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Abstract

From noisy observations of a �nite family of functions an approxima-

tion in a lower dimensional space can be constructed using the method

of principal components. If certain restrictions are to be satis�ed by the

approximation, e.g. being densities, this leads to a modi�ed estimation

procedure.

It is shown that in certain dimensions this will produce a family of curves

which all intersect in the same points. This property may be interpreted

in some cases as a characteristic feature of regularity of the data or as an

arti�cial creation by the device in others.

Key words: kernel smoothing, density estimation, principal component analy-
sis, nonparametric functional prediction
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1 Introduction

Principal component analysis has been shown to be a useful tool in non-
parametric curve estimation, see Silverman (1995), Rice and Silverman (1991).
Given observations from a family of curves this method may be used to infer
on the dimension of the space they span, see Kneip (1994) and provide an or-
thonormal basis which is optimal in a certain, well de�ned sense. For any �xed
dimension this basis can be used to predict, cluster or classify the estimated
functions Aubrey et al. (1980).

If the underlying family satis�es certain other conditions e.g. being densities
or having common moments of some order, these conditions will generally not
be conserved by its approximation in principal components. It is shown in the
present article that by enforcing such conditions e.g. by renormalization, a
common intersection can emerge as a new, prominent feature of the family which
is absent when each of its members is estimated separately. It will then be left
to the experimenter to draw conclusions on its existence and meaning for the
underlying data generating process.

A second aspect is its potential use as data description/reduction technique.
Transitions from one curve to another are sketched as deformations of a proto-
typical curve around certain �xed points. Strength or velocity of the deformation
and its nature and direction can be estimated and,in an appropriate graphical
representation, are proposed as tools for the study of change among curves suc-
cessively observed in time.

2 Generalized separable families

We consider a bivariate function that can be written as a sum of products
of pairs of univariate functions. These summand functions are called separable
since they allow a separation of variables into a product, a property which makes
them important in many applications. More precisely we consider a bivariate
function of the form

ft(x) =
pX

j=1

�
(j)
t mj(x) (2:1)

a generalized separable family of dimension p < 1 where t 2 T , x 2 X are
subsets of the real line. To avoid technicalities we require that no two functions
are identical.

Moreover we assume the side conditions

li(ft) = ci ; i = 1; : : : ; l � 1; t 2 T (2.2)
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where li are functionals and ci constants. Denoting by l0 the transpose of a
vector l, condition (2) can be written as l(ft) = c, where l0 = (l1; : : : ; ll�1) and c

similarly. We assume the constraints to be linear, i.e.

li

0
@ pX

j=1

�
(j)
t mj

1
A =

pX
j=1

�
(j)
t li(mj) :

We also require the rank condition

rank ( [l(m1); : : : ; l(mp)]) = rank ( [l(m1); : : : ; l(mp); c]) = l � 1 : (2:3)

Lemma 2.1 : If p = l then ft1(x0) = ft0(x0) for any x0 , t0, t1 implies
ft(x0) = ft0(x0) for all t.

Proof : Wemay assume without loss of generality that the matrix [l(m1); : : : ; l(mp�1)]
is of full rank. Denote the elements of its inverse by lij. Therefore the solution
of

p�1X
j=1

�
(j)
t l(mj) = ��

(p)
t l(mp) + c

can be written in terms of �
(p)
t as

�
(j)
t =

p�1X
i=1

lij (ci � �
(p)
t li(mp)) =

p�1X
l=1

lijci � �
(p)
t

p�1X
i=1

lijli(mp) :

Hence

ft(x) =
p�1X
j=1

p�1X
i=1

lijcimj + �
(p)
t mp � �

(p)
t

p�1X
j=1

p�1X
i=1

lijli(mp)mj

or

ft(x) = �
(p)
t �(x) + �(x) where (2.4a)

�(x) := mp �
p�1X
j=1

p�1X
i=1

lijli(mp)mj : (2.4b)

�(x) :=
p�1X
j=1

p�1X
i=1

lijcj mj : (2.4c)

Hence, since ft0 , ft1 di�er in at least one point, ft0(x0) = ft1(x0) implies
�(x0) = 0 and therefore ft(x0) = ft0(x0) for all t.
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Corollary 1: If a family of densities de�ned on some subset of the real line
spans a two{dimensional space this family will intersect in at least one point.
The same is true if all densities have equal mean and span a space of dimension
three or if in addition to equal means have equal variance and span a space of
dimension 4.

By approximating a given curve family by a generalized separable function
satisfying side conditions, a common intersection in the approximating curves
can be produced. If the dimension of the approximation is increased and there-
fore its goodness, this feature vanishes. However it can be forced to reappear
if the approximated family is required to satisfy additional properties like the
existence of common moments such as can be produced e.g. by a variable trans-
form.

We note that under the conditions of the lemma it follows from (2.4) that ft
can be written as a time invariant function � on which a time varying component
is superimposed in a time invariant direction. A simple interpretation in terms of
velocity of change is made possible this way as is illustrated in the next section.

A study of the coe�cient function �(p)(t) may reveal trends and thus be useful
for the purpose of predicting future changes.

3 Applications

We outline an application of the proposed method to the study of change
in the distribution of income. The data consists of large samples of dispos-
able income of British private households taken cross-sectionally over the years
1968-1986. For a de�nition of the variables and further details see e.g. Section
2.4 of Hildenbrand (1994). The source of the data is the ESCR Data Archive
at the University of Essex, Family Expenditure Survey, Annual Tapes 1968-
1986, Department of Employment, Statistics Division, Her Majesty's Stationary
O�ce, London. Densities of mean normalized income were estimated using a
power transformed density estimator with power transform g(x) = (0:1 + x):25

proposed by Wand et al (1991) and a Gaussian kernel smoother provided by
Splus. This yields the density estimates over nineteen successive years displayed
in Figure 3.1 [left]. Assuming model (2.1) with p = 2 and the restriction (2.2)
that

R
ft(x)dx = 1 for t = 1968; : : : ; 1986 we use the estimators of Section 4

to approximate the curve family. The resulting curves are displayed in Figure
3.1 [right].
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Figure 3.1: Disposable incomes of British households 1968-1986. Kernel
density smoothing estimate for each year [left] and two-dimensional

approximation [right].

From this picture it can be con-
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Figure 3.2: Trends in redistribution of in-
comes

jectured that while the income dis-
tributions change drastically over
the years, a certain percentage of
households whose incomes lie 40%
above or below the mean income
remain una�ected by the redistri-
butions. A blowup of the region
around 60% reveals a marked trend
of household incomes being shifted
from the center into lower income
classes, from which the existence
of an opposite but softer trend to-
wards higher incomes can be con-
cluded around the other �xed point
of 1.5, see Figure 3.2. It is to be noted that the mean L1-distance among the
curves of 3.1 [left] and their correspondents in 3.1 [right] is 0.04. Without the
restriction (3.2) the corresponding approximation yields a mean L1-distance is
almost the same. Using a three-dimensional unrestricted approximation this will
be reduced to 0.02. This gain however is more than o�set when two restrictions
are to be brought in in order to apply Lemma 2.1. If in addition to the condition
of area one we require that the mean of the three-dimensional approximations
be equal to one this leads to a rise in the mean L1-distance to 0.05.
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Figure 3.3: Disposable incomes of families whose head is full-time employed.
Kernel density smoothing estimates for each year [left] and two-dimensional

approximation [right].
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Figure 3.4: Basis functions of (constrained) two-dimensional approximation to
Figure 3.3 [left]
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Figure 3.5: Evolution of coordinates [left] of transient component and
deformation [right] of time invariant component of Figure 3.4.

A similar analysis is carried out on the income distribution of households
whose head is full time employed. Yearly estimates yield a family of mean stan-
dardized income densities which appears approximately lognormal with slightly
increasing variances though a Kolmogorov-Smirnov-test rejects this hypothesis
at an alpha of ten percent in every year. Fitting model (2.1) with p = 2 under
the restriction (2.2) of equal area one by the methods of Section 4 we obtain
a family of densities with �xed points in the same area of relative income as
for the total population. To understand the income dynamics of this subpopu-
lation we focus on the basis elements �; � from representation (2.4) a graph of
which is displayed in Figure 3.4. The curve in 3.4 [left], which can be shown
to be a density, is invariant in time. The transient e�ects are captured by the
curve in 3.4 [right] and by the corresponding coordinates as displayed in Figure
3.5 [left]. The transition of densities is therefore characterized by superposition
of 3.4 [left] with 3.4 [right] weighted with coordinates from 3.5 [left], this way
producing deformations by amounts displayed in 3.5 [right].

4 Estimation

We now present the estimation procedure applied in the previous section.
The estimated curve families are de�ned as parameters of a general regression
model. The estimators are described and computed by the algorithm given
below, followed by recommendations for its implementation.
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No claim is laid on the statistical properties of the estimators which are
mostly obvious and part of a well developed theory, see Kneip and Gasser (1988),
Kneip (1994). Application of the method to the problem of predicting future
curves and observations are part of a general approach described in Engel and
Utikal (1996).

Consider the following model. We observe continuous functions f1; : : : ; f� in
the presence of noise in �nitely many nonrandom points xt1; : : : ; xt�t; t = 1; : : : ; �

~ft(xti) = ft(xti) + "ti

where "ti = ~ft(xti) � ft(xti) are unobserved random variables. We assume that
f1; : : : ; f� are generated by a �xed set of p basis functions m1; : : : ;mp satisfying
(2.1) and linear constraints of type (2.2).

The problem here is to estimate for �xed p the unknown �
(j)
t ;mj. To assure

identi�ability we assume that fm1; : : : ;mpg are eigenfunctions to the p largest
eigenvalues �1 � : : : � �p of the � � � -matrix

R
f(x) f 0(x) dx. In this notation

f (x) is a columnvector with components ft(x) for t = 1; : : : ; � and the transpose
will be denoted by f 0(x).

The values ~ft(xti) were obtained by interpolating and smoothing on a com-
mon grid x1; : : : ; xn where we suppose that � < n. In what follows we will not
distinguish the notation between ft(xi); �

(j)
t ;mj(xi) etc. and its corresponding

estimates ~ft(xi); ~�
(j)
t ;fmj(xi). We use vector and matrix notation where f is a

��n-matrix of row vectors ft, the rows of m are denoted by mj and the columns

of � by �(j). For given p we propose the following estimation procedure for �;m.
The constrained reconstruction f̂ of f is now obtained in the following three
steps.

A1: Compute the matrix P of eigenvectors corresponding to the p largest eigen-
values �1 � : : : � �p of the matrix ff 0. Denote the diagonal matrix of
eigenvalues � = Diag(�1; : : : ; �p). Compute

�0 = P 0�
1

2

m = ��

1

2P 0f :

A2: Then solve
l�1X
j=1

�̂
(j)
li(mj) +

pX
j=l

�(j)li(mj) = ci

for �̂
(1)
; : : : ; �̂

(l�1)
and i = 1; : : : ; l � 1 :
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A3: The reconstruction of f is now given by

f̂ =
l�1X
j=1

�̂
(j)
mj +

pX
j=l

�(j)mj :

The following remark concerns to choice of the dimension p in the case of
l = p � 1. To trace the essential changes among given curves we use (2.4).
While the timeinvariant term �(x) is constructed from the �rst p = 1 principal

components fm1; : : : ;mp�1g only, it is the coordinate of the pth component that

drives the transient term �
(p)
t �(x). As a rule mp is tracing the low amplitude

high frequency 
uctuations which are strongly corrupted by noise, which over
�
(p)
t propagates into the reconstructed curve family via (2.4). Therefore, choosing
a high dimension p in the interest of getting a good �t to the given curve family
in terms of a low L1-distance therefore can lead to an unexpected deterioration
in the characterization of change among its members by using (2.4).

5 Summary

A method is presented by which a family of curves will be approximated by
another family whose members all intersect in one or several common points. It
is illustrated how these intersections can be interpreted as �xed points around
which a prototypical curve pivots. Viewing the curve family as a process this
method provides means of studying the trend in the underlying dynamic as well
as of predicting future curves. A generalization of the method to two dimen-
sions is possible and should best be applied when �xed points form a closed
time invariant curve; other points of the surfaces are transformed in varying de-
grees which can be studied and graphically displayed by means similar to those
illustrated presently in one dimension.
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