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The Pricing of Asian Options under Stochastic Interest Rates

Abstract

The purpose of this paper is to analyse the e�ect of stochastic interest rates on the pricing of

Asian options. It is shown that a stochastic, in contrast to a deterministic, development of the

term structure of interest rates has a signi�cant in
uence.

The price of the underlying asset, e.g. a stock or oil, and the prices of bonds are assumed to

follow correlated two dimensional Ito processes. The averages considered in the Asian options

are calculated on a discrete time grid, e.g. all closing prices on Wednesdays during the lifetime

of the contract. The value of an Asian option will be obtained through the application of Monte

Carlo simulation, and for this purpose the stochastic processes for the basic assets need not

to be severely restricted. However to make comparison with published results originating from

models with deterministic interest rates we will stay within the setting of a Gaussian framework.
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1 Introduction

The basic economic setting in which pricing of Asian options has been analysed is characterized

by an underlying asset which adheres to a geometric Brownian motion and by a deterministic

development of the bond market. No easily implementable closed form solution to the pricing

problem has so far been developed in the literature. The suggested methods of pricing all builds

on di�erent schemes of approximations.

Kemna and Vorst (1990) show that the Asian option price, subject to the boundary condition

characteristic for the option considered, is the solution to a second order partial di�erential

equation in three variables, time, spot price of the underlying asset and the known information

about the average value. Rather than solving the partial di�erential equation, Kemna and Vorst

apply Kolmogorov's backward equation and obtain that the price of the Asian option can be

written as the discounted expected value of the maturity payment of the option. To solve the

pricing equation which involves knowledge of the distribution of a sum of correlated lognormal

distributions Kemna and Vorst apply Monte Carlo simulation.

Carverhill and Clewlow (1990) solve the pricing equation applying Fast Fourier Transform

techniques to obtain an approximation to the law of the average.

Levy (1992) argues that the sum of correlated lognormal random variables is well approxi-

mated by another lognormal distribution and applying Wilkinson's approximation a lognormal

distribution with the �rst and second moment chosen in accordance to the correct distribution

is applied as a surrogate. In Turnbull and Wakeman (1991) an Edgeworth expansion, involving

the �rst four cumulants, is used to represent the approximating distribution by a lognormal

distribution.

Vorst (1992) uses the fact that the geometric average is never greater than its corresponding

aritmetic average, and due to the assumed geometric Brownian motion of the underlying asset

the geometric average is also lognormal and the price of the geometric Asian option can be found

in closed form. By means of this Vorst calculates a lower as well as an upper bound for the

arithmetic Asian option, and then chooses in an ad hoc manner the price of the Asian option in

a way which guarantees that the established bounds are ful�lled.

Geman and Yor (1993) succeed in obtaining a closed form solution for the Asian option but it

is unfortunately of a very complicated form. To determine the price an inversion of a nontrivial

Laplace transform has to be performed.

In this paper we will relax the assumption concerning the deterministic nature of the bond

market but retain the geometric Brownian motion for the underlying asset. The stochastic

interest rate enviroment will be assumed to be Gaussian which in accordance to e.g. Jamshidian

(1991) and El Karoui, Lepage, Myneni and Viswanathana (1991) implies a lognormal distribution

of the zero coupon bond prices. Pricing of standard options in this setting has been analysed in

e.g. Amin and Jarrow (1992) and Amin and Bodurtha Jr. (1995). The pricing of Asian options

and in particular the in
uence of the stochastic interest rate on the pricing will be analysed in

this paper.

The schedule of the paper is as follows. In section 2, the notation and the de�nition of the

contract is presented. Section 3 deals with the pricing of Asian options. A discussion of di�erent

numerical approaches is given in section 4. Section 5 contains the simulation result. Finally,
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section 6 concludes.

2 Notation and de�nition of the contract

The following notation will be applied:

X exercise price of the Asian option.

tn a date included in the average calculation, n = 1; 2; :::;N ; to = 0.

tN the maturity date of the option contract, tN = T .

S(t) the price of the underlying asset at time t.

D(t; t0) the price at date t of a zero coupon bond with maturity date t0; t � t0.

A(tn) =
1
n

nP
i=1

S(ti) the arithmetic average of the spot prices at the date tn; n = 1: : : : ; N .

G(tn) = n

s
nQ
i=1

S(ti) the geometric average of the spot prices at the date tn; n = 1: : : : ; N .

VA(T ) = max

�
1
N

NP
i=1

S(ti)�X; 0

�
= max fA(tN )�X; 0g

the bene�t from the arithmetic Asian option received at maturity date T .

VG(T ) = max

(
N

s
NQ
i=1

S(ti)�X; 0

)
= max fG(tN)�X; 0g

the bene�t from the geometric Asian option received at maturity date T .

r(t) the instantaneous risk free rates of interest at time t.

Next the option prices at time t0, VA(t0) and VG(t0), will be found in accordance to the

absence of arbitrage possibilities in the �nancial market. We restrict ourself to the pricing of

European type Asian call options where the averaging period still has to start. The value of

an Asian option during the averaging period can be calculated the same way by adjusting the

exercise price X , see e.g. Kemna and Vorst (1990) and Vorst (1992).

3 Pricing of the Asian option

Assume that the dynamics of the underlying asset S(t) is determined by a lognormal di�usion

process with time dependent volatility. For the interest rate market we concentrate on a Gaussian

term structure model1, which is well known from previous work by Jamshidian (1991) and El

Karoui, Lepage, Myneni and Viswanathana (1991). Under the absence of arbitrage opportunities

there exists a probability measure P � such that the stochastic behaviour of both markets are

related in the following way:

dS(t) = r(t)S(t)dt+ �1(t)S(t)dW
�

1 (t) + �2(t)S(t)dW
�

2 (t);

dD(t; t0) = r(t)D(t; t0)dt+ �(t; t0)D(t; t0)dW �

1 (t);

1As special cases we will discuss the Vasicek (1977) model and the continuous time limit of the Ho and Lee

(1986) model
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whereW �

1 andW �

2 are independent standardWiener processes. The volatility functions �1(t); �2(t)

and �(t; t0) are assumed to be non-stochastic and satisfy the usual regularity conditions2, in par-

ticular �(t; t) = 0 and D(t; t) = 1 with probability 1. In other words we are working under the

so called risk neutral martingale measure. Note that by
�1(t)p

�2
1
(t)+�2

2
(t)

the instantaneous correla-

tion between both markets is determined. Due to the stochastic development of r(t); it will be

convenient to work in the T-forward risk adjusted probability measure, denoted by PT , where

it is well known3, that the di�erential equations for D(t;t0)
D(t;T )

and S(t)
D(t;T )

are respectively given by

d

�
D(t; t0)

D(t; T )

�
=

D(t; t0)

D(t; T )
� (�(t; t0)� �(t; T ))dWT

1 (t);

d

�
S(t)

D(t; T )

�
=

S(t)

D(t; T )
� [(�1(t)� �(t; T ))dWT

1 (t) + �2(t)dW
T
2 (t)] ;

where WT
1 and WT

2 are independent standard Wiener processes under the PT probability mea-

sure. The change to the forward risk adjusted measure PT implies that the stochastic discounting

is replaced by the time-t measurable discounting and in particular that

S(t)

D(t; T )
= ET

t

�
S(T )

D(T; T )

�
= ET

t [S(T )](1)

in contrast to

S(t) = Et

�
exp

�
�
Z T

t

r(u)du

�
S(T )

�
under the risk neutral probability measure. The solutions of the above stochastic di�erential

equations under the T -forward risk adjusted measure PT are given by:

S(t) = S(t0) �
D(t; T )

D(t0; T )
� exp

8<
:�1

2

tZ
t0

�
(�1(u)� �(u; T ))2+ �22(u)

�
du

+

tZ
t0

(�1(u)� �(u; T ))dWT
1 (u) +

tZ
t0

�2dW
T
2 (u)

9=
; ;

D(t; T )

D(t0; T )
=

D(t; t)

D(t0; t)
� exp

8<
:1

2

tZ
t0

(�(u; t)� �(u; T ))2 du �
tZ

t0

(�(u; t)� �(u; T ))dWT
1 (u)

9=
; :

This allows us to express the the solution for the underlying asset as

S(ti) =
S(t0)

D(t0; ti)
� exp

�
�1

2

Z ti

t0

((�1(u)� �(u; T ))2+ �22(u))du

�

�exp
�
1

2

Z ti

t0

(�(u; ti)� �(u; T ))2du

�
(2)

�exp

8<
:
Z ti

t0

(�1(u)� �(u; ti))dW
T
1 (u) +

tiZ
t0

�2(u)dW
T
2 (u)

9=
; :

2In a general setup we could allow for stochastic volatility functions, see e.g. Geman, El Karoui and Rochet

(1995), but for the continuous time numerical procedure we will be forced to restrict ourselves to non-stochastic

functions.
3In a similar economic context see e.g. Nielsen and Sandmann (1995).
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The value of an Asian option with the discrete average A(tN ) is determined by

VA(t0) = D(t0; T )E
T [max fA(tN)�X; 0g] :(3)

Under the speci�ed St-process and the Gaussian interest rate dynamics, we know that the

arithmetic average is determined by a sum of correlated lognormal distributed variables. So far,

there exists no closed form expression for the distribution of such a sum. Therefore, numerical

techniques have to be applied to approximate the value VA(t0) of an Asian option. Observe

that (2) turns itself into a much simpler equation if �(u; t) = 08u � t8t corresponding to a non

stochastic development of the term structure of interest rates. In this case easily implementable

techniques are available in the literature. In the following section these methods will be extended

to include the Gaussian term structure model, and we show that major di�erences appear. Then

in section 5, applying the formal analysis of section 4, we show that the parameter which mainly

in
uences the pricing of Asian options is the correlation between the underlying asset and the

term structure.

4 Numerical approximation for Asian options

In a similar economic setting, Carverhill and Clewlow (1990) solve the pricing equation for an

Asian option by applying the Fast Fourier Transformation technique in order to calculate the

distribution of the arithmetic average. Their idea is to rewrite the equation of the underlying

asset such that S(ti) = S(ti�1) � aT (ti�1; ti) which implies that the arithmetic average can be

reformulated as

A(T ) = S(t0)
�
1 + aT (t0; t1)

�
1 + aT (t1; t2)

�
1 + � � �+ aT (tN�2; tN�1)

�
1 + aT (tN�1; T )

�
: : :
���

;

where the random variables aT (ti�1; ti) in their case are pairwise independent. It can easily be

seen that for a Gaussian term structure model the coe�cients aT (ti�1; ti) are de�ned as:

aT (ti�1; ti) :=
D(t0; ti�1)

D(t0; ti)
� exp

(
�1

2

Z ti

ti�1

(�1(u)� �(u; T ))2+ �22(u)du

)

� exp
�
1

2

Z ti

t0

(�(u; ti)� �(u; T ))2du� 1

2

Z ti�1

t0

(�(u; ti�1)� �(u; T ))2du

�
(4)

� exp

8><
>:

tiZ
ti�1

�2(u)dW
T
2 (u) +

tiZ
ti�1

(�1(u)� �(u; ti))dW
T
1 (u)

9>=
>;

� exp

8<
:�

ti�1Z
t0

(�(u; ti)� �(u; ti�1))dW
T
1 (u)

9=
; ;

which implies that the stochastic variables aT (ti�1; ti) are not pairwise independent unless

�(u; ti) = �(u; ti�1) 8u � ti�1 < ti =) �(u; t) = 0 8u � t:

For this reason the Fast Fourier Transformation cannot be applied to calculate the distribution

of the arithmetic average.
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Turnbull and Wakeman (1991) suggest to approximate the unknown density �T of the sum

of lognormal distributed variables by the following Edgeworth expansion:

�T (x) � f(x) +
c2

2!

@2f(x)

@x2
� c3

3!

@3f(x)

@x3
+
c4

4!

@4f(x)

@x4
(5)

where f(x) denotes the lognormal density function, i.e.

f(x) =
1p
2��f

1

x
exp

(
�(lnx� �f )

2

2�2f

)
;

and c2 = K(2; �T)�K(2; f);
c3 = K(3; �T)�K(3; f);
c4 = K(4; �T)�K(4; f) + 3c23:

K(i; f) = Ef [(X � Ef [X ])i] equals the i-th central moment with respect to the lognormal dis-

tribution given by f , resp. K(i; �T) with respect to the unknown distribution given by PT .

To calculate these moments, the �rst four non{central moments of the average A(T ) must be

computed. The parameters �f and �f are chosen such that the �rst two non-central moments

under both measures are identical. Given the moments and a vanishing error term, the value of

the arithmetic Asian option at time t0 is approximated by:

D(t0; T ) �ET [max fA(T )�X; 0g]

� D(t0; T ) �
�
e
�f+�

2
f=2N(d)�XN(d� �f) +

c2

2!
f(X)� c3

3!

@f

@x
(X) +

c4

4!

@2f

@x2
(X)

�
(6)

with d =
�f�ln(X)+�2

f

�f
and N(:) denoting the standard normal distribution.

Since the aT (ti�1; ti) in (4) are stochastic dependent variables, it is not possible to calculate

the moments of A(T ) as in Turnbull and Wakeman (1991). A generalized but much slower

algorithm is given in the Appendix.

Based on the strong relationship between the arithmetic and the geometric average, Vorst

(1992) suggests an alternative approximation of the arbitrage price for an Asian option and

furthermore derives upper and lower bounds for these prices. The Vorst (1992) approximation

and the bounds on the price of the Asian option are given by

D(t0; T )
�
emG+

1

2
�2GN(d1)�XN(d1� �G)

�
� D(t0; T )E

T [max fA(T )�X; 0g]
� D(t0; T )

�
emG+

1

2
�2GN(d2)�X 0N(d2� �G)

�
(7)

� D(t0; T )
�
emG+

1

2
�2
GN(d1)�XN(d1� �G) +ET [A(T )]� ET [G(T )]

�
;

where

d1 =
mG�ln(X)+�2

G

�G
; d2 =

mG�ln(X 0)+�2
G

�G
;

X 0 = X � (ET [A(T )]�ET [G(T )]);

mG = ET [lnG(T )]

�2G = V T [lnG(T )]

)
) ET [G(T )] = exp

�
mG + 1

2�
2
G

	
:
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Thus the Vorst (1992) approximation only involves the computation of the �rst moment for the

arithmetic average and the mean and variance of the logarithmic geometric average. We notice

that the approximation is derived by transforming the probability measure of a lognormal distri-

bution with support IR+ to a lognormal distribution with support
�
ET [A(T )]�ET [G(T )];1

�
:

Since the support of the random variable A(T ) is IR+ the distance ET [A(T )]� ET [G(T )] > 0

is important for the approximation error. Furthermore the discounted di�erence is an upper

bound for the approximation error.

4.1 Arithmetic and geometric averages under the P T measure

To derive the Vorst (1992) approximation for the arbitrage price of an Asian option the expec-

tation under the T -forward risk adjusted measure of the arithmetic and geometric averages have

to be calculated. Due to the stochastic behaviour of the interest rate, the computation of the

values is di�erent from the one Vorst (1992) proposed. Furthermore it will turn out that the

behaviour of the expected values depends crucially on the term structure model. Although this

is mainly the case if we consider an unrealistic long time to maturity of the Asian option, this is

a critical point with respect to the assumption of lognormal bond prices respectively a Gaussian

term structure model. On the other hand we have to assume lognormality of bond prices to

derive the closed form expressions for the expected values of these averages in a straightforward

manner. The following theorems do summarize the results for these averages4.

Theorem 1 Let T (N) := f0 = t0 < t1 < ::: < tN = Tg be a �xed discretization of the time axis

and suppose that the time T-forward price dynamics of the underlying asset is given by (2). The

expected value of the arithmetic mean under the T-forward risk adjusted measure is given by:

ET [A(T )] =
S(t0)

N

NX
i=1

1

D(t0; ti)
� exp

�Z ti

t0

[�1(u)� �(u; ti)] [�(u; T )� �(u; ti)]du

�
:

If moreover the grid size is given by �t = ti+1�ti = T
N

and the initial term structure is integrable

and bounded away from zero we have

lim
�t!0

ET [A(T )] =
S(t0)

T

TZ
t0

1

D(t0; u)
� exp

�Z v

t0

[�1(u)� �(u; v)] [�(u; T )� �(u; v)]du

�
dv:

The consequence of a stochastic interest rate implied by Theorem 1 is interesting. Suppose that

the interest rate is deterministic, then Theorem 1 implies that

ET [A(T )] =
S(t0)

N

NX
i=1

1

D(t0; ti)
! S(t0)

T

TZ
0

1

D(t0; u)
du for �t! 0:

In the case of a 
at initial term structure, i.e. D(t0; t) = expf�rtg, which is usually assumed

within the Black-Scholes framework, this implies that the forward value of the expected arith-

metic mean is strictly increasing in T with:

lim
�t!0

ET [A(T )] =
S(t0)

T

TZ
0

erudu =
S(t0)

T

1

r
[erT � 1]!1 for T !1:

4For convenience to the reader the proofs are given in the Appendix.
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Of course the t0 value of the expected arithmetic mean is strictly decreasing in T with

D(t0; T )E
T [A(T )] =

S(t0)

T

1

r
[1� e�rT ]! 0 for T !1:

If the interest rate is stochastic, i.e. �(t; t0) > 0 the situation is more complicated. Observe �rst

that for a reasonable Gaussian term structure model the price volatility di�erential �(u; T )�
�(u; v) should be either always positive5 or negative 8u � v � T: Due to the symmetry of the

Brownian motion we therefore assume without loss of generality that �(u; T )��(u; v)� 0 8u �
v � T: Therefore ET [A(T )] is strictly increasing in �1(u); and for non positive correlation, i.e.

�1(u) � 0 8u we have

ET [A(T )] <
S(t0)

T

TZ
0

1

D(t0; u)
du :

This means that the expected arithmetic mean for a non-stochastic interest rate is an upper

bound for ET [A(T )]:We therefore can expect lower option values due to stochastic interest rates

in this situation.

If the correlation is positive, i.e. �1(u) > 0 8u a su�cient condition for ET [A(T )] >

S(t0)
T

TR
0

1
D(t0;u)

du is

Z v

t0

[�1(u)� �(u; v)] [�(u; T )� �(u; v)]du > 0 8v < T:

In the case of a Vasicek (1977) model with constant mean reversion � > 0, i.e �(u; v) =
�
�
(1� expf��(v � u)g) and �1(u) = �1 this is satis�ed if 8v < T

0 <
�

�

�
e��v � e��T

� h�1
�
(e�v � 1) +

�

�2
(1� cosh(�v))

i
=) 2

�1

�
>

2

�

cosh(�v)� 1

e�v � 1
! v for �! 0:

This indicates higher prices of Asian options due to stochastic interest rates for small time to

maturities T . For �! 0, i.e. the Ho and Lee (1986) model this condition is satis�ed for T < 2�1� .

For time to maturities T > 2�1� simulations show that the expected arithmetic mean begins to

decrease6 for a long time period followed by an increase at around 80 years.

To calculate the expected value of the geometric mean we use that under the Gaussian term

structure model the geometric mean is lognormally distributed. Therefore

ET [G(T )] = exp

�
ET [lnG(T )] +

1

2
� V T [lnG(T )]

�
:

Theorem 2 Suppose that the initial term structure D(t0; �) : [0; T ] ! IR>0 is integrable and

bounded away from zero. Let T (N) be a �xed discretization of the time axis and suppose that

S(t) is given by (2). The expected value and the variance of the logarithmic geometric mean

5E.g. this is the case for the generalized Vasicek (1977) model and the continuous time limit of the Ho and

Lee (1986) model.
6This behaviour is illustrated in Figures 1 to 4.
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under the PT measure are given by

ET [lnG(T )] = lnS(t0)�
1

N

NX
i=1

lnD(t0; ti)�
1

2N

NX
i=1

Z ti

t0

�
�21(u) + �22(u)

�
du

+
1

2N

NX
i=1

Z ti

t0

�
2�(u; T ) [�1(u)� �(u; ti)] + �2(u; ti)

�
du

lim
�t!0

ET [lnG(T )] = lnS(t0)�
1

T

TZ
t0

lnD(t0; u)du�
1

2T

Z T

t0

Z v

t0

�
�21(u) + �22(u)

�
dudv

+
1

2T

Z T

t0

Z v

t0

�
2�(u; T ) [�1(u)� �(u; v)]+ �2(u; v)

�
dudv

If the interest rate is deterministic, the volatility functions �1=2(:) are constant and the initial

term structure is 
at, i.e. D(t0; t) = expf�rtg we get

lim
�t!0

ET [lnG(T )] = lnS(t0) +
1

2
rT � 1

4

�
�21 + �22

�
T:

Depending on the size of the volatility of the underlying asset,
p
�21 + �22 ; this either converges

to plus or minus in�nity as the time to maturity T approaches in�nity.

Since the sign of ET [lnG(T )] for T !1 is determined by the last integral there is a strong

tendency to reverse the above result in the case of a stochastic interest rate, i. e. �(u; v) > 0:

To illustrate this consider the Vasicek (1977) model with constant parameters. Then

lim
�t!0

ET [lnG(T )] = lnS(t0)�
1

T

TZ
0

lnD(t0; u)du�
1

4

�
�21 + �22

�
T + �1�

1
2�

2T 2 + (�T + 1)e��T � 1

�3T

+�2
��2T 2 � 4�Te��T + 3

2(1� e�2�T ) + aT

4T�4
:

For a 
at initial term structure this can be simpli�ed to:

lim
�t!0

ET [lnG(T )] = lnS(t0) +
1

2

�
r� 1

2

�
�21 + �22

�
+
�1�

�
� �2

2�2

�
T +

�2

4�3
+ g(T ) ;

where lim
T!1

g(T ) = 0: Therefore the Vasicek model approaches the same limit as in the deter-

mistic interest rate case for su�ciently large mean reversion coe�cient �. If instead the mean

reversion coe�cient � is small, i.e. in the limit we get the Ho and Lee (1986) model, then

lim
�!0

lim
�t!0

ET [lnG(T )] = lnS(t0)�
1

T

TZ
0

lnD(t0; u)du�
1

4

�
�21 + �22

�
T +

1

3
�1�T

2 � 1

12
�2T 3

! �1 for T !1;

as long as D(t0; t) � expf�kt�g 8t for some constants k > 0 and � < 3.
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Theorem 3 Under the assumptions of Theorem 2 we have

V T [lnG(T )] =
1

N2

N�1X
i=0

2
4Z ti+1

ti

((N � i) � �2(u))2 +
0
@(N � i)�1(u)�

NX
j=i+1

�(u; tj)

1
A
2

du

3
5

lim
�t!0

V T [lnG(T )] =
1

T 2

Z T

t0

(T � u)2 �
�
�21(u) + �22(u)

�
du

� 2

T 2

Z T

t0

�Z T

u

(T � u) � �1(u) � �(u; v)dv
�
du+

1

T 2

Z T

t0

�Z T

u

�(u; v)dv

�2
du

Consider again the Vasicek (1977) model and assume that � > 0 and �1=2 are constant. Solving

in this situation the integral for the variance yields

lim
�t!0

V T [lnG(T )] =
1

3
(�21 + �22)T � �1� �

�
2�3T 3 � 3�2T 2 � 6(�T + 1)e��T + 6

3�4T 2

�

+�2 �
�
2�3T 3 � 12�Te��T � 3e�2�T + 6�T (1� �T ) + 3

6�5T 2

�

! 1

3
(�21 + �22)T �

1

4
�1�T

2 +
1

20
�2T 3 for �! 0:

To clarify the impact of the stochastic interest rate consider as a border case a 
at initial term

structure and deterministic interest rate, which imply

lim
�t!0

ET [G(T )] = S(t0) � exp
�
1

2

�
r � 1

6
(�21 + �22)

�
T

�

and depending on the sign of r � 1
6(�

2
1 + �22) this either converges to zero or plus in�nity for

T ! +1. If instead the interest rate is stochastic, i.e. �(t; t0) > 0 the convergence behaviour

may be di�erent. Consider once again the Vasicek model with constant � > 0 and �1=2 and a


at initial term structure, then

lim
�t!0

ET [G(T )] = S(t0) � exp
�
1

2

�
r � 1

6
(�21 + �22) +

�1�

3�
� �2

6�2

�
T +

�1�

2�2
� �2

4�3
+ g(T )

�
;

where limT!1 g(T ) = 0: If the mean reversion coe�cient � is large then the behaviour for

T !1 of the Vasicek model and the determistic interest case is the same. If instead � is small,

then the expected geometric average under the T-forward risk adjusted measure converges to

zero. As the extreme case consider the Ho and Lee model, i.e.

lim
�!0

lim
�t!0

ET [G(T )] = S(t0) � exp
�
� 1

T

Z T

t0

D(t0; u)du�
1

12
(�21 + �22)T +

5

24
�1�T

2 � 7

120
�2T 3

�

which converges to zero for T ! +1 as long as D(t0; t) � expf�kt�g 8t for k > 0 and � < 3:

Suppose that the total volatility of the underlying asset �S is �xed, i.e. �S =
p
�21 + �22 is

assumed to be constant. In this situation the expected value of the geometric average is a strictly

increasing function in �1. In other words, �xing �S the expected geometric average under the

T -forward risk adjusted measure increases in the instantaneous correlation.

To summarize our results at this point, Figures 1 to 4 do show some of the e�ects. In these

�gures we have chosen a 
at initial term structure with D(t0; t) = (1:06)�t: Furthermore the

volatility of the underlying asset is equal to 25 %, i.e.

�2Sdt := V [dS(t)jS(t)] =
�
�21 + �22

�
dt = 0:252dt:
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Expected Arithmetic Average

(a)

(b)

(c)
(d)

(e)

Arith. Ho-Lee (a)
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S(T) = 100 (e)

Figure 1: Expected arithmetic averages for T � 3 years, 120 realizations of the underlying asset

per year with S(t0) = 100, �S = 25% and � = 10%:
Expected Geometric Average

(a)

(b)

(c)

(d)

(e)

Geo. Ho-Lee (a)

0
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Geo. det (d)
S(T) = 100 (e)

Figure 2: Expected geometric averages for T � 3 years, 120 realizations of the underlying asset

per year with S(t0) = 100, �S = 25% and � = 10%:

As model of the term structure we concentrate in Section 5 our price simulation of the Asian

option on the continuous time limit of the Ho and Lee (1986) model. With respect to Figures

1 to 4 this model is the extreme case of the Vasicek (1977) model. We regard the Ho and Lee

model as the most sensitive case. Therefore we set in Section 5 the price volatility of the zero

coupon bonds equal to �(u; v) = � � (v � u) with � = 0:1: Furthermore note that by �1 and �2

the instantaneous correlation between the underlying asset and the term structure is de�ned by

� :=
�1p

�21 + �22
=

�1

�S
:(8)
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Expected Arithmetic and Geometric Average

(a)

(b)

(c)

(d)

(e)

(f)

Arith. Vasicek a=0.75 (a)
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Figure 3: Expected arithmetic and geometric averages for T � 25 years, 120 realizations of the

underlying asset per year with S(t0) = 100, �S = 25% and � = 10%:
Expected Arithmetic and Geometric Average

(a)
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Figure 4: Expected arithmetic and geometric averages for T � 4 years, 120 realizations of the

underlying asset per year with S(t0) = 100, �S = 25% and � = 0:

It means that we can parametrise �1 and �2 in terms of the correlation such that the (total)

volatility of the underlying asset is always equal to �S = 25%:

�1 : [�1;+1] ! [��S ; �S]
� 7! �1(�) := ��S(9)

and � 7! �2(�) :=
p
(1� �2)�S :
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5 Simulation results for Asian options

In this section we compare the di�erent approximations proposed by Turnbull and Wakeman

(1991) and Vorst (1992) for the pricing of Asian options with the results obtained by a Monte

Carlo simulation. The starting point for the Monte Carlo simulation is the formulation of the

asset price dynamics as in (4). In the case of the Ho and Lee (1986) model and constant volatility

functions �1=2 this can be reformulated to:

S(ti) = S(ti�1) � D(t0; ti�1)

D(t0; ti)
� exp

�
�1

3
�2
�
(ti�1 � T )2ti�1 � (ti � T )2ti

��

�exp
�
�1

2

�
�21 + �22

�
(ti � ti�1)�

1

2

�
�1� �

1

3
�2T

� �
(T � ti)

2 � (T � ti�1)
2
��

(10)

�exp
�
�1
�
WT

1 (ti)�WT
1 (ti�1)

�
+ �2

�
WT

2 (ti)�WT
2 (ti�1)

�	

�exp

8><
>:��

2
64tiWT

1 (ti)� ti�1W
T
1 (ti�1)�

tiZ
ti�1

u dWT
1 (u)

3
75
9>=
>; :

To simulate the last part of equation (10) we notice that2
64tiWT

1 (ti)� ti�1W
T
1 (ti�1)�

tiZ
ti�1

u dWT
1 (u)

3
75 =

tiZ
ti�1

WT
1 (u) du(11)

which is a normal distributed variable.

For the below simulations we have chosen � = 10%; �S = 25% and 120 time periods per

year, i.e. �t = 120�1. Furthermore we have chosen four di�erent maturity dates corresponding

to T = 0:5; 1; and 3 years.

The approximation of the Asian option by Turnbull and Wakeman (1991) involves the com-

putation of the non{central moments of the arithmetic mean up to order four. These moments

can be calculated using the algorithms proposed in the Appendix. On the other hand we could

estimate them by Monte Carlo simulation. Table 1 shows some results obtained by the algo-

rithms and the Monte Carlo simulation. The Monte Carlo simulation leads to a reasonable

approximation of the �rst and second moment and therefore also of the variance. Although the

approximation of the higher moments is not as good, the skewness and the leptokursis of the

unknown distribution are approximated quite satisfactorily. If not otherwise speci�ed we use

100.000 paths and the antithetic technique7 for the simulation, a 
at initial term structure with

D(t0; t) = (1:06)�t; and the initial value of the asset S(t0) = 100:

In line with Theorems 1 to 3 Table 1 shows the increase of the expected arithmetic and

geometric average as a function of the instantaneous correlation. Beyond this we see that the

variance of the arithmetic and geometric average decreases as a function in �. Therefore we

have two opposite e�ects which do in
uence the pricing of Asian options. The decrease of the

variance of the geometric average is for the chosen parameter constellation a direct consequence

of Theorems 2 and 3. However we should mention that there are parameter values for �S ; � and

T such that the variance is an increasing function in �. This is typically the situation if the

7This implies in total 200.000 paths
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time to maturity is extremely long. For the arithmetic average these �ndings are based on the

implementation of the numerical procedure but so far no analytical results can be given.

-0.005

0

0.005

0.01

0.015

40 60 80 100 120 140 160 180 200
Arithmetic mean

Density resp. histogram, correlation -0.25, pathes 10.000

(a)

(b)
(c)

(d)

 Histogram Monte Carlo 
 Density geometric mean (a) 

 Vorst appr. (b) 
 TW without correction term (c) 
 Turnbull Wakemann appr. (d) 

Figure 5: Densities of the arithmetic and geometric average with �S = 0:25; Ho-Lee term

structure model with � = 0:1; �= �0:25; T = 3; D(t0; t) = 1:06�t and T = 3:

Both the Turnbull and Wakeman (1991) and the Vorst (1992) approximation of the Asian

option can be interpreted as an approximation of the distribution resp. probability density

function of the arithmetic mean of lognormal random variables. The approximation of Turnbull

and Wakeman (1991) is given by (6) whereas the one used by Vorst (1992) is given by pricing

formula (7). Since we price under the T{forward risk adjusted measure we can compare these

approximations with the density function obtained by the Monte Carlo simulation. Note, that

by multiplying with D(t0; T ) these functions do represent the implied state prices underlying the

di�erent numerical approximations. The in
uence of the correlation, which already can be seen

in Table 1, seems to be quite important for the Turnbull and Wakeman (1991) approximation,

as indicated by Figure 5. Furthermore the Vorst (1992) approximation seems to be better than

the Turnbull and Wakeman (1991) approximation even if we do neglect the correlation term; but

nevertheless there is an underestimation of lower and an overestimation of higher realizations

relative to the Monte Carlo simulation.

Finally we can consider the pricing of Asian options. In addition to the antithetic technique we

use the arbitrage price of a geometric average option as a control variate. Thus the Monte Carlo

value for the Asian option is obtained by:

ĉ(T;X) =
D(t0; T )

2M
�
2MX
m=1

2
64
"

1

N � T
N �TX
i=1

S(ti)�X

#+
�
2
4 N �T

vuutN �TY
i=1

S(ti) �X

3
5
+
3
75+ g(T;X)
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2

3
0
.6
5
5
3

0
.9
9
6
6

ex
a
ct

1
0
7
.6
5
5
6

1
2
6
5
7
.1
0
6
2

3
2
.6
7
0
8

1
6
3
4
5
6
9
.1
9
4

2
3
3
3
3
7
1
2
4
.7

1
0
5
.2
9
2
1

1
2
0
3
3
.9
4
2
9

3
0
.7
8
1
8

0

si
m
u
l.

1
0
8
.0
4
5
3

1
2
6
6
6
.0
5
8
8

3
1
.5
0
0
2

1
6
1
8
8
3
7
.5
1
7

2
2
6
7
3
3
3
6
9
.0

1
0
5
.7
7
6
0

1
2
0
7
3
.7
9
6
8

2
9
.7
5
2
9

0
.9
9
6
7

ex
a
ct

1
0
8
.0
5
8
7

1
2
6
7
2
.1
0
0
6

3
1
.5
5
0
3

1
6
2
0
6
2
6
.1
1
8

2
2
7
2
2
5
6
1
5
.2

1
0
5
.7
8
6
8

1
2
0
7
8
.7
7
6
0

2
9
.7
9
8
2

0
.1

si
m
u
l.

1
0
8
.4
1
9
8

1
2
6
6
9
.3
5
0
3

3
0
.2
4
0
6

1
6
0
2
4
7
0
.2
4
1

2
2
0
5
5
8
6
4
5
.4

1
0
6
.2
5
2
9

1
2
1
1
0
.2
1
7
2

2
8
.6
4
5
0

0
.9
9
6
9

ex
a
ct

1
0
8
.4
6
3
6

1
2
6
8
7
.5
6
2
9

3
0
.3
8
4
3

1
6
0
7
0
9
4
.5
5
0

2
2
1
3
9
5
1
3
7
.8

1
0
6
.2
8
3
8

1
2
1
2
3
.7
7
6
2

2
8
.7
6
6
7

0
.2
5

si
m
u
l.

1
0
9
.0
2
8
1

1
2
6
9
2
.7
9
8
0

2
8
.3
8
4
2

1
5
8
2
4
9
4
.0
7
2

2
1
1
9
7
7
1
1
6
.2

1
0
7
.0
0
3
9

1
2
1
7
8
.3
2
7
7

2
6
.9
9
0
5

0
.9
9
7
2

ex
a
ct

1
0
9
.0
7
4
4

1
2
7
1
1
.6
2
9
3

2
8
.5
3
7
7

1
5
8
7
5
4
2
.0
4
6

2
1
3
1
4
2
3
4
7
.5

1
0
7
.0
3
3
8

1
2
1
9
1
.5
9
1
0

2
7
.1
1
7
6

Table 1: Exact and simulated moments of the arithmetic average A(T) and the geometric average

G(T)
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where the arbitrage price of the geometric average option is equal to

g(T;X) = D(t0; T ) � exp
�
mG(T ) +

1

2
�2G(T )

�
N(d)�XN(d� �G(T ))

with mG(T ) = ET [lnG(T )](12)

�2G(T ) = V T [lnG(T )]

d =
�lnX +mG(T ) + �2G(T )

�G(T )
:

As before we choose M = 100:000; N = 120 and T 2 f0:5; 1; 3g. Table 2 to 4 do summarize the
results for some values of the exercise price X where the initial asset value S(t0) is equal to 100.

The pricing of the Asian option is sensitive to the instantaneous correlation coe�cient �.

The arbitrage price of an Asian option obtained by the Vorst (1992) formula is decreasing in �.

De�ne �(Vorst), as the implied correlation coe�cient such that the Vorst (1992) solution equals

the simulated value of the Monte Carlo simulation. As Tables 2 to 4 in the Appendix show,

this implied correlation is not only substantially di�erent for out-of-the-money options, but also

for-in-the-money options from the one used by the Monte Carlo simulation. Furthermore we can

conclude that for the out-of-the-money options the Turnbull andWakeman (1991) approximation

gives prices in excess of the other methods independently of the correlation coe�cient. For a high

correlation and out-of-the-money options the three methods give approximately equal prices. For

other correlations the simulated prices of out-of-the-money options are between those obtained

by the two approximation methods. Looking at deep-in-the-money options we furthermore

observe that the Monte Carlo simulation leads to the highest prices. These conclusions are also

obvious looking at the numerical results in Table 4. Taking e.g. � = �0:5 and the exercise

price equal to 115 the prices obtained by applying Turnbull-Wakeman, Vorst and the simulation

are 9:31; 8:25 and 8:86 respectively. These di�erences are of a nonnegligible size. In general

the Turnbull-Wakeman prices seem to be better supported by the simulations than the prices

derived by the Vorst approximation. The same conclusion can be reached for a time to maturity

of 2 years whereas the di�erences between the di�erent methods are nonessential for smaller

time to maturities.

The three last columns in Tables 2 to 4 represent the standard deviations of the simulated

arithmetic Asian options and the geometric average options. Applying the control variate tech-

nique for the Asian options, the standard deviation �c(Asian) is on average equal to 0:1��(Asian)
where �(Asian) refers to the standard deviation applying only the antithetic technique. These

standard deviations are small meaning that we can have con�dence in our pricing results.

To elaborate further on the comparison between the methods we turn our attention to Figures

6 to 8. Figures 6 and 7 illustrate the same situation but with exchanged x- and y-axis. Taking

the lower bound derived by Vorst we consider the di�erence between the price approximations

to this lower bound. For the exercise prices considered the Vorst approximation leads to prices

which are lower than those obtained from the Monte Carlo simulation. The price surface for

the Turnbull-Wakeman approximation crosses both of the other surfaces and is dominating in

roughly half the area corresponding to the out-of-the-money options.

Finally Figure 8 shows the ratio of the simulated prices to the approximated prices measured
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Asian Option Prices - Lower Bound: 3 years to maturity

(a)

(b)

(c)

Monte Carlo simulation (a)

95

100

105

110

115

120
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1

0

0.5

1

1.5

2

2.5

Exercise price
corr(Bond, Underlying)

Difference

Turnbull Wakeman appr. (b)
Vorst appr. (c)

Figure 6: Di�erence between price approximation and the lower bound for an Asian option with

3 years to maturity, 120 realizations of the underlying asset per year, �S = 25% and Ho-Lee

term structure model with � = 10%:

in percentage. For in-the-money options the ratio between the simulated and the Turnbull-

Wakeman prices is decreasing in �, whereas the opposite is shown in the case for out-of-the-

money options. For out-of-the-money options the Vorst approximation is clearly dominated by

the Turnbull-Wakeman approximation. Observe that major di�erences in the approximations

appear for out-of-the-money option.

6 Conclusion

Taking expectation under the T -forward risk adjusted measure the behaviour of the expected

arithmetic and geometric averages is strongly in
uenced by the stochastic model of interest

rates. In particular for the Ho and Lee (1986) model we observe a discontinuity of the expected

geometric mean. Under the regime of stochastic interest rates the expected geometric average

converges, independent of the instantaneous correlation, towards zero, whereas in the determin-

istic case it approaches plus in�nity as the time to maturity increases. In contrast to this the

Vasicek (1977) model with a su�ciently large degree of mean reversion does not generate this

unexpected behaviour. On the other hand the behaviour of the expected arithmetic mean de-

pends on the instantaneous correlation. If the correlation is non positive the expected arithmetic

mean under stochastic interest rates is bounded from below by the expected arithmetic mean

under deterministic interest rates. In the case of positive instantaneous correlation between the

term structure of interest rates and the underlying asset and for short time to maturities the

expected arithmetic average is higher than compared to the situation under the deterministic

interest rates. The mean reversion in the the Vasicek model once again has a positive e�ect on

the behaviour of the expected arithmetic mean. In contrast to this, without mean reversion the

expected arithmetic mean decreases for a large range of maturities.

Looking at the literature on Asian option pricing we considered the approximation methods

16



Asian Option Prices - Lower Bound: 3 years to maturity

(a)

(b)

(c)

Monte Carlo simulation (a)
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Figure 7: Di�erence between price approximation and the lower bound for an Asian option with

3 years to maturity, 120 realizations of the underlying asset per year, �S = 25% and and Ho-Lee

term structure model with � = 10%:
MC Price / Approximation of Asian Option Price: 3 years to maturity

(a)

(b)

(c)

Vorst appr. (a)
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Figure 8: Monte Carlo values as percentage of the respectively numerical approximation for

an Asian option with 3 years to maturity, 120 realizations of the underlying asset per year,

�S = 25% and and Ho-Lee term structure model with � = 10%:

developed by Turnbull and Wakeman (1991) and Vorst (1992). We generalized these techniques

to include the case of a Gaussian term structure model. These generalizations are only valid

for a Gaussian model, since we have to preserve the lognormal structure of the underlying asset

under the appropriate forward risk adjusted measure. From a pure theoretical point of view

the Vorst approximation shows up a more reasonable behaviour than the Turnbull-Wakeman

approximation. This is based on the strange behaviour of the correction term used by the

Turnbull-Wakeman method.

To compare the pricing results, we implemented extensive Monte Carlo simulations. To
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reduce the variance we used the antithetic and control variate technique where the geometric

average option was used as the control variate. Our simulation gives for the pricing as well

as for the approximation of the unknown probability density of the arithmetic mean quite

reasonable �ts. Comparing the probability densities implied by the Monte Carlo simulation to

those implied by the two analytical approximations, we can conclude that the Turnbull-Wakeman

method produces a completely unrealistic behaviour if we consider times to maturities extending

2 years. Furthermore this behaviour, which is due to the high order Edgeworth expansion goes

from bad to worse for negative instantaneous correlation between the underlying asset and the

bond market. In this respect the Vorst approximation behaves much nicer, but nevertheless

indicates a serious underpricing.

As a general �nding, with respect to the pricing of Asian options, we conclude that the

instantaneous correlation of the underlying asset and the term structure of interest rates is the

principal parameter of importance. The arbitrage price seems to be negatively related with the

correlation coe�cient. Considering the price of an Asian option as a function of the instantaneous

correlation we conclude, that the increase in the expected value of the arithmetic average, as

proven by Theorem 1, is completely compensated by the decrease of the variance of the arithmetic

average. Our simulations indicate a clear underpricing by the Vorst method. The conclusion

for the Turnbull-Wakeman approximation is less strict and depends on both the exercise price

and the instantaneous correlation. For deep-out-of-the money options and independent of the

instantaneous correlation the Turnbull-Wakeman approximation implies higher Asian option

prices than those produced by our Monte Carlo simulation. Whereas for deep in-the-money

options the opposite is true and the Vorst solution is even higher than the Turnbull-Wakeman

approximation in this situation if we consider negative correlation. For out-of-the money options

and high positive correlation all three methods are close to each other, whereas for a negative

correlation and out-of-the-money options the results di�er substantially.

The results for the pricing of Asian options under stochastic interest rates do depend on the

time to maturity. Our calculations indicate that the in
uence of a stochastic interest rate is less

pronounced for time to maturities smaller than 1 year.
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Appendix

Proof of Theorem 1

Due to the stochastic independence of WT
1 and WT

2 we know that:

ET [S(ti)] =
S(t0)

D(t0; ti)
� exp

8<
:�1

2

tiZ
t0

(�1(u)� �(u; T ))2 du

9=
;

�exp

8<
:1

2

tiZ
t0

(�(u; ti)� �(u; T ))2 du+
1

2

tiZ
t0

(�1(u)� �(u; ti))
2
du

9=
;

=
S(t0)

D(t0; ti)
� exp

8<
:

tiZ
t0

[�1(u)� �(u; ti)] [�(u; T )� �(u; ti)]du

9=
;

�

Proof of Theorem 2

The de�nition of the geometric mean implies that

ET [lnG(T )] =
1

N

NX
i=1

ET [ln(S(ti))]

where ET [ln(S(ti))] = ln(S(t0))� ln(D(t0; ti))

�1

2

tiZ
t0

((�1(u)� �(u; T ))2+ �22(u))du+
1

2

tiZ
t0

(�(u; ti)� �(u; T ))2 du

= ln(S(t0))� ln(D(t0; ti))�
1

2

tiZ
t0

�
�21(u) + �22(u)

�
du

+
1

2

tiZ
t0

�
2�(u; T )[�1(u)� �(u; ti)] + �2(u; ti)

�
du

�

Proof of Theorem 3

We have to calculate the variance of a sum of correlated stochastic integrals under the T -forward

risk ajusted measure, i.e.

V T

2
4 1

N + 1

0
@ NX

i=0

tiZ
t0

(�1(u)� �(u; ti))dW
T
1 (u) +

tiZ
t0

�2(u)dW
T
2 (u)

1
A
3
5 :

Since WT
1 and WT

2 are stochastically independent we can consider the variance of both sums of

stochastic integrals separately. For the stochastic integrals with respect to WT
2 we immediately
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obtain:

V T

2
4 1

N

NX
i=1

tiZ
t0

�2(u)dW
T
2 (u)

3
5 =

1

N2
V T

2
4N�1X
i=0

(N � i)

ti+1Z
ti

�2(u)dW
T
2 (u)

3
5

=
1

N2

N�1X
i=0

(N � i)2
ti+1Z
ti

�22(u)du

The same idea can be applied to the stochastic integrals with respect to WT
1 .

V T

2
4 1

N

NX
i=1

tiZ
t0

(�1(u)� �(u; ti))dW
T
1 (u)

3
5

=
1

N2
V T

2
4N�1X
i=0

ti+1Z
ti

(N � i)�1(u)dW
T
1 (u)�

NX
i=1

tiZ
t0

�(u; ti)dW
T
1 (u)

3
5

=
1

N2
V T

2
4N�1X
i=0

ti+1Z
ti

(N � i)�1(u)dW
T
1 (u)�

N�1X
i=0

ti+1Z
ti

NX
j=i+1

�(u; tj)dW
T
1 (u)

3
5

=
1

N2

N�1X
i=0

ti+1Z
ti

0
@(N � i)�1(u)�

NX
j=i+1

�(u; tj)

1
A
2

du

�

Recursive algorithms for the non central moments

From the previous discussion we know that under the T-forward measure PT the value ot the

underlying asset S(t) is determined by equation (2). Consider the stochastic part of this equation

seperately and for simplicity of the notation de�ne:

Yi :=

tiZ
t0

(�1(u)� �(u; ti))dW
T
1 (u) ;

Zi :=

tiZ
t0

�2(u) dW
T
2 (u) ;

�ij := exp

8<
:

tiZ
t0

[�1(u)� �(u; ti)] [�(u; tj)� �(u; ti)]du

9=
; :

Due to the underlying assumptions Y and Z are related in the following way:

a) Yi and Zi are stochastic independent, and ET [Yi] = ET [Zi] = 0:

b) For i � j : ET [Zi; Zj] = ET [Z2
i ]:
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c) For i � j :

ET [Yi; Yj ]

= ET

2
4
0
@ tiZ
t0

(�1(u)� �(u; ti)dW
T
1 (u)

1
A
0
@ tjZ
t0

(�1(u)� �(u; ti))� (�(u; tj)� �(u; ti))dW
T
1 (tj)

1
A
3
5

= ET
�
Y 2
i

�
�ET

2
4
0
@ tiZ
t0

(�1(u)� �(u; ti)dW
T
1 (u)

1
A
0
@ tjZ
t0

(�(u; tj)� �(u; ti))dW
T
1 (tj)

1
A
3
5

= ET
�
Y 2
i

�
�

tiZ
t0

[�1(u)� �(u; ti)] [�(u; tj)� �(u; ti)]du = ET
�
Y 2
i

�
� ln�ij :

Finally de�ne:

�i := exp

�
1

2
V [Zi + Yi]

�

di :=
St0

D(t0; ti)
� exp

8<
:

tiZ
t0

[�1(u)� �(u; ti)] [�(u; T )� �(u; ti)]du

9=
;

=) S(ti) = di � ��1i � exp fYi + Zig :

Proposition

Under the assumptions on the process of the underlying asset S(ti) = Si we have 8 0 � i � j �
k � l < N and 8 �; 
; �; � 2 IIN :

ET [S�i ] = d�i � ��(��1)i

ET [S�i S


j ] = d�i � d
j � �


(
�1)
j � ��(�+2
�1)i � ��
ij

ET [S�i S


j S

�
k ] = d�i � d
j � d�k � �

�(�+2
+2��1)
i � �
(
+2��1)j � ��(��1)k � ��
ij � ���ik � �
�jk

ET [S�i S


j S

�
kS

�
l ] = d�i � d
j � d�k � d�l � �

�(��1+2
+2�+2�)
i � �
(
�1+2�+2�)j � ��(��1+2�)k � ��(��1)l

���
ij � ���ik � ���il � �
�jk � �

�
jl � �

��
kl :

The algorithms will be derived by means of the following vector notations.

d(i) := (di; � � � ; dN) 2 IRN+1�i; i = 1; :::; N ;

�(i) := (�i;i+1; � � � ; �i;N) 2 IRN�i; i = 1; :::; N � 1 :

1. Moment

ET [
1

N

NX
i=1

Si] =
NX
i=1

di =< d(1); 1> :
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2. Moment

x(N) := ET [S2N ] = d2N�
2
N and for i = N � 1; :::; 1

x(i) := ET

2
4
0
@ NX

j=i

Sj

1
A

23
5

= ET [S2i ] + 2ET

2
4Si NX

j=i+1

Sj

3
5 +ET

2
4
0
@ NX
j=i+1

Sj

1
A

23
5

= d2i�
2
i + 2 < d(i+ 1); �(i)> di�

2
i + x(i+ 1)

=) ET

2
4 1

N

NX
i=1

Si

!2
3
5 =

1

N2
x(1) :

3. Moment

x(N) := ET [S3N ] = d3N�
6
N and for i = N � 1; � � � ; 1

x(i) := ET

2
4
0
@ NX

j=i

Sj

1
A

33
5

= ET [S3i ] + 3ET

2
4Si

0
@ NX
j=i+1

Sj

1
A

23
5+ 3ET

2
4S2i

0
@ NX
j=i+1

Sj

1
A
3
5 +ET

2
4
0
@ NX
j=i+1

Sj

1
A

33
5

= d3i �
6
i + 3a(i; i+ 1) + 3 < d(i+ 1; �(1)2) > d2i �

6
i + x(i+ 1) ;

where a(i; N) := did
2
N�

4
i �

2
N�

2
iN and for j = N � 1; � � � ; i+ 1

a(i; j) = a(i; j + 1) + did
2
j�

4
i �

2
j �

2
ij + 2

0
@ NX
l=j+1

dl�il�jl

1
A didj�

4
i �j�ij

=) ET

2
4 1

N

NX
i=1

Si

!3
3
5 =

1

N3
x(1) :

4. Moment

x(N) := ET
�
S4N
�
= d4N�

12
N and for j = N � 1; � � � ; 1

x(i) := ET

2
4
0
@ NX

j=i

Sj

1
A

43
5

= ET
�
S4i
�
+ 4ET

2
4S3i

0
@ NX
j=i+1

Sj

1
A
3
5 + 6ET

2
4S2i

0
@ NX
j=i+1

Sj

1
A
23
5

+4ET

2
4Si

0
@ NX
j=i+1

Sj

1
A

33
5 +ET

2
4
0
@ NX
j=i+1

Sj

1
A

43
5

= d4i �
12
i + 4 < d(i+ 1); �(i)3 > d3i�

12
i + 6c(i; i+ 1) + 4a(i; i+ 1) + x(i+ 1) ;
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where

a(i; N) := did
3
N�

6
i �

6
N and for j = N � 1; � � � ; i+ 1

a(i; j) := didj�
6
i �

6
j + 3

0
@ NX
l=j+1

dl�il�
2
jl

1
A did

2
j�

6
i �

6
j �

6
ij + 3b(i; j; j+ 1) + a(i; j + 1)

with b(i; j; N) := didjd
2
N�

6
i �

4
j�

2
N�ij�

2
iN�

2
jN

and for k = N � 1; � � � ; j + 1

b(i; j; k) := didjd
2
k�

6
i �

4
j �

2
k�ij�

2
ik�

2
jk

+2

 
NX

l=k+1

dl�il�jl�kl

!
didjdk�

6
i �

4
j �

2
k�ik�ij�jk + b(i; j; k+ 1) :

and

c(i; N) := d2id
2
N�

10
i �2N�

4
iN and for j = N � 1; � � � ; i+ 1

c(i; j) := d2id
2
j�

10
i �2j �

2
ij + 2

0
@ NX
k=j+1

dk�
2
ik�jk

1
A d2idj�

10
i �2j �

2
ij + c(i; j + 1)

=) ET

2
4
 
1

N

NX
i=1

Si

!4
3
5 =

1

N4
x(1) :
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Table 2: Approximation of Asian option prices, maturity 0.5 years
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Table 3: Approximation of Asian option prices, maturity 1 year
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Table 4: Approximation of Asian option prices, maturity 3 years
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