
1. ESTIMATION OF LINEAR FORMS

We consider the linear regression model

y = X� + " (1:1)

where y is the n�1 { vector of observations, X a nonrandom n�K { regression matrix,

� an unknown K{dimensional parameter vector and " the n�1{vector of disturbances.
In contrast to conventional econometric theory, we shall treat the disturbance vector as

an additonal unknown parameter vector. One objective in this section is to �nd linear
estimates of a linear form aT� which are \best" in a sense de�ned below. We assume

that we are given the a priori information

k�k � 1; k"k � 1:

Then in the class of all estimates of the form gaT� = bTy (b a nonrandom n� 1{vector),

we want to �nd the linear minimax estimate aT� = �bTy; i.e. that linear form �b for

which

min
b

max
k�k;k"k�1

[aT� � bTy]2 = max
k�k;k"k�1

[aT� � �bTy]2: (1:2)

In order to solve this problem, note that

[aT� � bTy]2 = [(a�Xb)T� � bT"]2

= (cT�)2 + (bT")2 � 2(cT�)(bT");

where we have put c = a�XTb. Evidently, the maximum over k�k; k"k � 1 is attained
at, e.g., � = c=kck; " = �b=kbk; with

max
k�k;k"k�1

[aT� � bTy]2 = (
p
cTc+

p
bTb)2:

So we have to solve the minimization problem

f(b) =

q
(a�XTb)T(a�XTb) +

p
bTb! min

b
! (1:3)

Case 1. Either �min(X
TX) > 1 or �max(X

TX) < 1.

Suppose that the minimum is attained at some point �b satisfying �b 6= 0 and a�XT�b 6= 0.
Then f is di�erentiable at �b, and the �rst order necessary optimality condition is

rf(�b) = 2X(XT�b� a)p
(a�XT�b)T(a�XT�b)

+
2�bp
�bT�b

= 0

or
�cTXT

p
�cT�c

=
�bTp
�bT�b

; (1:4)
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with �c = a�XT�b. (1.4) implies that

�cTXTX�c

�cT�c
= 1:

As a consequence,

�min(X
TX) � 1 � �max(X

TX);

contradicting our assumption. Hence the only candidates for a minimum are �b = 0 and
any �b satisfying �c = a�XT�b = 0.

a) If a 62 R(XT), then �b = 0 is the only solution, with value

f(0) =
p
aTa:

Note that, in this case, rg(XTX) < K and therefore �min(X
TX) = 0.

b) Otherwise, �b = X+Ta is the minimum norm solution of the equation XT�b = a, and

f(�b) =
p
aTX+X+Ta: (1:5)

Since X+X+T = (XTX)+, the nonnull eigenvalues of X+X+T are just the inverses of
the nonnull eigenvalues of XTX. Therefore,

�min(X
TX) > 1) �max(X

+X+T) < 1)
p
aTa >

p
aTX+X+Ta: (1:6)

To deal with the case �max(X
TX) < 1, let rg(XTX) = p � K and consider the

diagonalization
XTX = T�TT;

where � = diag(�1; : : : ; �p; 0; : : : ; 0), �i are the nonnull eigenvalues of X
TX, and T is

an orthogonal matrix. Then
X+X+T = T�+TT

with �+ = diag(��11 ; : : : ; ��1p ; 0; : : : ; 0). Since R(XT) = R(XTX), a 2 R(XT) implies
that

a = XTXw = T�TTw

for some w and hence

z = TTa = �TTw = �v:

This means that the last K � p components of z must be zero. Consequently, since

�max(X
TX) < 1) ��1i > 1 for all i = 1; : : : ; p;

we �nd that

aTa = zTz =

pX
i=1

z2i <

pX
i=1

��1i z2i = zT�+z = aTX+X+Ta;

hence
�max(X

TX) < 1)
p
aTa <

p
aTX+X+Ta: (1:7)
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Gathering the results of a) and b) (1.6), (1.7), we arrive at the following result.

PROPOSITION 1. In case 1, the minimax solution is given by

�b =

�
X+Ta if �min(X

TX) > 1

0 if �max(X
TX) < 1:

Note that, in the �rst case, the minimax estimate of aT� is given by

^aT� = �bTy = aTX+y = aT�̂;

where �̂ is the ordinary least squares estimate of �.

Case 2. �min(X
TX) � 1 � �max(X

TX):

If the minimum is attained at some b s.t. b 6= 0; c 6= 0 equation (1.4) must be satis�ed.

Denoting r =
p
cTc=

p
bTb, c = a�XTb,

X(a�XTb) = rb

or
(XXT + rI)b = Xa:

Apparently, M(r) = XXT + rI is positive de�nite for all r > 0, hence

b = M(r)�1Xa: (1:8)

Simultaneously, since c = c(r) = (I �XTM(r)�1X)a,

aT[I �XTM(r)�1X]2a = r2aTXTM(r)�2Xa (1:9)

should be satis�ed by de�nition of r. Let �1 � �2 � : : : � �k � 0 be the eigenvalues of
XTX. Then XXT can be diagonalized in the form

XXT = �T �� �TT; (1:10)

where �� = diag(�1; : : : ; �K ; 0; : : : ; 0) (with n � K zeroes) is the diagonal matrix of
eigenvalues of XXT and �T has as its columns orthonormal eigenvectors of XXT. As a
consequence, for integer k,

Mk = �T (�� + rI)k �TT;

XXTMk = �T ��(�� + rI)k �TT;
(1:11)

i.e. XXTMk has eigenvalues �i(�i+r)k; i = 1; : : : ; K, and 0 (n�K times). Moreover,

XTMkXw = �w ) XXTMkXw = �Xw;

i.e. every eigenvalue of XTMkX is an eigenvalue of XXTMk. In particular, the nonnull
eigenvalues of XTMkX are given by �i(�i+r)

k for �i > 0. Finally, it follows easily from
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(1.10) and (1.11) that XTMkX and XTM lX commute for all pairs (k; l) of integers
and can therefore be simultaneously diagonalized. Hence, in particular,

XTM�1X = T�(� + rI)�1TT; XTM�2X = T�(� + rI)�2TT

with � = diag(�1; : : : ; �K) and for some orthogonal matrix T , and

[I �XTM�1X]2 = T [I � �(� + rI)�1]2TT

= Tdiag

�
r2

(�1 + r)2
; :::;

r2

(�k + r)2

�
TT:

Therefore, denoting z = TTa, (1.9) becomes

KX
i=1

r2z2i
(�i + r)2

= r2
KX
i=1

�iz
2
i

(�i + r)2

or
KX
i=1

�i � 1

(�i + r)2
z2i = 0: (1:12)

In a typical nontrivial case, where there are l > 0 eigenvalues < 1 (1 � l < K), m
eigenvalues = 1 (0 � m < K � l) and K � l�m > 0 eigenvalues > 1:

0 � �K � �K�1 � ::: � �K�l+1 < 1 = �K�l = ::: = �K�l�m+1 < �K�l�m � ::: � �1;

(1.12) becomes

KY
j=K�l+1

(�j + r)2
K�l�mX
i=1

ci

K�l�mY
j=1;j 6=i

(�j + r)2

�
K�l�mY
j=1

(�j + r)2
KX

i=K�l+1

ci

KY
j=K�l+1;j 6=i

(�j + r)2 = p(r)� q(r) = 0;

(1:13)
with nonnegative coe�cients ci. Both p(r) and q(r) are polynomials of degree � 2(K�
m� 1) and nonnegative for all r. Depending on the constellation of parameters, there
may be from 0 to 2(k�m)� 1 positive roots of equation (1.13) (there always exists at
least one negative root).

For every positive root r we have to calculate f(b) with b = b(r) given by (1.8):

g(r) = f(b(r)) =

q
c(r)Tc(r) +

q
b(r)Tb(r)

= (1 + r)

q
b(r)Tb(r)

= (1 + r)

q
aTXTM(r)�2Xa

= (1 + r)

vuut KX
i=1

�iz
2
i

(�i + r)2

= (1 + r)

vuut pX
i=1

�iz
2
i

(�i + r)2
;

(1:14)
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if �K = ::: = �p+1 = 0, and compare these values with

f(0) =
p
aTa =

p
zTz and f(b) =

p
aTX+X+T

a:

In doing so, note that
lim
r#0

M(r)�1X = X+T;

hence �b = b(0+) (for b(r) given by (1.8)) and

f(�b) = g(0) =

vuut pX
i=1

��1i z2i :

Moreover, for any positive root r of (1.12),

f(0)2 � g(r)2 =

KX
i=1

z2i �
KX
i=1

(1 + r)2�iz
2
i

(�i + r)2

=

KX
i=1

�i(�i � 1) + r2(1� �i)

(�i + r)
2

z2i

=

KX
i=1

�i
�i � 1

(�i + r)
2
z2i >

KX
i=1

�i � 1

(�i + r)
2
z2i = 0;

where the third equality follows from (1.12) and the strict inequality is valid for the
nontrivial case where not all zi; i = 1; : : : ; K� l�m; and not all zi; i = K� l+1; : : : ; K;

are equal to zero. Hence, in this case, if there exists at least one positive root r; b = 0
can be excluded from the candidates for optimal linear combinations. Similarly, if all
�i > 0, for any positive root r of (1.12)

g(0)2 � g(r)2 =

KX
i=1

z2i
�i
� (1 + r)2

KX
i=1

�iz
2
i

(�i + r)2

=

KX
i=1

z2i
�i
� (1 + r)2

KX
i=1

z2i
(�i + r)2

=

KX
i=1

r2(1� �i) + �i(�i � 1)

�i(�i + r)2
z2i

= r2
KX
i=1

1� �i

�i(�i + r)2
z2i +

KX
i=1

�i � 1

(�i + r)2
z2i

= r2
KX
i=1

1� �i

�i(�i + r)2
z2i > r2

KX
i=1

1� �i

(�i + r)2
z2i = 0;

where again (1.12) has been used for the second, �fth and sixth equality. Hence, in the
nontrivial case as described above, if all �i are positive, �b = b(0+), too, does not qualify
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as a candidate for the minimum of (1.3) in case there exists at least one positive root
of (1.12).

Denoting R+ the set of positive roots of (1.12), we thus arrive at

PROPOSITION 2. In case 2, in a nontrivial situation (as described above) and if R+ 6= ;,
the absolute minimum of (1.3) is provided by

argminff(b(r)) : r 2 R+g (1:15)

if all �i are positive. If some �i are zero, choice must be made between (1.14) and �b. In
the case where R+ = ;, choice must be made between b = 0 and b = �b.

Hence in case 2, there seems to be no nice closed form solution as in case 1.

2. ESTIMATION OF PARAMETERS UNDER CIRCULAR CONSTRAINTS

The setting in this section will again be the linear model (1.1) considered in Section 1,

together with the constraints

k�k � 1; k"k � 1:

Our objective now is, however, to �nd the linear minimax estimator of the parameter
vector � itself, i.e. among all estimates of the form ~� = Cy we want to �nd the one
�� = �Cy for which

min
C2IRK�n

max
k�k;k"k�1

k� � Cyk2 = max
k�k;k"k�1

k� � �Cyk2: (2:1)

Inserting y from (1.1) and denoting

F (C; �; ") = k� � Cyk2

= �T(I � CX)T(I � CX)� � 2�T(I � CX)TC"+ "TCTC"

�F (C) = max
k�k;k"k�1

F (C; �; ");

(2.1) becomes the minimization problem

�F (C) �! min
C2IRK�n

!

Note that, for �xed �; "; F (C; �; ") is convex in C and hence so is �F (C). For any
convex functional f(C), let @f(C0) denote the subdifferential at C0, i.e. the set of all

� 2 IRK�n s.t.
h�; C � C0i � f(C)� f(C0)

for all C 2 IRK�n, where h�; �i denotes the scalar product

h�; Ci = Tr�TC:

Since �F is �nite and hence continuous, @ �F (C) is nonvoid for all C, and we have the
following elementary optimality condition.
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LEMMA 1. �C is a minimal point of �F () 0 2 @ �F ( �C).

The basis for the evaluation of �F ( �C) is the following result.

LEMMA 2. (Jo�e and Levin). Let T; Z be topological vector spaces, F : Z � T ! IR

a continuous functional s.t., for each t, f(t; z) is convex in z. Assume that T is compact

and let
�f(z) = max

t2T
f(z; t):

Then

@ �f(z) =
[

�2�(z)

Z
@zf(z; t)�(dt); (2:2)

where

�(z) = f� : � probability measure on T s.t. supp(�) � T �(z)g;

T �(z) = ft 2 T : f(z; t) = �f(z)g:

For a proof and the precise meaning of the integal in (2.2), cf. Jo�e and Levin [3].
Actually, in our case, the @zf(z; t) will be singletons, so that the meaning is clear. The
situation to which we shall apply Lemma 2 is the following.

| T =

��
�

"

�
: � 2 IRK ; " 2 IRn; k�k; k"k � 1

�
; Z = IRK�n;

| f(z; t) = F (C; �; ");
| �f(z) = �F (C);
| @CF (C; �; ") = f2[(CX � I)��TXT + C("�TXT +X�"T)� �"T + C""T]g;

| T �(C) =

��
�

"

�
2 T : F (C; �; ") = �F (C)

�
.

Hence we have the equivalence

0 2 @ �F ( �C) () there exists a probability measure � on T �( �C) s.t.

Z
T�( �C)

[( �CX � I)��TXT + �C("�TXT +X�"T)� �"T + �C""T]�(d�; d") = 0: (2:3)

We are now in the position to prove

PROPOSITION 3. Suppose that �min(X
TX) � 1: Then the linear minimax estimator

of � is given by
�� = X+y:

Proof. Our conjecture is that, for �C = X+; 0 2 @ �F ( �C): Since XTX is nonsingular,
�CX � I = 0 and hence

F ( �C; �; ") = "TX+TX+";

�F ( �C) = �max(X
+TX+) = ��1min(X

TX) =: �:
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Here we have used the fact that X+TX+ = (XXT)+ and that the nonnull eigenvalues
of (XXT)+ are just the inverses of the nonnull eigenvalues of XXT, which in term

coincide with those of XTX: As a consequence,

T �( �C) =

��
�

"

�
: k�k � 1; " unit length eigenvector of X+TX+

corresponding to eigenvalue �

�

and (2.3) becomes

Z
T�( �C)

[X+"�TXT +X+X�"T +X+""T � �"T]�(d�; d")

=

Z
T�( �C)

X+("�TXT + ""T)�(d�; d") = 0:

(2:4)

Let now �" be any unit length eigenvector of X+TX+ coresponding to eigenvalue �, and
put

�� = �X+�":

Then
k��k2 = �"TX+TX+�" = � � 1;

i.e.
���
�"

�
2 T �( �C): Let �� denote the unit mass at

���
�"

�
. Then the second integral in (2.4)

becomes

X+(�"��TXT + �"�"T) = X+(��"�"TX+TXT + �"�"T) = 0;

where, in the second equality, we have made use of the identity XX+�" = �", which, in
turn, is due to the fact that �" 2 R(X+TX+) = R((XXT)+) = R(XXT) = R(X) and
XX+ is the projection onto R(X). This shows that (2.3) holds and hence 0 2 @ �F ( �C).

Remark 1. Proposition 3 shows that the linear minimax estimator coincides with the
ordinary least squares (OLS-) estimator of �, at least in situations where �min(X

TX) �
1: The latter condition will typically be ful�lled in reasonable models when the number
n of observations is large, since �min(X

TX) ! 1 as n ! 1 is a necessary condition

for weak consistency of the OLS{estimate (cf. Drygas [2]).

Remark 2. As in Christopeit and Helmes [1], one may elaborate further (2.3), using
CarathCodory's theorem, to obtain sort of a spectral equation, which seems, however,

not to allow a closed form solution, except for the special case considered in Proposi-
tion 3.

Remark 3. Let � denote the set of all probability measures on T and consider the

function

H(C; �) =

Z
T

k� � Cyk2�d�; d") =
Z
T

F (C; �; ")�(d�; d"); C 2 IRK�n; � 2 �:

Apparently,
sup
�2�

H(C; �) = max
k�k;k"k�1

F (C; �; ") = �F (C);
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where the sup is adopted at any � 2 �(C). Hence any solution of the minimax problem
(2.1) also provides a solution to the problem

min
C2IRK�n

max
�2�

H(C; �) = max
�2�

H( �C; �): (2:5)

(2.5) may be thought of as a Bayesian version of (2.1), with the max taken with respect
to all prior distributions on the (�; ") parameter space. Let us note in passing that for

(2.5) it can be shown that

max
�2�

min
C2IRK�n

H(C; �) = min
C2IRK�n

max
�2�

H(C; �)

(cf. Rockafellar [4]), where as for (2.1) minimax will generally be di�erent frommaximin.

3. JOINT RESTRICTIONS FOR PARAMETER AND DISTURBANCES

We consider again the linear regression model (1.1) y = X�+ �. The a priori constants
are now supposed to be of the form

k"k2 + 
k�k2 � 1

for some positive known constant 
. Our objetive is to determine a linear estimator
�̂ = Ĉy minimizing the loss function

'(C) = max
k�k2+
k�k2�1

(Cy � �)TV (Cy � �);

where V is a positive de�nite symmetric L � K matrix. The vector �̂ = Ĉy is called
the minimax estimator for the vector �.

As in Girko [7] we obtain that

min
C2KK�n

max
k�k2+
k�k2�1

(Cy � �)TV (Cy � �)

= �max

n

�1

p
V (ĈX � I)(ĈX � I)T

p
V +

p
V ĈĈT

p
V
o
;

and that the matrix Ĉ satis�es the spectral equation

n
X(ĈX � I)T
�1 + ĈT

o jX
k=1

p
V ~�k~�

T
k

p
V pk = 0; (3:1)

where ~�k; k = 1; : : : ; j are the orthogonal eigenvectors corresponding to the maximal
j-multiple eigenvalue of the matrix


�1
p
V (ĈX � I)(ĈX � I)T

p
V +

p
V ĈĈT

p
V ; pk > 0;

jX
k=1

pk = 1:

One of the solution of equation (3.1) is

Ĉ = XT(
I +XXT)�1:
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4. FILTER PROBLEMS: STATIC CASE

In this section we develop an approach to the estimation of a solution of a system of
equations with inde�nite coe�cients and random errors in a system of observations.

Let the system of linear equations

Ax = h+ �1;

be given, where A is a regular m�m matrix, x; h; �1 are the vectors of dimension m,

the matrix A and the vector h are known; while �1 is an unknown vector of internal
disturbances.

Assume that the observed vector y of dimension n is connected with the vector x by
the equation

y = �x+ �2;

where � is known (n�m) matrix, �2 is an unknown vector of dimension n, and �1 and
�2 satisfy the inequality

k�1k2 + k�2k2 � 1:

The problem is to estimate x (optimally in a certain sense) by a linear transform of y.

More precisely, we seek for an m � n matrix K̂ and a vector l̂ of dimension m which
minimize the loss function

'(K; l) = max
k�1k2+k�2k2�1

kx�Ky � lk2:

The vector x̂ = K̂y + l̂ is called a spectral or minimax estimator of the vector x.
Without loss of generality the vector h can be chosen to be zero.

PROPOSITION 4. If the matrix A is regular, then

min
K2Rm�n;

l2Rm

max
k�1k2+k�2k2�1

kx�Ky � l�k2

= �max
�
(I � K̂�)A�1A�1T(I � K̂�)T + K̂K̂T

	 (4:1)

and the matrix K̂ satis�es the equation

�
��A�1A�1T(I � K̂�)T + K̂

	 sX
k=1

pk'k(D)�Tk (D) = 0; (4:2)

where 'k are orthonormal eigenvectors corresponding to the s-multiple maximal eigen-

value of the matrix D = (I � K̂�)A�1A�1T(I � K̂�)T + K̂K̂T and l̂ = 0, pk > 0,Ps
k=1 pk = 1:

The proof is almost the same as in Girko [7]. It is su�cient to note that, as there,
we get

max
k�1k2+k�2k2�1

kx�Kyk2 = �max
�
(I �K�)A�1A�1T(I �K�)T +KKT

	
:

5. FILTER PROBLEMS: THE DYMAMIC RECURSIVE CASE
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In this section we consider the problem of estimation the state of a dynamical systems
evolving in discrete time according to the di�erence equations

xi+1 = xi +Aixi + �i;

yi = Cixi + �i; i = 1; 2; : : :
(5:1)

where xi are m-dimensional unobservable state vectors; yi are n-dimensional vectors of

observed variables; Ai and Ci are matrices of dimension m �m and n �m; �i and �i
are error vectors of dimensions m and n, respectively, which satisfy the inequality

(�; �) 2 G; G =

�
(�; �) :

kX
i=1

�
k�ik2 + k�ik2

�
� 1

�
for some �xed k

(where we have put � = (�1; : : : ; �k)
T, and similarly �).

Consider the following problem of estimating the state xk: to �nd matrices K̂i of

dimension m� n and a vector l of dimension m which minimize the expression

'(K1; : : : ; Kk; l) = max
(�;�)2G




xk+1 �
kX

i=1

Kiyi � l



: (5:2)

The vector x̂k+1 =
Pk

i=1 K̂iyi + l̂ is called linear minimax estimator of xk+1.

PROPOSITION 5. Under the above formulated assumptions

min
Ki2R

m�n;

l2Rm

max
(�;�)2G





xk+1 �
kX

i=0

Kiyi � l






2

= �max

� kX
i=1

(Zi+1Z
T
i+1 + K̂iK̂

T
i )

�
; (5:3)

where the matrices Zi satisfy the recursive equations

Zp+1(I +Ap) = Zp + K̂pCp; p = 1; : : : ; k; Zk+1 = I:

Moreover, l̂ = Z1x1 and the matrices K̂i; i = 1; : : : ; k satisfy the system of equations

sX
l=1

pl
�
K̂T

p + CpSp
�
'l'

T
l = 0; p = 1; : : : ; k (5:4)

where pl > 0;
Ps

j=0 pl = 1; 'k; k = 1; : : : ; s are orthonormal eigenvectors which

correspond to the maximal s-multiple eigenvalue �max of the matrix
Pk

i=1[Zi+1Z
T
i+1 +

K̂iK̂
T
i ]; and the matrices Sp satisfying the system of equations

Sp+1 = Sp +ApSp � ZT
p+1; p = 1; : : : ; k; S1 = 0; (5:5)

one of the solution of the equation (5.4) is

K̂T
p = �CpSp; p = 1; : : : ; k:
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Proof. It is obvious that





xk+1 �
kX

i=1

Kiyi � l






2

=





xk+1 �
kX

i=1

KiCixi �
kX

i=0

Ki�i � l






2

:

Consider the system of recursive equations

Zp+1 = Zp � Zp+1Ap +KpCp; p = 1; : : : ; k

with the initial condition Zk+1 = I: Then, using (5.1), after obvious transformations

we have

xk+1 �
kX

i=1

KiCixi = xk+1 �
kX

i=1

(Zi+1 � Zi)xi �
kX

i=1

Zi+1Aixi

= xk+1 �
kX

i=1

Zi+1(xi+1 � Aixi � �i)�
kX

i=1

Zi+1Aixi +

kX
i=1

Zixi

= Z1x1 +

kX
i=1

Zi+1�i:

Therefore





xk+1 �
kX

i=1

Kiyi � l






2

=





Z1x1 +
kX

i=1

Zi+1�i +

kX
i=1

Ki�i � l






2

:

As in Girko [7] we get

min
Ki2R

m�n;

l2Rm

max
(�;�)2G





xk+1 �
kX

i=1

Kiyi � l






2

= min
Ki2Rm�n

�max

� kX
i=1

(Zi+1Z
T
i+1 + K̂iK̂

T
i )

�
; l̂ = Z1~x1;

and unknown matrices K̂i satisfy the equation

sX
q=1

~'Tq pq

kX
i=1

( ~Zi+1Z
T
i+1 +�iK̂

T
i )'q = 0; (5:6)

where 'k; k = 1; : : : ; s are orthonormal eigenvectors which correspond to the maximal

s-multiple eigenvalue �max of the matrix
Pk

i=1[Zi+1Z
T
i+1 + K̂iK̂

T
i ]; �i are arbitrary

matrices which have the same dimension as matrices Ki, and the matrices ~Zi+1 satisfy
the equations

~Zi+1 = ~Zi � ~Zi+1Ai +�iCi; ~Zk+1 = 0; i = 1; : : : ; k:
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Obviously

kX
i=1

~Zi+1Z
T
i+1 =

kX
i=1

( ~Zi+1Z
T
i+1 +

~Zi+1Si+1 � ~ZiSi)

=

kX
i=1

�
~Zi+1Z

T
i+1 +

~Zi+1(Si + AiSi � ZT
i+1)� ~ZiSi

�

=

kX
i=1

�
( ~Zi � ~Zi+1Ai +�iCi)Si + ~Zi+1AiSi � ~ZiSi)

�

=

kX
i=1

�iCiSi:

Using this equality and the auxiliary systems of equations (5.5) we obtain that (5.6)
equals

sX
q=1

~'Tq pq

kX
i=1

�i(K̂
T
i + CiSi)'q = 0:

From this equation we obtain all assertions of Proposition 5.

6. FILTER PROBLEMS: THE DYNAMIC CASE

Let the system of equations

dx(t)

dt
= A(t)x(t) + �1(t); x(0) = a (6:1)

be given, where A(t) is a square n� n matrix, whose entries are piecewise continuous
function, x(t) is a vector of dimension n of states of this system, �1(t) is the vector of
perturbations of dimension n and the vector a is given.

Let the vector of observations y(t); 0 � t � T of dimension m be observed and let it
be related with vector x(t):

y(t) = C(t)x(t) + �2(t); 0 � t � T; (6:2)

where C(t) is an m�n matrix, whose entries are piecewise continuous functions, T � 0
is some constant, �2(t) is a vector of perturbations of dimension m.

Assume that the components of vectors �1(t); �2(t) are piecewise continuous functions
and that the vectors �1(t) and �2(t) belong to the domain

G =
n
�1(�); �2(�) :

Z T

0

�
k�1(t)k2 + k�2(t)k2

�
dt � 1

o
;

where k�1(t)k2 = �T1 (t)�1(t):

Let R and Q be the sets of matrices K(t) of dimension m � n and vectors l(T ) of
dimension n and the entries of the matrix K(t) belong to the Hilbert space L2[0; T ]:
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The problem of estimating the state x(T ) is on �nding matrices K̂(u) and a vector

l̂(T ) such that

min
K(u)2R;

l(T )2Q

max
�1(�);�2(�)2G




x(T )�
Z T

0

K(u)y(u) du� l̂(T )



2

=



x(T )�

Z T

0

K̂(u)y(u) du� l̂(T )



2:

(6:3)

The expression

x(T ) =

Z T

0

K̂(u)y(u) du� l̂(T ); (6:4)

where K̂(u) and l̂(T ) minimize the expression above, is called the spectral or minimax

estimator of the state x(T ).

PROPOSITION 6. Under the above assumptions, the solutions K̂(u); l̂(T ) of the

equation (6.3) can be found from the equations:

[KT(u) + C(u)S(u)]

sX
k=1

pk'k'
T
k = 0; 0 � u � T; (6:5)

dS(t)

dt
= A(t)S(t)� ZT(t); S(0) = 0; l̂(T ) = Z(0)a; (6:6)

dZ(t)

dt
= �Z(t)A(t) + K̂(t)C(t); Z(t) = 1; (6:7)

where
Ps

k=1 pk = 1; pk > 0; 'k; k = 1; : : : ; s are the orthonormal eigenvectors

corresponding to the maximal s-multiple eigenvalue of matrix

Z T

0

�
Z(t)Z(t)T +K(t)K(t)T

�
dt:

Proof. It is obvious that





x(T )�
Z T

0

K(u)y(u) du� l(T )






=





x(T )�
Z T

0

K(t)C(t)x(t) dt�
Z T

0

K(t)�2(t) dt� l(T )





:
(6:8)

Using the system of di�erential equations (6.1){(6.7) we have

x(T ) = Z(T )x(T ) =

Z T

0

d[Z(t)x(t)]

dt
dt+ Z(0)a

=

Z T

0

K(t)C(t)x(t) dt+

Z T

0

Z(t)�1(t) dt+ Z(0)a:
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From this equality and (6.8) we get





x(T )�
Z T

0

K̂(u)y(u) du� l̂(T )






2

=





Z(0)a� l̂(T ) +

Z T

0

[Z(t)�1(t)�K(t)�2(t)] dt






2

:

Hence, using the Rayleigh formula we �nd that l̂(T ) = Z(0)a;

min
K(u)2R;

l(T )2Q

max
�1(�);�2(�)2G




x(T )�
Z T

0

K(u)y(u) du� l̂(T )



2

= min
K(u)2R;

l(T )2Q

�max

�Z T

0

�
Z(t)Z(t)T +K(t)K(t)T

�
dt

�
:

We see that the unknown matrix K(s) satis�es the equality

Tr

Z T

0

�
~Z(t)Z(t)T +�(t)K(t)T

�
dt

sX
k=1

pk'k'
T
k = 0;

where �(t) is an arbitrary matrix from the set R and the matrix ~Z(t) satis�es the
equality

d ~Z(T )

dt
= � ~Z(t)A(t) + �(t)C(t); ~Z(T ) = 0:

Using the auxiliary system of equations

dS(t)

dt
= A(t)S(t)� ZT(t); S(0) = 0;

we get Z T

0

~Z(t)ZT(t) dt =

Z T

0

�(t)C(t)S(t) dt:

Therefore, for the matrix K(s), we have the inequality

Tr

�Z
�(t)

�
C(t)S(t) +KT

�
dt

sX
k=1

pk'k'
T
k

�
= 0:

From this equation in virtue of arbitrariness of matrix � the Proposition 6 follows.

7. ESTIMATION OF LINEAR REGRESSION MODELS IN HILBERT SPACE

Denote the real separable Hilbert spaces of elements by H1; H2: Let B1 be the Banach

space of operators, which maps H2 into H1; let B2 be the Banach space of linear real
operators which maps H1 into H1, and B3 is the Banach space of linear real operators

which maps H2 into H2.
Assume that the linear model of regression y = Xc + " in the Hilbert space H2 is

given, where c is an unknown element in the Hilbert space H2, y is an element from
the Hilbert space H1, X is a linear operator which maps H2 into H1, " is a element of
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unobservable perturbations from Hilbert space H1. Let the elements c and " satisfy the
inequalities

(c; c) + ("; ") � a;

where 0 < a <1: By means of a linear transformation of the element y: Ty+ t we �nd

an operator T̂ 2 B1 and an element t̂ 2 H1 such that the expression (loss function)

f(T; t) = sup
(c;c)+(";")�a

([Ty + t� c]; V [Ty + t� c]);

where V is a symmetric nonnegative de�nite operator from B3, will take a minimal

value. The element ĉ = Ty + t̂ is called the S-estimator of the element c.

As in Girko [7] we prove the following statements.

PROPOSITION 7. If V; X; D�1 are operators of trace class, then

inf
T2B1;

t2H2

f(T; t) = ��1
�p

V (I � T̂iX)(I � T̂iX)T
p
V +

p
V T̂iT̂

T
i

p
V
�
;

where V 1;2t̂ = 0; �1 is maximal eigenvalue of multiplicity i; I is identity operator and

the operators Ti satisfy equation

�
X(T̂iX � I)T + TT

�
a

iX
k=1

p
V Ek

p
V pk = 0;

here pk > 0,
Pi

k=1 pk = 1; Ek; k = 1; : : : ; i are orthogonal projectors which correspond

to the eigenvalue �1.
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