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1 Introduction

The issue of uniqueness of a general equilibrium has been one of the most widely

studied in General Equilibrium Theory. Such uniqueness would ensure that the

prices given by the competitive solution to the allocation problem provide a

well-determined theory of value. On the same grounds, uniqueness of the equi-

librium also is a very desirable property of the general equilibrium model with

incomplete markets (GEI-model), which �nds wide applications in the theory of

�nance. Unfortunately, it is well-known that the notorious structure theorems

by Sonnenschein, Debreu and Mantel (1973, 1974, 1974, respectively) carry over

to the situation where markets are incomplete1. Even in the simplest case of a

GEI-economy where there is only one consumption good, the standard model

used in the �nance literature, uniqueness of the equilibrium will therefore in

general fail to hold. Despite of the importance of this issue, Mas-Colell's asser-

tion that "...a systematic study of uniqueness conditions for incomplete market

models is missing" (1991a) remains true even for the case with only one good.

This paper forms an initial attempt to close this gap.

For certain special cases, uniqueness of the equilibrium in the one-good GEI-

model has been established. For example, it is a standard and not so di�cult ex-

ercise to show uniqueness for quadratic preferences. This is the simplest version

of the so-called CAPM-model due to Sharpe (1964) and Lintner (1965)2. Becker

(1995) shows uniqueness with non-collinear endowments in the case where there

are only two assets and utilities are of the Cobb-Douglas-type3. Hens (1995)

has pointed out that uniqueness can be derived via the Mitjushin-Polterovich-

Theorem if the individual endowments are collinear and lie in the span of the

asset matrix, and if, in addition, the agents' utility functions are characterised

by small risk aversion4.

This paper gives a su�cient condition on the joint distribution of asset

payo�s and individual endowments, which allows to generalise the Mitjushin-

Polterovich-Theorem to the case where the endowments might not be spanned

by the assets' payo� vectors. This condition is closely related to the lattice

structure of the linear space spanned by the asset payo�s5. Furthermore, it is

1see Hens (1991), Bottazzi and Hens (1996) and Gottardi and Hens (1996).
2For general CAPM-economies, however, Nielsen (1988) has shown that there may well be

multiple equilibria. Bottazzi, Hens and L�o�er (1995) have proven that the CAPM assumptions
do not impose any additional restrictions besides the Tobin separation property and are hence
compatible with any number of equilibria.

3His argument can be easily extended to cover von Neumann-Morgenstern utility functions
with relative risk aversion not bigger than one.

4For a similar result see Madrigal and Smith (1995).
5A �rst observation of the importance of this structure in GEI-economies was made by
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established that collinearity of the endowments still su�ces to translate this con-

dition into a su�cient condition for uniqueness of the GEI-equilibrium. We also

show that our condition covers special cases for uniqueness known so far and

that it comprises a large class of GEI-economies.

The paper is organised as follows. The model is described in section 2. We

brie
y recall the relation between monotonicity and uniqueness as well as the

Theorem by Mitjushin-Polterovich in section 3. Section 4 contains the main

body of the paper, and presents the theorem yielding our su�cient condition.

The relevance and connexions of this result are illustrated by a set of examples

given in section 5. Section 6 then concludes the paper.

2 The Model

Our model is the standard GEI-model with one consumption good. Thus, there

are two periods t = 0; 1 with uncertainty in period 1, which is modelled by S

possible states s = 1; : : : ; S. Consumption takes place in the second period only6.

There are I individuals i = 1; : : : ; I having utility functions U i : IRS
+ �! IR.

Frequently, we will denote index sets and their cardinalities by the same letter,

for example I = f1; : : : ; Ig. The following assumption, which states that the

individuals' utility functions are of the von Neumann-Morgenstern type, will be

maintained throughout:

Assumption (U) - (VNM): For every i 2 I the individual utility function

is given by U i(x) =
PI

i=1 �
i
s u

i
s(xs), with �i >> 0 and

PS
s=1 �

i
s = 1, where

uis : IR++ ! IR is C2, strictly monotone and strictly concave for s = 1; :::; S.

Furthermore, the closure of the set fx 2 IRS
+j U

i(x) � Ui(y)g is contained in

IRS
++ for every y 2 IRS

++ and for every i 2 I.

Note that Assumption (U) implies that individual asset demand functions are

continuously di�erentiable.7 We also make the following interiority assumption

on the endowments !i:

Assumption (E): !i >> 0 for every i 2 I.

Henrotte (1992) in a di�erent context.
6This assumption is without loss of generality, since the �rst period can be interpreted as

just another state (see Geanakoplos and Polemarchakis (1986)).
7see for example Magill and Quinzii (1996, Chapter 2, Lemma 11.5).
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To enable the trading of endowments between uncertain states, there is a

S � J-matrix A = (A1; :::; AJ) 2 IRS�J of assets paying o� an amount Asj of the

consumption good in state s. We assume without loss of generality that assets

are not redundant, i.e. that A satis�es the rank condition rankA = J . When

J = S, markets are said to be complete, while for J < S they are incomplete.

Assets can be traded without any short selling restrictions. Asset prices are

denoted by a vector q 2 IRJ. Thus, the i-th agent's decision problem is

(P i) max
x2IRS

+

U i(x)

s.t. 9� 2 IRJ : qT� � 0

and x = !i + A�

The de�nition of an equilibrium in this context now is standard.

De�nition 1: A tuple ((
�
x
i
;
�

�
i

)Ii=1;
�
q) 2 IR(S+J)�I+J is called a GEI-equilibrium if

1. (
�
x
i
;
�

�
i

) solves (P i) given
�
q for every i 2 I,

2.
PI

i=1 �
i = 0.

Applying well-known results (see for example Magill and Quinzii (1996,

Chapter 2, Theorem 10.5)) we can conclude that in our set-up GEI-equilibria

always exist. Furthermore, we observe that any J-dimensional asset matrix ~A

which generates the same trading subspace as A, i.e. span ~A = spanA, will lead

to the same set of GEI-equilibrium-allocations

�
(
�
x
i
)Ii=1

�
(see for example Magill

and Quinzii (1996, Chapter 2, x 9)).

3 Complete Markets

3.1 Monotonicity and Uniqueness

When markets are complete, i.e. when span A = IRS, then the maximisation

problem (P i) is just the standard problem known from GE-theory, namely

( ~P i) max
x2IRS

+

U i(x)

s:t: �x � �!i;
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with � 2 IRS
++ being the vector of state prices. If �i(�) denotes the solution

to this problem then zi(�) := �i(�) � !i is the individual excess-demand func-

tion, while z(�) :=
PI

i=1 z
i(�) denotes aggregate excess-demand. An important

property of excess-demand is monotonicity with respect to a normalising vector.

De�nition 2: The excess-demand function z is strictly monotone with respect

to the normalising vector e � 0; e 6= 0, if (z(�) � z(~�))(� � ~�) < 0 whenever

z(�) 6= z(~�) and � � e = ~� � e = 1.8

If aggregate excess-demand is strictly monotone with respect to some nor-

malisation, equilibrium will be unique. Note that if endowments are chosen as

the normalising vector, price changes which leave the value of the endowments

unchanged are referred to as income-neutral price changes.

Clearly, the sum of excess-demands strictly monotone with respect to the

same normalising vector again is strictly monotone. Hence, one can deduce

strict monotonicity of aggregate excess-demand from strict monotonicity of the

individual excess-demand functions if a common normalising vector can be cho-

sen. A standard condition allowing for this procedure is given by the assumption

that individual endowments are collinear, i.e. that there is some ! 2 IRS
++ such

that !i = �i � ! for �i > 0; i = 1; :::; I, and
PI

i=1 �
i = 1. Summarising this

subsection, one arrives at the following theorem9.

Theorem 1: Let markets be complete, i.e. let rankA = S. Suppose zi(�) is

strictly monotone with respect to income-neutral price changes for every i =

1; :::; I, and let individual endowments be collinear. Then there is a unique

equilibrium.

3.2 Mitjushin-Polterovich-Theorem

An elegant device for showing strict monotonicity of individual excess demand

with respect to individual endowments is suggested by the Mitjushin-Polterovich-

Theorem (1978). The theorem states as a su�cient condition for strict mono-

tonicity that a suitably chosen coe�cient of risk aversion does not exceed a cer-

8Observe that it is not possible to dispense with the normalising factor. If z(�) 6= 0 there
is always a ~� such that (z(�)� z(~�))(� � ~�) > 0.

9For a much more detailed discussion of these issues and for proofs of the various statements
the reader is referred to Mas-Colell (1991b) and Mas-Colell et al. (1995, Chapter 17.F).
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tain critical value10. Since we are mainly concerned with studying monotonicity

of individual demand in this paper, we will henceforth drop the superscript i

whenever possible.

Theorem 2 (Mitjushin-Polterovich): Suppose that the utility function U(x) :

IRS
+ ! IR is such that the excess-demand function z derived from ( ~P ) is C1. If

MPU(x) := �
xTD2U(x)x

xTDU(x)
< 4 8x 2 IRS

+

then z is strictly monotone for income-neutral price changes.

Proof: see Mas-Colell (1991b)11.

2

In the �nancial markets setting considered here the Mitjushin-Polterovich-

coe�cient MP has a nice interpretation in terms of risk aversion. Observe that

assumption (U) imposes on individual utility the form of an expected utility

standard in the �nance literature, i.e. U(x) =
PS

s=1 �sus(xs). It is straightfor-

ward to show that

8x 2 IRS
+ : MPU (x) < 4, 8s 2 S 8xs 2 IR+ : MPus (xs) < 4,

where MPus(xs) = �
u

00

s (xs)xs
u

0

(xs)
: But the last expression is just the agent's coe�cient

of relative risk aversion. Therefore, with complete markets, small risk aversion

leads to strictly monotone individual demand functions.

4 Incomplete Markets

In this section we will derive a su�cient condition for the strict monotonicity of

the individual excess demand function when utilities are of the von Neumann-

Morgenstern type but when markets may be incomplete and endowments may be

unspanned. By standard arguments and with collinear endowments this in turn

translates into a su�cient condition for the uniqueness of the GEI-equilibrium.

10For a converse, see Kannai (1987). Also observe that in terms of the underlying preferences
it su�ces that some utility representation satis�es Mitjushin's and Polterovich's condition.

11Mas-Colell (1991b) also gives an example which shows that the number "4" occuring in the
statement of the theorem \is very much the magic number as far as uniqueness is concerned"
(Mas-Colell (1991b, p. 283)). It consists of a two-consumer-two-goods-economy having three
equilibria, whilst the individual Mitjushin-Polterovich-coe�cients can be chosen arbitrarily
close to 4.
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First, however, a result by Hens (1995) for the case of spanned endowments is

brie
y reviewed.

4.1 Spanned Endowments

With the endowments lying in the span of the payo� vectors of the asset ma-

trix, Theorem 1 can be applied to derive strict monotonicity of an agent's asset

demand. To see this, let �� be a portfolio generating the agent's endowment, i.e.

let ! = A��. Then the decision problem (P) can be rewritten as

(P 0) max
�2IRJ

W (�) := U(A�)

s.t. qT � � qT ��

A� � 0

Note the fact that the asset matrix may link payo�s across states implies

that W does not inherit additive separability from U . For small risk aversion,

however, Theorem 1 still yields strict monotonicity for income neutral price

changes, because simple transformations show that MPW = MPU . Hence, in the

important special case when endowments are spanned our question is settled12.

4.2 A Generalised Mitjushin-Polterovich Theorem

Before stating our result we need to introduce some further notation.

For any subset R � S with jRj = J we let AR be the J � J-submatrix of A

given by the payo�s of all the assets in the states contained in R, i.e.

AR = (Asj)
j2J
s2R:

We denote the associated subvectors by xR = (xs; s 2 R) and !R. Corre-

spondingly, we let xnR := (xs; s =2 R). If the submatrix AR has full rank, i.e. if

rankAR = J , it can be inverted. We will denote this inverse matrix by A�1
R . Note

that by the rank condition there always exists at least one set R � S; jRj = S

such that AR is invertible.

Let now AR be such an invertible submatrix. Then the matrix A�1
R can be

used to transform the payo�-matrix A to the matrix A(R) = (IdR; AnRA
�1
R )

which generates the same space of possible net-trades. IdR here denotes the

R �R-identity matrix. The following de�nition is crucial.

12For details see Hens (1995, chapter III.7.6).

7



De�nition 3: Let R � S; jRj = J be such that AR is invertible. If A(R) =

(IdR; AnRA
�1
R ) � 0 then R is called a fundamental set of states13.

Thus, when there exists a fundamental set of states, the asset matrix can be

transformed such that it consists of J assets being Arrow-Debreu-securities in

J states and paying o� non-negative amounts of the single commodity in the

remaining S�J states. Abramovich, Aliprantis and Polyrakis (1996) show that

a matrix contains a fundamental set of states if and only if its column vectors

span a lattice-subspace14.

We can now state the additional assumption needed in order to extend the

Mitjushin-Polterovich-Theorem to incomplete markets in the general case where

endowments are not spanned by the payo�-vectors of the assets.

Assumption (A): There exists a fundamental set R of states, R � S, such

that !s � AsA
�1
R !R � 0 for every s 2 SnR.

Remark: Observe that Assumption (A) imposes joint restrictions on the as-

set matrix and the endowments. However, note that if (A) is satis�ed for an

arbitrary asset matrix A 2 IRS�J it is also satis�ed for the transformed matrix

A(R) = (IdR; AnRA
�1
R ). Hence, the market subspace spanned by the traded

assets is the only thing which matters, and one could also assume without loss

of generality that A is of the simple form A = (Id; ~A). As this does not lead

to signi�cant simpli�cations in the notation, however, we stick to presenting the

more general case.

It turns out that the MP-property of a utility function holds for the in-

complete markets case, if Assumption (A) is satis�ed. This is captured by the

following result. Note, that the assumption on the utility function is not ordinal;

it su�ces that it is satis�ed by one utility representation of the preferences.

Proposition 1: Suppose (U) and (A) are satis�ed, and let R � S be the

corresponding fundamental set of states. If MPus(x) < 4 for every x 2 IR+

and every s 2 S, then the individual asset demand function f arising from the

maximisation problem (P ) is strictly monotone with respect to the normalising

vector A�1
R !R (i.e. for price changes q1; q2 such that qT1 A

�1
R !R = qT2 A

�1
R !R).

13The terminology is taken from Aliprantis, Brown and Werner (1996) who have indepen-
dently arrived at applying this concept to the analysis of the standard GEI-model. They use
fundamental states to suggest an optimal hedging portfolio for a non-redundant put option in
an incomplete market.

14For a detailed mathematical discussion see Abramovich, Aliprantis and Polyrakis (1996).
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Proof: see the appendix.

As mentioned before, it is well-known that strict monotonicity of the individ-

ual excess demand functions implies uniqueness of the equilibrium if the agents'

endowments are collinear. A similar argument in the situation considered here

leads to the following theorem which is the main result of our paper.

Theorem 3: Let ! :=
PI

i=1 !
i and assume (U) and (A). Let R � S; jRj = S,

be the corresponding fundamental set of states. Suppose that

1. MPuis
(x) < 4 for every x 2 IR+, every s 2 S and every i 2 I.

2. !i
R = �i!R for some �i > 0; i 2 I.

Then there is a unique GEI-equilibrium.

Proof: see the appendix.

Remark: Observe that endowments have to be collinear only for the subvector

of the coordinates which corresponds to the fundamental set of states.

Interpretation: For both of the parts of Assumption (A) which have to be

satis�ed in addition to small risk aversion (condition 1.) there is an interpretation

which sheds some light on their economic content.

� When there is a fundamental set R of states nonnegative consumption

xR � 0 in the fundamental states implies nonnegative payo�s AnRA
�1
R xR

outside these states. Thus, the indirect utility function UR(xR) de�ned

by UR(xR) := U
�
(xs)s2R; (!s + AsA

�1
R (xR � !R))s=2R

�
is monotone for all

xR � 0. Such monotonicity always is required in order to apply the

Mitjushin-Polterovich Theorem.

� If xR � 0 then consumption would be given by x = ((0)s2R; (!s�

AsA
�1
R !R)s=2R): Hence, if the second part of Assumption (A) does not hold,

then the indirect consumption set XR given by XR := f(xs)s2R; (!s �

AsA
�1
R (xR � !R))s=2Rg is not the J-dimensional positive orthant. This

means in particular that for the corresponding individual maximisation

problem15 the classical survival assumption is violated: positive income in

15see the proof of Proposition 1.
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the R fundamental states does not necessarily imply a non-empty individ-

ual budget set.16

5 Examples

Example 1 - Complete Markets: When markets are complete we have that

rankA = J = S, so that we can assume without loss of generality that A

consists of the S Arrow-Debreu-securities, i.e. that A is the S � S-identity

matrix. Hence, the set R we are looking for can only be the entire set of states,

i.e. R = S = f1; : : : ; Sg. Trivially, R is a fundamental set.

Moreover, observe that in this case

!s � AsA
�1
R !R = !s � !s = 0:

Hence, Assumption (A) is satis�ed and Theorem 3 holds.

Example 2 - Spanned Endowments:

With spanned endowments there exists a portfolio �� 2 IRJ such that ! = A��.

For every fundamental set of states R � S; jRj = S, one therefore �nds that

!s � AsA
�1
R !R = !s � AsA

�1
R AR

�� = 0;

for every s 2 S. Hence, in this case, the additional condition on endowments is

redundant. Note, however, that the result given in section 4.1 is not completely

covered by Theorem 3, since it does not require the asset matrix to contain a

fundamental set of states. Indeed, with spanned endowments, the indirect utility

function expressed in terms of portfolio holdings is monotone whenever the asset

payo�s are nonnegative.

Example 3

Becker (1995) has shown that if utility functions are of the Cobb-Douglas-

type and if J = 2, i.e. if there are only two assets, then there is a unique

equilibrium. His proof uses the implicit function theorem to establish strict

monotonicity of aggregate asset demand. This proof can easily be extended to

utility functions satisfying (U) and displaying a coe�cient of relative risk aver-

sion not bigger than one. In particular, his result does not depend on restictions

imposed on endowments.

16For the rôle of the survival assumption in GEI-theory see Gottardi and Hens (1996).
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It is interesting to compare this result with Theorem 3: If J = 2, then every

asset matrix contains a fundamental set of states. This follows from the fact

that in IR2 the cone spanned by the asset payo�s is a lattice cone.17

Example 4 - Class of Asset Structures Yielding Monotonicity:

This example presents a large class of possible asset structures A which satisfy

the su�cient condition (A) for arbitrary endowments.

Suppose that the asset matrix is such that in each state of the world exactly

one asset pays o� a positive amount of the consumption good, i.e. that

8s 2 S 8j 2 J : Asj 6= 0) Asj > 0 ^ 8k 2 Jnfjg : Ask = 0: (1)

Such asset structures might be called 'weakly separating'. Note that since

assets may still payo� in several states, perfect separation between states might

fail to hold. A simple example for such a structure is A =

0
B@ 1 0

1 0

0 1

1
CA. Also

observe, that for asset structures of this kind any subset R � S; jRj = J such

that rankAR = J is a fundamental set of states. With a `weakly separating'

asset matrix A of this form, Assumption (A) can be seen to hold for arbitrary

endowments.

Proposition 2: Suppose A satis�es (2). Then Assumption (A) is satis�ed.

Proof: see the appendix.

Thus, there is a large class18 of asset matrices for which Proposition 1 yields

strictly monotone demand functions for arbitrary endowments19.

17However, Theorem 3 which allows for coe�cients larger than 1, needs some restrictions on
individual endowments.

18Observe that it su�ces that there exists one basis for spanA which { when written in
matrix form { is weakly separating.

19It is interesting to note that adding assumption (2) to spanned endowments, (see section
4.1) yields the stronger conclusions on aggregate excess-demand contained in Hens and L�o�er
(1995). If A satis�es (2), the individual maximisation problem is additively separable in the
portfolio holdings. Since under the hypothesis of spanning endowments can be expressed as a
portfolio of the assets, the analysis carried out by Hens and L�o�er applies.
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Example 5

This example shows that a generalisation of Proposition 2 to the case of

arbitrary trading spaces cannot be hoped for. Therefore, the condition which

Assumption (A) imposes on endowments is necessary for general asset matrices.

Indeed, suppose J = 2 and S = 3 and let the asset matrix A be given by

A =

0
B@

1 0

0 1

1 1

1
CA. Suppose furthermore that endowments are such that !1 + !2 >

!3. We claim that Assumption (A) is not satis�ed.

To see why this is the case, consider the three possible two-element-sets of

indices R1 = f1; 2g; R2 = f1; 3g and R3 = f2; 3g. Consider the 1 � J-vectors
~Ai := AnRi

A�1
Ri

(i = 1; 2; 3). Simple computations yield that

~A1 = (1 1)

 
1 0

0 1

!
= (1; 1) � 0

~A2 = (0 1)

 
1 0

�1 1

!
= (�1; 1) 6� 0

~A3 = (1 0)

 
1 �1

�1 0

!
= (1;�1) 6� 0 :

Thus, R1 is the unique fundamental set of indices. But, clearly, by hypothesis

!3 � (1; 1)

 
!1

!2

!
= !3 � (!1 + !2) < 0 :

2

Example 6

In this example we show that the condition imposed on excess endowments

is necessary in order to guarantee that the indirect utility function UR de�ned

on consumption in a fundamental set of states has an MP-coe�cient less than

4.

As in Example 4 suppose that S = 3, J = 2 and A =

0
B@

1 0

0 1

1 1

1
CA. Let

utility in the states be given by us(xs) := lnxs; s = 1; :::; S: We have seen

above that the only fundamental set of states in this case is �R = f1; 2g, and

that !3 � A3A
�1
�R
! �R = !3 � (!1 + !2). Now choose !1 + !2 = 1 and !3 = 1

6
.

Thus, excess endowment in state 3 is given by ~!3 := !3 � A3 � A
�1
�R
� ! �R = �5

6
.
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Evaluating the Mitjushin-Polterovich coe�cient MP for indirect utility U �R(x �R)

at �x �R = (�x1; �x2) = (1
2
; 1
2
) then yields:

MP =
�1 + �2 + �3

(x1+x2)
2

(~!3+x1+x2)2

�1 + �2 + �3
x1+x2

~!3+x1+x2

=
�1 + �2 + 36�3

�1 + �2 + 6�3
:

For, for example, �1 = �2 =
1

6
and �3 =

2

3
this becomes

MP =
1

3
+ 24

1

3
+ 4

=
73

13
> 4 :

Observe that since ~!3+�x1+�x2 > 0, �xR is an admissible consumption bundle.

2

6 Conclusion

In this paper we have studied uniqueness of equilibria in GEI-economies where

agents have utility functions of the von Neumann-Morgenstern type with small

risk aversion. The important Mitjushin-Polterovich-Theorem was generalised to

the situation with incomplete markets. We have derived a su�cient condition

on the joint distribution of asset payo�s and endowments guarenteeing that even

with incomplete markets and non-spanned endowments, individual asset demand

functions are strictly monotone for income-neutral price changes. Together with

collinear endowments this also becomes a su�cient condition for uniqueness of

the GEI-equilibrium.

Examples show that the conditions given hold in fairly general circumstances.

The question for a su�cient condition for arbitrary endowments or asset struc-

tures, however, remains unsolved. We leave its investigation for further research.
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Appendix

Proof of Proposition 1: Fix the fundamental set R � S. Without loss of

generality we can assume that R = f1; : : : ; Jg. Let p 2 IRJ be de�ned by

p := (A�1
R )T q and set

UR(xR) := U
�
(xs)s2R; (!s � AsA

�1
R (xR � !R))s=2R

�
:

Then it is straightforward to verify that the maximisation problem (P 00) given

by

(P 00) max
xR2IR

J
+

UR(xR)

s.t. pTxR = pT!R

is equivalent to the problem (P ) introduced in section 2. Let f(q) be the asset

demand arising from (P ), and let h(p) denote the demand for state consumption

which follows from (P 00). Simple transformations now establish that f(q) is

(strictly) monotone with respect to a normalising vector e if and only if h(p) is

(strictly) monotone with respect to the normalising vector ARe. Therefore, it

su�ces to show strict monotonicity of h(p). This will be done by applying the

Mitjushin-Polterovich-Theorem, Theorem 2, to the indirect utility function UR.

Thus let ~A := AnRA
�1
R , and compute the gradient and the Hesse-matrix of

UR as

DUR(xR) = (�ju
0
j(xj) +

PS
s=J+1 �s

~Asju
0
s(xs))

J
j=1,

D2UR(xR)jj = (�ju
00
j (xj) +

PS
s=J+1 �s

~A2
sju

00
s(xs)) for j = 1; :::; J; and

D2UR(xR)jk = (
PS

s=J+1 �s
~Asj

~Asku
00
s(xs))) for j; k 2 J; k 6= j.

Therefore,

xTRD
2UR(xR)xR =

JX
j=1

2
4�ju00j (xj)x2j +

SX
s=J+1

�su
00
s(xs)

~Asj[ ~Asjx
2
j +

X
k 6=j

~Askxjxk]

3
5

=
JX
j=1

�ju
00
j (xj)x

2
j +

SX
s=J+1

�su
00
s(xs)(

~AsxR)
2 ;

and

xTRDUR(xR) =
JX
j=1

�ju
0
j(xj)xj +

SX
s=J+1

�su
0
s(xs)

~AsxR :

The condition MPUR(xR) < 4 therefore is equivalent to

JX
j=1

�jxj
h
�u00j (xj)xj � 4u0j(xj)

i
+

SX
s=J+1

�s ~AsxR
h
�u00s(xR)

~AsxR � 4u0s(xs)
i
< 0 :
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De�ne ~!s := !s� ~As �!R for every s 2 SnR. Using the assumption on small risk

aversion and the transformation ~!nR + ~AxR = xnR, it can be derived that this

follows from
SP

s=J+1
�s ~AsxR u00s(xR)~!s < 0.

The last inequality now holds since ~A � 0 and ~!s � 0 by Assumption (A). The-

orem 2 (Mitjushin-Polterovich-Theorem) then �nishes the proof of Proposition

1.

2

Proof of Theorem 3: Normalise asset prices q such that qTA�1
R !R = 1. This

is certainly possible due to the homogeneity of the budget constraint in (P
00

).

By the collinearity assumption on individual endowments, we then only consider

income neutral price changes for each agent. By Proposition 1, individual asset

demand f i is strictly monotone for such price changes. Therefore, aggregate

asset demand f :=
PI

i=1 f
i is strictly monotone with respect to all pairs of

prices in the domain of prices. But this means that the equilibrium known to

exist must be unique.

2

Proof of Proposition 2: The assumption made on A allows to partition the

set of states according to which of the assets pays o� in a particular state. Thus,

letting Sj := fs 2 S : Asj 6= 0g; i.e. Sj being the set of states in which asset j

pays o�, one �nds that S = [Jj=1Sj and that the sets Sj are pairwise disjoint.

Note that any J-element set R containing exactly one state from each of the

subsets Sj is a fundamental set of states.

For any s; t 2 Sj we now have that

xs = (!s �
Asj

Atj

!t) +
Asj

Atj

xt:

It now su�ces to �nd a state �sj 2 Sj for every j 2 J such that

8s 2 Sj : ~!s := !s �
Asj

A�sj

!�sj � 0

To see the existence of such a state �sj, consider the directed graph G with

the states s 2 Sj as its vertices and insert an edge from vertex s to vertex t

if !s
!t

>
Asj

Atj
. If !s

!t
=

Asj

Atj
insert an edge between s and t with an arbitrary

direction chosen. Obviously, then, in each vertex s one �nds that d+(s)+d�(s) :=

15



in� degree+out� degree = jSjj�1. (The in-degree of a vertex s is the number

of edges directed towards s, while the out-degree is the number of edges directed

away from s.) If now d�(�s) = 0 for some vertex �s 2 Sj we could choose �sj = �s,

and we would be done.

We now claim that there is such a vertex �s 2 Sj with d�(�s) = 0 (by possibly

redirecting edges connecting vertices s; t where !s
!t

=
Asj

Atj
). We prove this claim

by induction on L = jSjj.

The case L = 2 is trivial. For the general case suppose Sj, jSjj = L, is a

set of states with associated endowments !s, s 2 Sj, such that in the associated

directed graph GL every vertex has out-degree at least 1, i.e. d�(s) � 1 for

every s 2 Sj. Pick any vertex sn 2 Sj and consider the reduced graph GL�1 on

L � 1 vertices obtained by eliminating sn and the edges connected to sn. By

hypothesis there is a vertex �s such that d�(�s) = 0 in the graph GL�1 (possibly

redirecting edges). Thus, one concludes that one can redirect edges in GL�1

such that d�(�s) = 1 in the original graph GL. From d�(sn) � 1 one infers the

existence of a vertex ŝ 2 Sjnfsn; �sg such that there is an edge pointing from sn
to ŝ. The fact that d�(�s) = 0 in GL�1, i.e. d

+(�s) = L� 2 in GL�1, then implies

that there is a directed circle sn; ŝ; �s in GL. This, however, implies that

!sn
!ŝ

�
Asnj

Aŝj

� 0;
!ŝ

!�s

�
Aŝj

A�sj

� 0; and
!�s

!sn
�

A�sj

Asnj

� 0;

from which one concludes that

!sn
!�s

=
Asnj

A�sj

:

Hence one can redirect the edge pointing from �s to sn which yields d�(�s) = 0 in

GL.

Picking sj = �s and repeating this argument for each set Sj; j 2 J , yields the

fundamental set R = f�sj; j 2 Jg. By construction, R satis�es Assumption (A)

for arbitrary endowments.

2
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