asian options, the standard deviation o.(Asian) is on average equal to 0.1-0(Asian)
where o(Asian) refers to the standard deviation applying only the antithetic technique. These
standard deviations are small meaning that we can have confidence in our pricing results.

To elaborate further on the comparison between the methods we turn our attention to Figures
6 to 8. Figures 6 and 7 illustrate the same situation but with exchanged z- and y-axis. Taking
the lower bound derived by Vorst we consider the difference between the price approximations
to this lower bound. For the exercise prices considered the Vorst approximation leads to prices
which are lower than those obtained from the Monte Carlo simulation. The price surface for
the Turnbull-Wakeman approximation crosses both of the other surfaces and is dominating in
roughly half the area corresponding to the out-of-the-money options.

Finally Figure 8 shows the ratio of the simulated prices to the approximated prices measured

15



Asian Option Prices - Lower Bound: 3 years to maturity

Monte Carlo simulation (a) ——
(a) Turnbull Wakeman appr. (b) -----
Vorst appr. () ——-

Difference

95

corr(Bond, Underlying)
Exercise price

Figure 6: Difference between price approximation and the lower bound for an Asian option with
3 years to maturity, 120 realizations of the underlying asset per year, os = 25% and Ho-Lee

term structure model with ¢ = 10%.

in percentage. For in-the-money options the ratio between the simulated and the Turnbull-
Wakeman prices is decreasing in p, whereas the opposite is shown in the case for out-of-the-
money options. For out-of-the-money options the Vorst approximation is clearly dominated by
the Turnbull-Wakeman approximation. Observe that major differences in the approximations

appear for out-of-the-money option.

6 Conclusion

Taking expectation under the T-forward risk adjusted measure the behaviour of the expected
arithmetic and geometric averages is strongly influenced by the stochastic model of interest
rates. In particular for the Ho and Lee (1986) model we observe a discontinuity of the expected
geometric mean. Under the regime of stochastic interest rates the expected geometric average
converges, independent of the instantaneous correlation, towards zero, whereas in the determin-
istic case it approaches plus infinity as the time to maturity increases. In contrast to this the
Vasicek (1977) model with a sufficiently large degree of mean reversion does not generate this
unexpected behaviour. On the other hand the behaviour of the expected arithmetic mean de-
pends on the instantaneous correlation. If the correlation is non positive the expected arithmetic
mean under stochastic interest rates is bounded from below by the expected arithmetic mean
under deterministic interest rates. In the case of positive instantaneous correlation between the
term structure of interest rates and the underlying asset and for short time to maturities the
expected arithmetic average is higher than compared to the situation under the deterministic
interest rates. The mean reversion in the the Vasicek model once again has a positive effect on
the behaviour of the expected arithmetic mean. In contrast to this, without mean reversion the
expected arithmetic mean decreases for a large range of maturities.

Looking at the literature on Asian option pricing we considered the approximation methods
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Asian Option Prices - Lower Bound: 3 years to maturity

(b)

Difference

Monte Carlo simulation (a) —
Turnbull Wakeman appr. (b) -----

251 Vorst appr. (¢) —--

2

15

110 . .
105 Exercise price

corr(Bond, Underlying) ’ 1 95

Figure 7: Difference between price approximation and the lower bound for an Asian option with
3 years to maturity, 120 realizations of the underlying asset per year, g = 25% and and Ho-Lee

term structure model with ¢ = 10%.

MC Price / Approximation of Asian Option Price: 3 years to maturity

Vorst appr. (a) —
Percent 100 Percent (b) -----
Turnbull Wakeman appr. (¢) -~

115

. . - Bond, Underlyi
Exercise price 125 1 corr(Bond, Underlying)

Figure 8: Monte Carlo values as percentage of the respectively numerical approximation for
an Asian option with 3 years to maturity, 120 realizations of the underlying asset per year,

og = 25% and and Ho-Lee term structure model with ¢ = 10%.

developed by Turnbull and Wakeman (1991) and Vorst (1992). We generalized these techniques
to include the case of a Gaussian term structure model. These generalizations are only valid
for a Gaussian model, since we have to preserve the lognormal structure of the underlying asset
under the appropriate forward risk adjusted measure. From a pure theoretical point of view
the Vorst approximation shows up a more reasonable behaviour than the Turnbull-Wakeman
approximation. This is based on the strange behaviour of the correction term used by the
Turnbull-Wakeman method.

To compare the pricing results, we implemented extensive Monte Carlo simulations. To
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reduce the variance we used the antithetic and control variate technique where the geometric
average option was used as the control variate. Our simulation gives for the pricing as well
as for the approximation of the unknown probability density of the arithmetic mean quite
reasonable fits. Comparing the probability densities implied by the Monte Carlo simulation to
those implied by the two analytical approximations, we can conclude that the Turnbull-Wakeman
method produces a completely unrealistic behaviour if we consider times to maturities extending
2 years. Furthermore this behaviour, which is due to the high order Edgeworth expansion goes
from bad to worse for negative instantaneous correlation between the underlying asset and the
bond market. In this respect the Vorst approximation behaves much nicer, but nevertheless
indicates a serious underpricing.

As a general finding, with respect to the pricing of Asian options, we conclude that the
instantaneous correlation of the underlying asset and the term structure of interest rates is the
principal parameter of importance. The arbitrage price seems to be negatively related with the
correlation coefficient. Considering the price of an Asian option as a function of the instantaneous
correlation we conclude, that the increase in the expected value of the arithmetic average, as
proven by Theorem 1, is completely compensated by the decrease of the variance of the arithmetic
average. Our simulations indicate a clear underpricing by the Vorst method. The conclusion
for the Turnbull-Wakeman approximation is less strict and depends on both the exercise price
and the instantaneous correlation. For deep-out-of-the money options and independent of the
instantaneous correlation the Turnbull-Wakeman approximation implies higher Asian option
prices than those produced by our Monte Carlo simulation. Whereas for deep in-the-money
options the opposite is true and the Vorst solution is even higher than the Turnbull-Wakeman
approximation in this situation if we consider negative correlation. For out-of-the money options
and high positive correlation all three methods are close to each other, whereas for a negative
correlation and out-of-the-money options the results differ substantially.

The results for the pricing of Asian options under stochastic interest rates do depend on the
time to maturity. Our calculations indicate that the influence of a stochastic interest rate is less

pronounced for time to maturities smaller than 1 year.
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Appenailx

Proof of Theorem 1

Due to the stochastic independence of Wi and W we know that:

BT[S(1)] = D*?XO;) exp {;/(Ul(u) — o(u, T))? du}
exp { % / (o(u,t;) — o(u,T))* du + %/(Ul(u) —o(u,t;))? du}
= Digs?;) - exp {/ [o1(u) — o(u,t;)][o(u,T) — o(u,t;)] du}
g
Proof of Theorem 2
The definition of the geometric mean implies that
N
FGm)] = 30 E ()]
where  ET[In(S(¢;))] = In(S(to)) — In(D(to,t;))
5 /((Ul(u) — o(u,T))? + o3(u))du + %/(U(u,ti) — o(u,T)  du
= In(S(t0) ~ n(D(to, 1)) - 5 [ (aFw) + o)) du
+% / (20(u, T)[ov(w) — o(u, )] + 0*(u, 1;)) du
g

Proof of Theorem 3

We have to calculate the variance of a sum of correlated stochastic integrals under the T-forward

risk ajusted measure, i.e.

VT

N b ti
N;H (Z /(01(U) — o(u, t;))dW{ (u) + /Uz(u)dWQT(u))]

=0 to to

Since Wi and W] are stochastically independent we can consider the variance of both sums of

stochastic integrals separately. For the stochastic integrals with respect to Wy we immediately
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obtain:

LN . N-1 fig
VI =S [ostwaw | = v | S =) [ ostwand )
=1y =0 t:
0 2
1 N-1 tiga
= 72 Z(N—i)2 / o3 (u)du
=0 t
The same idea can be applied to the stochastic integrals with respect to WlT
1 X
YT WZ/(Ul(u) — o(u, ) AW (u)
=1 to
| [N — tz+1
= WVT ;/ — i)oy(u)dWi(u z;/ (u, t;)dWi (u)

1 N tl+1 N—1 tz-l-l
IWVTE/ — i)oy(u)dWi(u E/E o (u, t;)dW{ (u)
1=0 ti ti 7=1+1
| Nl fig1 N ?
= — (N =i)or(u) = Y ofu,t;) | du

1=0 7=1+1

Recursive algorithms for the non central moments

From the previous discussion we know that under the T-forward measure PT the value ot the

underlying asset (%) is determined by equation (2). Consider the stochastic part of this equation
seperately and for simplicity of the notation define:

t;

Vo= [ -otwndii

Zi = /O’Q(U) AW] (u)
to
t;

vij = exp / [01(u) — o(u,t;)][o(u,t;) — o(u,t;)] du

to
Due to the underlying assumptions ¥ and Z are related in the following way:
a) Y; and Z; are stochastic independent, and ET[Y;] = ET[Z;] = 0.

b) Fori<j: ET[Z;,2]=E"[Z?).
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c) rort < g:

ET[Y;, Y]
= ET (/(Ul(u) = U(uvti)dwlT(U)) (/(01(U) —o(u,t;)) = (o(u, t;) — o(u, t;))dW{ (1)
e ( [t - ot yawy <u>) ( [ty - otutnawt (w))]
— ET[v7] —/[Ul(u) —o(ut)][o(usty) — o(u, 1) du=  ET[Y2] - lnw,
Finally define:
o; = exp {%V[Zi + Yz’]}
d; = D(fé(: 0 -exp {/ [o1(u) — o(u,t;)][o(u,T) — o(u,t;)] du}
= S(t) = di-o;t-exp{Yit Z})

Proposition

Under the assumptions on the process of the underlying asset S(¢;) = 5; we have V0 <17 < j <
E<l< NandVa,y,n70cN:

ET[S?) = df otV

T 2
PUSES]) = died) o] o
ET[SZ»“S}SZ] = d¥-d-d] .U;‘(a+2w+2n—1) ) U;(wzn—l) ) UZ(”—U AR
ETISIS]SEST) = - dfdf o7 0TI O gl g0
LTy et om0 nd

i Vg Vil Vi Vi Vg

The algorithms will be derived by means of the following vector notations.

d(l) = (dzv U 7dN) € ]R'N-I—l_i; i = 17 7N )
v(i) = (Viit1, ,ViN) € ]RN_i; i=1,..,.N-1
1. Moment
1 N N
ET[FZ S=> di=<d(1),1>
=1 =1
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2. Moment

z(N) = ET[SJQ\T] = djzvajzv and fore =N —-1,...,1
N 2
i) = BT30S
7=t
N N 2
= ETISH42ET |5 D S| +ET | DD S
J=itl j=i+1
= dPol4+2<d(i+ 1), v(i)>dio? +x(i+ 1)
N 2
= F7 izs' — Lq;(l)
N =1 Z N2
3. Moment
$(N) = ET[S]SV] :d?VU]ESV and fOI’iIN— 17 71
N 3
x(l) = BT ZS]‘
7=t

2 3
N N N
= BTSSP 43R (S| >0 S | +3ET [P D] S| +ET | DS
J=i+1 j=i+1 j=i+1
= B+ 3a(ii+ 1) +3<d(i+1,0(1)) > dPeb +a(i+1)
where a(i, N) := didyoloxviy andforj=N—1,---,i+1
N
(Z(l,]) = (Z(i,j + 1) + dzd?U;lU]zVE] +2 Z dll/i[l/]‘[ did]‘O'?O'jl/ij
=j+1
3
= kKt iis = Lﬂﬁ(l)
N =1 Z N?®
4. Moment
a(N) = BT [Sﬁr] :d}l\fo-]l\fz and for j= N —1,---,1
N 4
(i) = ET sz
j=t

= ET[S)] +4ET +6ET

N N 2
S Y s ST S
7=1+1 i—i41

N 3 N 4
J=i+1 j=i+1 ]

= dio* +4<d(i+1),v(i)’ > d&0}* +6c(i,i+ 1) +4a(i,i+ 1) +a(i+ 1)

+4pt +ET
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where

a(i,N) = did}ofaS andforj=N—-1,---,i+1
N
a(t,j) = didjafia? +3 Z dll/i[l/?l didfafia?yg +3b(i,7,j+1)+a(i,j+ 1)
I=j+1
with b(i,j, N) := didjd?va?afafvyijnyny

and fork=N—-1,---,7+1

Y g . J.J2.6_4 2 2 2
b(l,],k‘) = dld]dkgio-jo-kyl]l/’ikl/jk

N
+2 ( E dll/ill/jll/kl) didjdrololoivirvijvir + b(i, j, k+ 1)

[=k+1
and
c(i,N) = didyo%3vly andforj=N—1,---,i+1
N
c(i,j) = d?dfa}oajzl/fj +2 Z dkl/fkl/jk d?djailoajzl/?j +e(t,j+ 1)

k=7+1

4
gl 1
=1
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