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Chapter 1

Introduction

In general, the assumption of a time-independent correlation between two or
more economic variables is not too realistic. On the one hand, the correlations
considered are only partial - some more or less important inuencing variables
are left out of consideration. Changes of these possibly hidden variables could
have lasting impacts on partial systems of other observable variables. On the
other hand, time itself might have an inuence. An example are day-of-the-
week e�ects which are observed in �nancial markets.

Although this insight is neither new nor original, a standard assumption met
in most papers on kernel estimation of regression functions is the strict station-
arity of the underlying stochastic processes. In this paper we therefore analyze
the consequences of this sort of misspeci�cation. For this purpose we stipulate
an underlying stochastic process fyt;xtgt2Z in R�Rk with Ejytj <1 8t 2 Z

and assume that the Baire functions representing the conditional expecta-
tions Efyt j xtg are time-dependent. Various formulations of this sort of
non-stationarity are conceivable. We deal with a very simple case assuming
that there are r Baire functions representing r di�erent regimes. We suppose
that regime j 2 f1; . . . ; rg rules whenever t is in Zj , where the Zj form a
partition of Z.

In the sequel we analyze the asymptotic behaviour of kernel estimators of
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the form

m̂T (x) =

PT

t=1  (yt)K
�
x�xt

T

�
PT

t=1
K
�
x�xt

T

� ; (1:1)

where  : R! R is a bounded and Lipschitz-continuous function that is intro-
duced in order to avoid imposing implausiblemoment conditions on fyt;xtgt2Z.
The price we have to pay for using such a function consists in an asymptotic
bias due to the identi�cation of Ef (yt) j xt = xg instead of Efyt j xt = xg.
However, since on the one hand this bias should be small provided that  
is chosen suitably, and on the other hand the estimator might become more
robust, this trade-o� seems to be favourable1.

We demonstrate the uniform convergence in probability of estimator 1.1 to-
wards a Baire function that can be interpreted as a weighted average of the
di�erent regimes. This result should be understood as a warning: Observing
the convergence of estimator 1.1, we must not infer that the limiting function
found is the true regression function that underlies a stationary process.

Moreover, we establish

m̂
j

T (x) =

PT

t=1 I
j(t) (yt)K

�
x�xt

T

�
PT

t=1 I
j(t)K

�
x�xt

T

� ; (1:2)

where Ij(t) := I(t 2 Zj), as a consistent estimator for the function represent-
ing regime j for the case that the terms t of regime j are known.

The rest of this paper is organized as follows: In the subsequent chapter we
formulate in detail the non-stationary regression model we shall deal with and
give some de�nitions. In chapter 3 we present the consistency results stated
above. Some auxiliary results used in the main body of this text are provided
in the appendix.

1In a previous paper (cf. Cron(1995)) we used a truncation procedure based on the
regressors in order to avoid an asymptotic bias. Unfortunately the argument used there fails
if the estimation is based on fewer regressors than actually included in the true model.
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Chapter 2

A regime-varying regression

model

The following assumptions specify the model we deal with in the sequel:

(A. 1) fyt;xtgt2Z is an integrable stochastic process in R�Rk that

allows for a representation

(yt;xt) =

rX
j=1

Ij(t)Rj(�t; �t�1; . . .);

where the Rj are Borel measurable mappings from the space

of one sided in�nite sequences of vectors inRp intoR�Rk and

f�tgt2Z is a strictly stationary, '-mixing stochastic process in

Rp.

(A. 2) The distributions of the xt
0s are absolutely continuous with

respect to Lebesgue measure with densities

ft(x) =

rX
j=1

Ij(t)f j(x);

where the f j are continuous and bounded.

(A. 3) De�ne Ft;� := �(�t; . . . ; �t��+1) for any � 2 N. We assume

that

E kEf(yt;xt) j Ft;�g � (yt;xt)k = o(��� )
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for some � > 1.

Remark 1: We note that (A.1), which replaces the standard assumption of
strict stationarity, and (A.2/3) are not independent. Strictly speaking, (A.2/3)
can be completely determined from the shape of the Rj and the kind of distri-
bution of �t. The description of this coherence, however, is part of the solution
theory of the underlying models and beyond the scope of this paper.

Remark 2: Let H : R � Rk ! R denote any Borel measurable function.
We note that in view of (A.1) the subsequences

fH(yt;xt)g
t2Zj =

�
H(Rj(�t; �t�1; . . .))

	
t2Zj

are strictly stationary (cf. Breiman(1968)).
Moreover,provided that EfjH(yt;xt)jg <1 8t 2 Z, the subsequences

fEfH(yt;xt) j Ft;�gg
t2Zj =

�
EfH(Rj(�t; �t�1; . . .)) j Ft;�g

	
t2Zj

are strictly stationary for � �xed.

Remark 3: Assumption (A.3) which is termed � -stability (cf.Bierens(1990))
or near-epoch-dependence (NED) (cf. Davidson(1994)) in L1-norm, is weaker
than the usual mixing-assumptions found in the literature on kernel estimation
of dependent processes.

We conclude this chapter giving some de�nitions:

T j := T j(T ) =

TX
t=1

Ij(t);

tj := min
Zj

+

t;

hj(T ) :=
T j

T
;

hj := lim
T!1

hj(T ):

The last de�nition contains the implicit assumption that hj(T ) has a limit.
Finally, we de�ne

mj(x) := Ef (ytj) j xtj = xg;

gj(x) := mj(x)f j(x):
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Chapter 3

Consistency results

We note that estimator 1.2 can be written as

m̂
j

T (x) =
ĝ
j

T (x)

f̂
j

T (x)
;

where

ĝ
j

T (x) :=
1

T
�kT

TX
t=1

Ij(t) (yt)K
�
x�xt

T

�
;

f̂
j

T (x) :=
1

T
�kT

TX
t=1

Ij(t)K
�
x�xt

T

�
:

For all j 2 f1; . . . ; rg we have the decomposition

ĝ
j

T (x)� hjgj(x) = G
j;1

T (x) +G
j;2

T (x) +G
j;3

T (x);

where

G
j;1

T (x) := Efĝ
j

T (x)g � hjgj(x);

G
j;2

T (x) := Efĝ
j

T (x) j Ft;�g � Efĝ
j

T (x)g;

G
j;3

T (x) := ĝ
j

T (x)� EfĝjT (x) j Ft;�g;

dropping � for simplicity. The three terms are treated separately1 in the sub-
sequent Lemmata that hold for j = 1; . . . ; r. The validity of (A.1) to (A.3)

1The basic idea of the proof is due to Bierens(1983).
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is supposed without refer to explicitly. Moreover, we assume that K(u) is a
k-variate density with unbounded support and characteristic function

�(v) =

Z
Rk

exp(iv0u)K(u)du

satisfying Z
Rk

kvkj�(v)jdv <1:

Lemma 1

Suppose that C � Rk is compact and limT!1 T = 0. Then we have

lim
T!1

sup
x2C

��Gj;1

T (x)
�� = 0:

Proof:

In view of remark 2 we can write

��EfĝjT (x)g � hjgj(x)
��

=

�����E
(
1

T
�kT

TX
t=1

Ij(t) (yt)K
�
x�xt

T

�)
� hjgj(x)

�����
=

���hj(T )�kT E
n
 (ytj)K

�
x�x

tj

T

�o
� hjgj(x)

���
=

����hj(T )
Z
Rk

�kT gj(z)K
�
x�z
T

�
dz� hjgj(x)

����
� hj(T )

����
Z
Rk

�kT gj(z)K
�
x�z
T

�
dz� gj(x)

����
+

��gj(x)�� ��hj(T )� hj
�� :

Application of Proposition 1 of the appendix yields the result.

Remark 4: The suprema in the following Lemmata are random variables
(cf. Jennrich(1969),Lemma 1). We suppose from now on that � = � (T ).
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Lemma 2

De�ne �T := 1

T

PT

m=0
'

1

2 (m), where the ''s are the mixing coe�cients of the

process f�tgt2Z. We have

E sup
x2Rk

��Gj;2

T (x)
�� = O

�
�kT

r
�

T
+ �T

�
:

Proof:

(Cf. Bierens(1983)). The inversion formula for characteristic functions and
Proposition 2 of the appendix yield

E sup
x2Rk

��Gj;2

T (x)
�� � � 1

2�

�k Z
Rk

w
j

T (v)j�(Tv)jdv;

where

w
j

T (v) := E

����� 1T
TX
t=1

Ij(t) [Ef (yt) exp(iv
0xt)jFt;�g � Ef (yt) exp(iv

0xt)g]

����� :
We note that in view of remark 2 , for � �xed, the subsequences
fEf (yt) cos(v

0xt)jFt;�gg
t2Zj and fEf (yt) sin(v

0xt)jFt;�gg
t2Zj are strictly sta-

tionary and ,in addition, '-mixing with

'��(m) =

�
1 if m < �

'(m� � ) otherwise

Liapunov's inequality and Lemma 1 of Billingsley(1968), sec. 20, imply the
rough estimation

�
w

j

T (v)
�2

� var

 
1

T

TX
t=1

Ij(t)Ef (yt) cos(v
0xt)jFt;�g

!

+ var

 
1

T

TX
t=1

Ij(t)Ef (yt) sin(v
0xt)jFt;�g

!

� 8
� �
T
+ �T

�
E 2(ytj):

The result follows easily.
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Lemma 3

E sup
x2Rk

��Gj;3

T (x)
�� = o

�
���

�(k+1)

T

�
:

Proof:

As in the proof of Lemma 2 we can show that

E sup
x2Rk

��Gj;3

T (x)
�� � hj(T )

�
1

2�

�k Z
Rk

W
j

T (v)j�(Tv)jdv;

where

W
j

T (v) := E
�� (ytj) exp(iv0xtj)�Ef (ytj) exp(iv

0xtj)jFtj;�g
�� :

De�ne ytj;� := Efytj jFtj;�g and x
tj;�

:= EfxtjjFtj;�g. Repeated application of

Proposition 3 (see Appendix),the fact that jeiu � 1j � juj and the boundedness
and Lipschitz-continuity of  yield

W
j

T (v) � 2E
�� (ytj) exp(iv0xtj)� Ef (ytj)jFtj;�g exp(iv

0xtj;� )
��

� 2E
��Ef (ytj)jFtj;�g

�
exp(iv0xtj)� exp(iv0xtj;� )

���
+ 2E

��exp(iv0xtj)
�
Ef (ytj)jFtj;�g �  (ytj)

���
� C1E

��exp(iv0xtj)� exp(iv0xtj;� )
��

+ C2E
��ytj;� � ytj

��
� C

�
Ekxtj � xtj;�kkvk+ Ejytj � ytj;� j

�
= o

�
���

�
(1 + kvk):

The result follows easily.

Remark 5: The preceding results remain valid if we replace  (yt) by 1.

The combination of the three Lemmata leads us to the main results announced
(even though in reverse order):

Theorem 1

Suppose that hj > 0 and �
1

2

T = o
�
T��k

�
for some � 2

�
0; 1

2k

�
. Then for

T = T��, any compact C � Rk and � > 0 we have

p lim
T!1

sup
x2C;f j(x)��

jm̂
j

T (x)�mj(x)j = 0:
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Proof:

Choosing � (T ) =
h
T

1

2
��k
i
,we can link Lemmata 2 and 3 to obtain

lim
T!1

E sup
x2Rk

��Gj;2

T (x) +G
j;3

T (x)
�� = 0:

Combining this implication with Lemma 1 yields (see remark 5)

lim
T!1

E sup
x2C

jĝ
j

T (x)� hjgj(x)j = 0 and

lim
T!1

E sup
x2C

jf̂
j

T (x)� hjf j(x)j = 0:

Since we can write

jm̂
j

T (x)�mj(x)j =
1

hjf j(x)

���m̂j

T (x)
h
hjf j(x)� f̂

j

T (x)
i
+
�
ĝ
j

T (x) � hjgj(x)
���� ;

the result follows easily.

Theorem 2

Under the assumptions of Theorem 1, we have

p lim
T!1

sup
x2C;minj f

j(x)��
jm̂T (x)�m(x)j = 0;

where

m(x) :=

rX
j=1

�
hjf j(x)Pr

i=1 h
if i(x)

�
mj(x):

Proof:

Note that at least one hj must be positive. Since we can write

m̂T (x) =

Pr

j=1 ĝ
j

T (x)Pr

j=1
f̂
j

T (x)
and m(x) =

Pr

j=1 h
jgj(x)Pr

j=1
hjf j(x)

;

we have

jm̂T (x)�m(x)j

=
1Pr

j=1 h
jf j(x)

�����m̂T (x)

rX
j=1

�
hjf j(x)� f̂

j

T (x)
�
+

rX
j=1

�
ĝ
j

T (x)� hjgj(x)
������ ;
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and the proof can be completed with the arguments used in the proof of The-
orem 1.

Remark 6: Intuitively we would expect m̂T (x) to converge pointwise to a
weighted average of the mj(x) with weights hj. Theorem 2 tells us however
that the weights depend on x through the densities of the di�erent regimes
and are positively correlated with their own densities .

10



Appendix A

Proposition 1

Suppose that K is a k-variate density, h : Rk ! R continuous and bounded,

and C � Rk compact. Then we have

lim
!0

sup
x2C

����
Z
Rk

�kh(z)K
�
x�z


�
dz� h(x)

���� = 0:

Proof:

The proof is easy and therefore omitted.

Proposition 2

Suppose that x and y are random vectors in Rk1 ,Rk2, respectively. Assume

that f : Rk2 �Rk ! R and g : Rk ! R are Baire functions such that

sup
y2Rk2

jf(y; t)j � g(t);

Z
Rk

g(t)dt <1:

Then we have

E

�Z
Rk

f(y; t)dt jx

�
=

Z
Rk

Eff(y; t)jxgdt Fx � a: s: ;

where Fx denotes the distribution of x.

Proof:

Cf. Cron(1995).
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Proposition 3

Suppose that x is a random variable with Ejxjp < 1 for some p � 1. Then

we have for any F-measurable y with Ejyjp <1

Ejx� EfxjFgjp � 2pEjx� yjp:

Proof:

From the fact that jx + yjp � 2p�1(jxjp + jyjp) and Jensen's inequality for
conditional expectations we have

Ejx�Efx j Fgjp � 2p�1(Ejx� yjp + Ejy � Efx j Fgjp)

= 2p�1(Ejx� yjp + EjEfy � x j Fgjp)

� 2pEjx� yjp:
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