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Abstract

We model the volatility of �nancial assets as functions depending on

past returns. We apply nonparametric regression techniques to estimate

the volatility of daily exchange rates and stock prices. We show that all

of the estimated functions have similar shape as they are convex with a

minimum close to zero.

JEL-Classi�cation: G20,C14

1 Financial Time Series

Any sequence of prices of �nancial assets (e.g. stocks, futures, market index

values, exchange rates etc.) which is observed on consecutive dates is called

a �nancial time series. A sequence such as fx1; x2; :::; xTg, is called univariate

if it records only one price over time. If xt contains not only one price but

also other relevant factors (which may include prices of other �nancial assets)

it is called a multivariate time series. You can either depict recording times

regularly or irregularly and data sets are available for yearly, monthly, weekly,

daily or even intradaily recorded prices. In this study we will focus on univariate

series of exchange rates and stock prices which were depicted on a daily basis.

It is in the nature of �nancial prices that future prices are uncertain and thus

subject to erratic changes. To explain this phenomenon properly it is customary

to construct a propabilistic model and view fx1; x2; :::; xTg as a realisation of

a stochastic process fX1;X2; :::;XTg. Time series analysis will then select a

propabilistic model, i.e. a joint distribution of the fXtg, which describes the

data best. Because estimating the entire model is beset with many di�culties

research is frequently limited to one aspect of the process such as the marginal

distribution of the Xt, the expected value of Xt given past prices etc. As stated

above our study will concentrate on univariate �nancial time series only and will

exclude other factors which may have an impact on the considered prices. Our

primary goal in this study is to describe the data in terms of prediction rather

than to o�er explanations for the actual price levels. While predictions include

price forecasts it will not be our main concern. Instead we want to describe the

disribution of prices in more detail which goes beyond merely estimating the

conditional mean. It will be shown that the conditional volatility assumes a key
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rule.

In order to determine the appropriate length of the �nancial time series in

analysis several decisions have to be made. On the one hand a fairly long time

span is prerequisite to achieve a high accuracy of the estimates. On the other

hand it is unreasonable to expect the propabilistic model to remain constant

during the course of a long time span. Some non-random events such as inteven-

tions of central banks certainly have an important impact on prices. Thus, it is

better to keep the time series short or to split a long series into several shorter

units. Consequently, we have chosen to limit our time span to approximately

3 years. The fact that �nancial time series are not, in the main, stationary

presents another problem for statistical analysis as most estimation procedures

are only valid for stationary processes.1 A remedy is to focus on returns which

can be shown to be stationary and are in a sense equivalent to prices.

We use two sets of data in this paper. The �rst one consists of daily noon

exchange rates of 19 major currencies vis �a vis the Canadian Dollar (cf list in the

appendix). It covers a period from January 1993 to June 1996 which amounts

to 858 trading days. We have not considered data before October 1992 because

the variability bounds imposed by the European Monetary System (EMS) for

European currencies were relatively narrow. The data was made available by the

Paci�c Exchange Rate Service of the University of British Columbia, Vancouver,

Canada. The second set of data reports daily closing prices of 175 stocks listed at

the New York Stock Exchange provided by the MIT Experimental Stock Market

Data Server. The recording time is from September 1993 to May 1996 i.e. 623

trading days. A �rst impression can be gained by looking at the plots of �gure

1. They already reveal some tendencies which are later con�rmed in the other

series. Most exchange rates are negatively trended while a positive trend can be

discerned for most of the stocks. The plots also show that great changes in prices

occur frequently. They resemble random walks i.e. cumulative sums of i.i.d. ran-

dom numbers. The simulation of the TAN series by a random walk demonstrates

that nicely (�gure 2). The increments we have chosen were i.i.d. normal possess-

1A stochastic process fXtg is said to be strictly stationary if for any integers j1; j2; :::; jn

the joint distribution of fXt+j1 ; Xt+j2 ; :::; Xt+jng depends only on the intervals seperating

the dates (j1; j2; :::; jn) and not the date t itself. The process is called weakly or covariance

stationary if the means and autocovariances do not depend on t: E[Xt] = �, E[(Xt��)(Xt�j�

�)] = j for all t and any j.
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Figure 2: Simulation of TAN series

ing mean and standard deviations as those of the original series. In fact, by a

�rst sight the original and simulated series behave quite similarly. The random

walk hypothesis was �rst introduced by Bachelier (1900) who claimed by pure

theoretical reasoning that price changes have independent and identical normal

distributions. Later, Fama (1965) came to a similar conclusion by means of an

empirical analysis which con�rmed that stocks are random walks or something

very similar to that. This view has been challenged in manifold papers in the

wake of Engle's work on ARCH models (Engle, 1982) and its parametric exten-

sions. They all claim that the innovation process is not white noise because the

conditional variance is not constant as were the case for independent innova-

tions. These papers have in common that they specify the conditional variance

as pre-de�ned functions depending on some variables, e.g. past prices, and some

unknown parameters. Parametric modelling, however, always bears the risk

of miss-speci�cation and, therefore, important characteristics of the regression

functions may elude one's observation. In this paper we propose to estimate

the conditional volatility by means of nonparametric regression, which does not

assume any functional form of the regression function. Thus being more exible

we are able to show that volatilities are asymmetric functions of past prices, a

feature which is not captured in most of the standard parametric models.2

2Recently nonparametric estimates of the volatility functions have also been proposed by

Bossaerts, Hafner, and H�ardle (1996)
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2 Daily Returns

Statistical analysis is di�cult if consecutive prices are highly correlated. Yet it

is even worse, if the whole series is non-stationary. In fact a Dickey-Fuller test

applied to our data does not reject the hypothesis of the prevelance of random

walks for nearly all exchange rates and stock prices. Consequently, we prefer to

analyse price changes. Suppose that prices are recorded each trading day at the

same time of day and let xt be the price recorded on date t. Three types of price

changes have been considered in previous research:

r�t = xt � xt�1;

r0t = (xt � xt�1)=xt�1;

rt = log(xt)� log(xt�1):

In these de�nitions we have excluded dividend payments for stocks which occur

so rarely that they are of marginal importance for our analysis. Since r�t depends

on units of account the comparison of di�erent time series is precluded with the

result that most researchers prefer to analyze r0t and rt. The relation between

the latter is given by

xt=xt�1 = 1 + r0t = ert = 1 + rt +
1

2
r2t +

1

6
r3t + ::: (1)

Thus, r0t is the simple rate of return and rt is the rate of return with continuous

compounding, for exp(rt) = limn!1(1 + rt=n)n. The di�erence between rt and

r0t is negligible since from (1) it is of order r2t , and rt is nearly always in the range

of �0:1 to 0:1. There are two reasons why we prefer the compound return to the

simple return. Firstly, continuous time generalisations of the discrete time series

are less complex, and secondly, returns of over more than one day are easily

calculated as they are simply the sum of the one-day-returns, i.e.

rt;k := log(xt)� log(xt�k) = rt + rt�1 + :::+ rt�k+1:

Figure 3 shows the equivalent return processes of �gure 1. It is impossible not

to notice the di�erent stochastic behaviour in each case in comparison to �gure

1. While the returns uctuate around a mean close to zero a Dickey Fuller test

no longer rejects the hypothesis of them being random walks. The histograms

in �gure 4 and �gure 5 summarize the �rst two moments of all the series. As

5



Time

-0
.0

2
0.

0
0.

02

05/01/93 05/07/93 05/01/94 05/07/94 05/01/95 05/07/95 05/01/96

DEM

Time

-0
.0

10
-0

.0
05

0.
0

0.
00

5
0.

01
0

0.
01

5

05/01/93 05/07/93 05/01/94 05/07/94 05/01/95 05/07/95 05/01/96

USD

BAC

Time

-0
.0

6
-0

.0
4

-0
.0

2
0.

0
0.

02
0.

04
0.

06

93/08/30 94/02/28 94/08/30 95/02/28 95/08/30 96/02/29

TAN

Time

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

93/08/30 94/02/28 94/08/30 95/02/28 95/08/30 96/02/29

Figure 3: Time series of DEM and USD exchange rates returns and BAC and

TAN stock price returns
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returns
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Figure 5: Histograms of the means and the standard deviations of stock returns

already mentioned the exchange rates nearly always have negative mean returns

in the considered time span; those of the stocks are mostly positive. Additionally,

stock price returns are more volatile - in average by factor 10 - in terms of their

standard deviation.

3 Autocorrelation

In the following we will assume that the return processes frrg are strictly sta-

tionary. Since our �nal goal is to present a stochastic model which describes

the data best, it is necessary to unravel the dependence structure of consec-
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utive returns of di�erent lags. If the returns are uncorrelated they are called

white noise, whilst the term strict white noise is applied to independent and

identically distributed returns. Thus, the �rst step in exploring dependence is

to look at the autocorrelation function �r;� = cov(rt; rt+� )=var(rt), � > 0. It is

straightforwardly estimated by means of the sample autocorrelation function

�̂r;� =
T��X
t=1

(rt � �r)(rt+� � �r)

,
TX
t=1

(rt � �r)2; � > 0

where

�r =
TX
t=1

rt:

The convergence of �̂r;� to �r;� in probability can be shown for a broad class

of stochastic processes. Two important cases are linear processes, strict white

noise being a special case, and weakly dependent processes which are discussed

in section 5. The estimates �̂r;� may then be used to test hypotheses about

the theoretical correlation coe�cients �r;� . The �rst lag autocorrelation is of

particular importance since we may well expect that the current return has the

biggest impact on future returns. In our data sets 15 out of 19 exchange rates

display positive �rst lag coe�cients. They are very small and range from -0.03

(ATS) to 0.07 (USD) with an average of 0.03 (0.04 for the absolute values).

First lag coe�cients of the stock returns are mostly negative (100 out of 175)

and at the same time very small with an average of -0.01 (0.01 for the absolute

values). They are more dispersed with -0.22 as the lowest and 0.27 as the highest

value. Special care is recquired in interpreting these results for the results usually

depend on common market factors.

The results above suggest to test the hypothesis of the returns being strict

white noise. For those processes the following theorem holds.

Theorem 1 If fXtg is a sequence of independent identically distributed ran-

dom variables with �nite second and fourth moments then
p
T �̂(h) converges in

distribution to N(�(h); I) where

�̂(h) = (�̂X;1; �̂X;2; :::; �̂X;h)

�(h) = (�X;1; �X;2; :::; �X;h):
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exchange rates stocks

returns 7/19 102/175

squared returns 17/19 81/175

absolute returns 17/19 133/175

Table 1: Number of rejections of the hypothesis of returns being white noise

Proof: Brockwell and Davis (1991) p. 221

So, if frtg is strict white noise, then for large T approximately 95% of the

sample autocorrelations should fall between the bound +
�1:96T

� 1

2 . Similar tests

may be based on suitable transformations of rt for if frtg is strict white noise, so
are fjrtjg and fr2t g. Table 1 summarizes the results of the three tests applied to

all exchange rates and stocks. The hypothesis of strict white noise for a particular

sequence of returns is rejected if more than 2 out of 30 sample autocorrelations

are out of the con�dence bounds. As it turns out, the number of rejections is

almost always extremely high, being only less signi�cant for the test performed

on the exchange rates with non-transformed returns. Note that if the processes

were strict white noise and independent, we would expect only 5% of rejections -

far less than observed. However, we have already pointed out that the processes

are probably not independent. Nonetheless we may still say that the number

of rejections is too high to support the hypothesis of the return processes being

strict white noise. The high number of rejections stems from the relatively high

lag-1 correlations which is evident from running the the test for the �rst three

lags seperately the results of which are shown in table 2 and table 3.
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lag 1

mean rejections

returns -0.01 39/175

squared returns 0.07 64/175

absolute returns 0.1 119/175

lag 2

mean rejections

returns -0.03 35/175

squared returns 0.03 25/175

absolute returns 0.06 50/175

lag 3

mean rejections

returns -0.02 16/175

squared returns 0.02 15/175

absolute returns 0.03 36/175

Table 2: Autocorrelation of stock returns and modi�ed stock returns
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As regards the absolute returns as well as the squared returns the lag-1 cor-

relations are signi�cantly di�erent from zero and they are almost always positive

which means that high returns are propably to be followed by high returns again

(possibly into the opposite direction).

Here we want to emphasize that the tests do not reject zero correlations of

returns (or absolute returns or squared returns). All we can say is that the

processes are not strict white noise. In fact, if the processes are not white noise

the variance of �r;� may exceed 1=T .

4 A Model of Heteroscedasticity

Why is there much more autocorrelation in the processes fjrtjg and fr2t g than in

the process frtg? One reason may be that high past absolute returns will lead to

more trading activity which in turn will increase the volatility of future returns.

Hence, changes in conditional variances may explain the observed correlation

structure of the return processes. We now want to present a statistical model

in which this correlation structure comes out naturally. To keep the setup as

simple as possible let the information known to traders at time t be given by

a vector of random variables It. Then the best predictor of rt is given by the

conditional mean

�t := E[rt+1jIt]:

While the unconditional variance of the strictly stationary process stays constant

the conditional variance may depend non-trivially on time:

var[rt+1jIt] = E[(rt � �t)
2jIt] := �t:

Consequently,

rt+1 = �t + �t�t+1 (2)

with some (0; 1) random variables �t. For the moment let us assume that the

conditional mean is always zero. Then it is easily con�rmed that there is no

correlation between rt and rt�� . On the other hand there may be signi�cant

correlation between r2t and r2t�� .

In this analysis we are particularly interested in the special case if It�1 in-

cludes only past returns. Yet to make it statistically managable we have to limit
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lag 1

mean rejections

returns 0.03 1/19

squared returns 0.12 16/19

absolute returns 0.12 16/19

lag 2

mean rejections

returns -0.03 4/19

squared returns 0.06 4/19

absolute returns 0.05 4/19

lag 3

mean rejections

returns -0.04 2/19

squared returns 0.04 2/19

absolute returns 0.07 9/19

Table 3: Autocorrelation of exchange rate returns and modi�ed exchange rate

returns
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the scope of included lags, otherwise we would run into the curse of dimension-

ality. To simplify the analysis even further we skip all lags larger than 1. Model

(2) then reduces to 3

rt+1 = �(rt) + �(rt)�t+1: (3)

If, additionally, f�tg is assumed to be strict white noise, equation (3) would

specify a heteroscedastic nonlinear autoregression (CHARN).

There are some theoretical reasons to believe that frtg may be a (�rst order)

Markov chain. If �nancial markets worked e�ciently then all relevant informa-

tion would be included in present returns.4 In this case a forecast based on

all available information is not better than a forecast based solely on today's

returns. More precisely, the conditional distribution of future returns based on

the whole information set is equal to the conditional distribution given today's

return. However, the assumption of e�ciency is not convincing if investors have

to bear some cost for acquiring information. As in Grossman's and Stiglitz'

model (1980) returns may then reveal information rather slowly. Whatever is

the case we will state explicitly if f�tg is assumed to be strict white noise.

5 Nonparametric Estimation of Time Series

One of the basic assumptions of parametric regression is that the conditional

expectation of the dependent variable given the value of the regressor is a known

function depending on the regressor and some unknown parameters. In most

cases, however, the number of suitable functional forms is large and consequently

the statistician very often has to try several alternatives. Yet this always bears

the danger of misspeci�cation. In contrast to this, nonparametric regression does

not assume any speci�c functional form of the regression function. In this paper

we deal with so-called kernel estimators which were introduced by Nadaraya

(1964) and Watson (1964). Given a data set f(X1; Y1); (X2; Y2):::(XT ; YT )g a

kernel estimator of the regression function

r(x) = E[YtjXt = x]

3Note that the subscript t can be ommited at the functions � and � for we started out from

a strictly stationary process frtg.
4This notion of e�ciency is not to be confused with Pareto-e�ciency. A suitable term

would be information-e�ciency.
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is a random function of the form

r̂(x) =
TX
t=1

Yt k

�
x�Xt

hT

�, TX
t=1

k

�
x�Xt

hT

�
:

k is a function on R, called kernel, and fhTg is a sequence of positive real

numbers, called bandwidth paramters which converge to 0 for T converging to

in�nity. If the data are i.i.d. then, under suitable conditions, it can be shown

that r̂ converges to r.

Of course the i.i.d. case rules out time series applications. An early refer-

ence on dependent situations (for Markov processes) is Roussas (1969). Further

important contributions are Yakowitz (1979), Doukhan and Ghindes (1980),

Robinson (1980), Bierens (1983) and H�ardle and Vieu (1992). Robinson (1983)

provided asymptotic normality results. The results of these works are based on

the assumption that the underlying process is weakly dependent meaning that

it has vanishing memory. We will investigate two concepts of weak dependence

in the next chapter

5.1 Weak Dependence

In the sequal denote by fXtg a strictly stationary sequence of random variables

on a probability space (
;A;P). For a < b de�ne by Ma
b the �-�eld generated

by fXa;Xa+1; :::Xbg; de�ne byMa
1 the �-�eld generated by f:::;Xa�1;Xag and

by M1
a the �-�eld generated by fXa;Xa+1; :::g. One of the least restrictive

dependence structures discussed in the literature is the strong mixing condition.

De�nition: The process fXtg is called strongly mixing (�-mixing) if there ex-

ists a non-negative function � on positive integers such that for each integer k

(�1 < k < 1), for each integer n (n � 1) and for all events A 2 Mk
1 and

B 2 M1
k+n

jP(A \ B)� P(A)P(B)j � �(n)

with

lim
n!1

�(n) = 0:

An assumption which is slightly stronger is that fXtg be uniformly mixing.

De�nition: The process fXtg is called uniformly mixing (�-mixing) if there

exists a non-negative function � on positive integers such that for each integer k

14



(�1 < k <1), for each integer n (n � 1) and for all A 2 Mk
1 and B 2 M1

k+n

jP(A \ B)� P(A)P(B)j � �(n)P(A)

with

lim
n!1

�(n) = 0:

It is clear that a uniformly mixing process is strongly mixing (the converse is

generally false).

The following lemma states that correlation between functions of Xt and

Xt+� is small if the lag � is large.

Lemma: Let fXtg be uniformly mixing. If � is measurable with respect toMk
�1

and � is measurable with respect toM1
k+n (n � 0) then E[j�jr] <1, E[j�js] <1,

r; s > 1, 1
r
+ 1

s
= 1 implies

jE[��]� E[�]E[�]j � 2�(n)
1

rE
1

r [j�jr]E 1

s [j�js]: (4)

Examples:

� m-dependent processes

The process fXtg is called m-dependent if the random vectors

(Xa�p;Xa�p+1; :::;Xa) and (Xb;Xb+1; :::;Xb+q) are independent whenever

b � a > m, or equivalently if Ma
�1 and M1

b are independent whenever

b � a > m. An m-dependent process is trivially uniformly mixing with

�(n) = 0 for n > m.

� Markov processes

If fXtg is a Markov process with �nite state space and if the transition

matrix is irreducible and aperiodic then fXtg is uniformly mixing. If fXtg
has a in�nite state space it is uniformly mixing if it satis�es Doeblin's

condition, has one ergodic class and is aperiodic (Billingsley, 1968, p. 168).

In both cases the mixing conditions satisfy

�(n) � a �n

with positive constants a, �, � < 1.
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� Gaussian processes

fXtg is said to be Gaussian if for any t1; t2; :::; tn the random vector

(Xt1;Xt2 ; :::Xtn) is Gaussian. A Gaussian sequence satis�es the uniform

mixing conditions if and only if the �-�elds Mk
�1 and M1

k+n are inde-

pendent for all su�ciently large n. With the help of this it can be shown

that a Gaussian process is uniformly mixing if its spectral density f(�) is

continuous and f(�) � m > 0.

5.2 Consistency and Normality of the Estimator

In this section we will summarize the results of Bierens (1983) and Robinson

(1983), two important contributions to the theory of nonparametric time series

regression. Bierens (1983) proved uniform consistency of the kernel estimator of

uniformly mixing processes. Robinson (1983) showed that the kernel estimator

is also consistent, though not uniformly consistent, for strongly mixing processes

and delivered asymptotic normality results.

In the sequal let fXtg be a real-valued strictly stationary process. We will

focus on estimators of

GT (x) = E[g (Xt+k) jXt = x]; (5)

where g is any real Borel function. In fact, the results of Bierens and Robinson

hold for more general regression functions. Yet for our purpose estimation of GT

as in (5) will su�ce. Let the estimator of G be given by

bGT (x) =
TX
t=1

g(Xt+k) k
�
Xt � x

hT

�, TX
t=1

k

�
Xt � x

hT

�
: (6)

We assume

(U1) fXtg is uniformly mixing with mixing coe�cients �(m).

(U2) E[g (Xt)
2] <1

(U3) The distribution of Xt is absolutely continuous with a continuous density

f . The function GT is continuous on R.

(U4) k is an everywhere positive density on R with an absolutely integrable

characteristic function.
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Theorem 2 (Uniform Consistency): Let (U1) to (U4) hold and let hT in (6) be

any sequence of positive numbers satisfying

lim
T!1

hT = 0 ; lim
T!1

hT�
� 1

2

T =1

where

�T =
1

T

X
t=1

T� (t)
1

2 :

Then for every � 2 (0; supx2Rf (x)] we have

plim sup
x:g(x)��

j bG (x)�G (x) j = 0:

If in addition G (x) f (x) is twice di�erentiable with continuous and uniformly

bounded second derivatives and if k has zero mean and �nite variance then for

any sequence �T such that for T ! 1, �T = o(min(h�2T ; hT�
� 1

2

T ) and every

� 2
�
0; supx:f(x)�� f (x)

i
we have

plim�T sup
x:f(x)��

j bGT (x)�G (x) j = 0

The sequence f�Tg indicates the rate of uniform convergence of bGT .

Proof Bierens (1983)

Now assume

(N1) fXtg is strongly mixing with mixing coe�cients � (j) satisfying

1X
j=N

� (j)1�
2

� = o
�
N�1

�
for some � > 2.

(N2) G (x) has rth degree derivatives satisfying a Lipschitz condition of order 1.

(N3) E[g (Xt)
�] <1 for � > 0.

(N4) G (x) := E[jg (Xt+k) jjXt = x] is continuous.

(N5) For all s the distribution of (Xt;Xt+s) is absolutely continuous with a

continuous density.

(N6) Xt is absolutely continuous with a positive density f which has rth degree

derivatives satisfying a Lipschitz condition of degree 1.
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(N7)
R
k (u) du = 1. (Note that k need not to be positve.)

(N8)
R
uhk (u) du = 0 for all 0 < h < r + 1

(N9) k (u) is bounded with compact support.

Theorem 3 (Asymptotic Normality): Let (N1) to (N9) hold and let

ST =
q
hTT

� bG (x)�G (x)
�
:

Assume that as T converges to in�nity

h
2(r+1)

T T ! 0 ; hTT !1:

Then ST (x) converges to a normal variable with zero mean and variance

Z
k2 (u) du

H (x)�G2 (x)

f (x)
(7)

with H (x) = E[g2(Xt+k)jXt = x]

Proof: Robinson (1983)

Theorem 4 Under the condition of theorem 3 (7) is consistently estimated, to

Op

�
(T jhT j)

1

2

�
, by

Z
k2(u) du

cH(x)� bG(x)2
f̂(x)

(8)

where cH(x) is the kernel estimator of H (replace g by g2 in (6) and bf is the

kernel density estimator of f

bf (x) = 1

ThT

TX
t=1

k

�
x�Xt

hT

�
:

Proof: Robinson (1983)

5.3 Bandwidth Selection

The choice of an appropriate bandwidth h in (6) plays a prominent role in

nonparametric regression. Every selection rule has to face a trade-o� between the

variance and the bias of the estimator which both constitute the mean squared

18



error. Decreasing h will also decrease the bias on the one hand but, on the other

hand, will increase the variance of the estimator and vice versa for increasing

h. The right choice of h will balance both e�ects. If we measure the accuracy

of an estimate by a function d(h) a data driven bandwidth choice is said to be

asymptotically optimal in the sence of Shibata (1981) if we have

d(ĥ)

inf d(h)
�! 1 a:s: (9)

Global optimality as in (9), however, is not always feasable and condition (9)

is relaxed by minimizing d(h) in the denominator over some subset of R+. A

frequently used measure of accuracy, which we also consider here, is the Averaged

Squared Error

ASE(h) :=
1

T

TX
t=1

(G(Xt)� bGT (XT ))
2:

In the following we will discuss the cross-validation method which can be shown

to produce asymptotically the optimal bandwidth (H�ardle, Vieu, and Hart 1989).

To simplify notation let Yt := g(Xt+k). Then the cross-validation method works

as follows: Let bG�
T be the kernel estimator as in (6) but with some data points

in the neighbourhood of � left out, i.e.

bG�
T (x) =

TX
jt�� j>l

Ytk

�
x�Xt

h

�, TX
jt�� j>l

k

�
x�Xt

h

�
:

De�ne the cross-validation function

CVl(h) =
1

T

TX
t=1

�
Y� � bG�

T (X� )
�2
: (10)

The bandwidth ĥ is chosen as to minimize CV (h). The following theorem states

that ĥ is asymptotically optimal.

Theorem 5 (H�ardle, Vieu and Hart, 1989) Assume that (Xt; Yt) is strongly

mixing.5 Then, ĥ selected as to minimize CVl(h) over the intervall HT =

[AT�a; BT�b], 0 < b < 1=(2k + 1) � a < 2=(1 + 4k) is asymptotically opti-

mal, i.e.

ASE(ĥ)= inf
h2HT

ASE(h) �! 1 a:s:

5For simplicity, we do not state some other technical conditions here
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To the practioneer there remain two questions unsolved:

1. What is the proper set HT ?

2. Which leave-out-variable l is to choose?

To tackle the �rst problem one would usually try some reasonable bandwidths

and choose some interval which is likely to contain the optimal bandwidth. The

second problem is more delicate and no satisfactory answer can be given. In

many cases, however, the estimated bandwidth is not very sensible to the chosen

leave-out-parameter.

6 Estimation of the drift and the volatility

Taking up where section 4 left o� we turn to the estimation of the �rst-lag

conditional means and variances of the �nancial time series frtg:

�(r) := E[rt+1jrt = r]

�2(r) := E[(rt+1 � �(r))2jrt = r]

= E[r2t+1jrt = r]�E2[rt+1jrt = r]:

We call � the (conditional) drift and � the (conditional) volatility of the process

rt. Now let g be any Borel function and G(r) = E[g(rt+1)jrt = r]. We denote bybG the kernel estimator of G as it was de�ned in the previous chapter:

bG =
T�1X
t=1

g(rt+1) k
�
r � rt

h

�,T�1X
t=1

k

�
r � rt

h

�
: (11)

Setting g(r) = r or g(r) = r2 we thus get estimates of �(r) and m2(r) =

E[r2t+1jrt = r], �̂(r) and m̂2(r). �(r) is consistently estimated by

�̂2(r) = m̂2(r)� �̂2(r):

We carried out the estimation with two di�erent kernels:

k0(x) = 0:75(1 � x2) I(jxj � 1) quadratic kernel,

k1(x) =
1p
2�

exp(�1

2
x2) Gaussian kernel.
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The quadratic kernel enjoys some optimality properties in case of the standard

regression which may carry over to time series regression. The drawback of this

kernel is that the denominator of (11) may be zero for some r leaving bG(r) un-
di�ned. The Gaussian kernel does not su�er from such de�ciency for it is positive

on the whole real line. Not surprisingly, however, the choice of the kernel did

not matter much, a fact which is well known in standard regression. Much more

decisive was the choice of the right bandwidth h. In determining the optimal

bandwith one can use the method of cross-validation which was introduced in

the preceeding chapter. We will slightly modify this method by making use of

the fact that we have a whole set of similar time series of equal length at hand.

Then averaging over all individual cross-validation functions may signi�cantly

reduce the variance of the estimate. In fact, similar the time series are - if they

are suitably stanardized. So let ~rit = (rit � mi)=si be the standardized time

series of the �nancial time series i (i = 1; :::; I) with (unconditional) mean mi

and (unconditional) variance s2i . The relation between the conditional moments

of the series f~ritg and the series fritg are given by

�i(r) = si ~�
�
r �mi

si

�
+mi (12)

and

�i(r) = si ~�i

�
r �mi

si

�
: (13)

Then estimation of � and �2 may proceed via estimation of ~� and ~�2 and use

of equation (12) and (13). Assume now that the optimal bandwidth of b~�i (c~m2i)

are equal for all i. Then minimizing the average cross-validation function

CV(h) =
1

I
(CV1(h) + CV2(h) + :::+ CVI(h)) (14)

will also give assymptotically the optimal bandwidth hopt. In �nite samples

however, the estimate of hopt with (14) is less volatile then the estimate obtained

by minimizing the individual cross-validation functions CVi. We plotted the

mean cross-validation function of ~� and ~m2 for both data sets in �gure 6. Clearly,

no minimumfor ~� is obtained in case of the exchange rates meaning that the best

estimates of the conditional means are just the sample means of the series fritg.
Though in the case of stocks the cross-validation function adopts a minimum

at 1.5 the corresponding estimates of �(r) are extremely at and not signifantly
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Figure 6: Cross validation function for � (solid line) and ~m2 (dotted line)

di�erent from a constant function. On the other hand the mean cross-validation

function for ~m2 is minimized at 0.95 (exchange rates) and 1.5 (stocks). A sample

of the resulting estimates of the �i(r) as well as their 95%-con�dence bounds is

shown in �gure 7 and �gure 8.6 Apparently the volatility functions are not

constant. Most of them are U-shaped with a minimum at 0. This means that

very high or very low returns at time t will lead to a higher variance of rt+1. It

can also be seen that the e�ect of returns on the variance is not symmetrical.

For the majority of exchange rates the left wings of the volatility functions are

atter than their right wings. This e�ect is not signi�cant for the stock prices,

where frequently the right wing is atter than the left wing.

6Since boundary e�ects may cheat the eye we con�ned the plots to the range of mi � 2si.

This was no severe restriction since approximately 95% of the data are contained in this

intervall
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Figure 7: Volatility functions of exchange rates
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Figure 7 continued
FRF
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Figure 7 continued
NZD
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Figure 8: Volatility functions of stock returns
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Figure 8 continued
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Figure 8 continued
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7 Analysis of Residuals

While the best one-day-o�-forecast is just given by the unconditional mean its

accuracy measured by � depends signi�cantly on the present return. The ques-

tion arises if all information about future values is captured by � and �, i.e. if

the process f�tg is strict white noise.7 A �rst impression can be gained by in-

specting �gure 9 and 10, where we plotted the average correlations of the simple

values (a), the squared values (b), and the absolute values (c) of the residuals

(solid line). Additionally we depicted the corresponding values of the return

process (dotted line). It comes as no surprise that autocorrelation of �t is small

since this was already the case for rt. There is also a clear reduction of �rst and

second lag correlation for the processes �2t and j�tj. Unfortunately, the reduction
of correlation of higher lags is much less marked. This leads us to doubt the

hypothesis of the residuals being white noise. Furthermore the autocorrelations

of �2t and j�tj are almost always positive8 - something we would not expect if

the residuals were white noise. The conjecture of f�tg being no white noise is

con�rmed by applying the tests of chapter 3 to the residual processes. If we base

these tests on the �rst lag only the hypothesis of white noise is rarely rejected

(table 4), con�rming that �rst-lag correlation is low. Yet basing the tests on lags

1 to 30 simultanously tells a di�erent story (table 5). Consequently, we cannot

rightfully claim the residuals to be white noise.

8 Conclusion

In the �rst part of the paper we demonstrated that stock prices as well as ex-

change rates are not pure random walks. Though their one-day returns show

very low autocorrelation they are not independent as can be validated by investi-

gating the autocorrelations of the squared or absolute returns. There is, in fact,

a tendency of large price changes being again followed by large price changes

(possibly into the other direction). This led us to model volatilities of present

returns as functions of past returns. Nonparametric regression showed that while

the conditional mean is constant the conditional volatility is not. Therefore we

7We will call �t in a slight abuse of language the residual process.
8This holds true even by inspecting each single autocorrelation function seperately rather

than their mean.
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Figure 9: Mean correlation functions of �t, �2t , j�tj (exchange rates)
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Figure 10: Mean correlation functions of �t, �2t , j�tj (stock returns)
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exchange rates mean rejections

residuals 0.03 (0.03) 0/19 (1/19)

squared res. 0.01 (0.12) 0/19 (16/19)

absolute res. 0.02 (0.12) 0/19 (16/19)

stocks mean rejections

residuals -0.01 (-0.01) 25/175 (39/175)

squared res. 0.02 (0.07) 0/175 (64/175)

absolute res. 0.04 (0.1) 8/175 (119/175)

Table 4: lag-1-correlation of residuals (of returns in brackets)

can write

rt+1 = �r + �(rt)�t+1 (15)

with rt being the one-day returns, �r their unconditional mean (which was shown

to be equal to the conditional mean), �(rt) its conditional volatility and �t being

some random numbers. As turned out most of the volatility functions were of

similar form as they are U-shaped with a minimum close to zero. However, they

are not symmetric since their left wings - at least for the exchange rates - are

atter than their right wings. Hence, high and low returns will inuence future

volatility di�erently. The reason for the volatility functions being U-shaped may

be sought in the varying trading activities as large price changes may induce

traders to re-arrange their portfolios which leads to higher trading activities and

thus to increased volatility. This may be put to a formal test by linking returns

and trading volume (for which data is also available), but this goes beyond the

aim of this paper.

While �(rt) captures lag-1 correlations nicely it does not explain correlations

exchange rates stocks

residuals 7/19 (7/19) 114/175 (102/175)

squared res. 16/19 (17/19) 72/175 (81/175)

absolute res. 17/19 (17/19) 108/175 (133/175)

Table 5: Number of rejections of the hypothesis of residuals being white noise

32



of higher order. In fact the residuals �t are shown to be not independent, which

gives scope for improving model (15). A natural way to do this would be to

include more lags into the volatility function. However, this is not that easily

done as one may expect, since one soon faces a severe problem which is called

the curse of dimensionality. A discussion of this is deferred to another paper.
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Appendix

List of exchange rates:

ATS Austrian Schillings

AUD Australian Dollars

BEF Belgian Francs

CHF Swiss Francs

DEM German Marks

DKK Danish Kroner

ESP Spanish Pesetas

FIM Finnish Markka

FRF French Francs

GBP British Pounds

HKD Hong Kong Dollars

IEP Irish Punt

ITL Italian Lira

JPY Japanese Yen

NLG Dutch Guilders

NOK Norwegian Kroner

NZD New Zealand Dollars

SEK Swedish Krona

USD American Dollars
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