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Abstract

We consider the situation in which individuals in a �nite population must

repeatedly choose an action yielding an uncertain payo�. Between choices,

each individual may observe the performance of one other individual. We

search for rules of behavior with limited memory that increase expected pay-

o�s for any underlying payo� distribution. It is shown that the rule that

outperforms all other rules with this property is the one that speci�es imita-

tion of the action of an individual that performed better with a probability

proportional to how much better she performed. When each individual uses

this best rule, the aggregate population behavior can be approximated by

the replicator dynamic.

JEL Classi�cation Number : C72, C79

Keywords: social learning, bounded rationality, imitation, multi-armed

bandit, random matching, payo� increasing, replicator dynamic.
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1 Introduction

Imitation is the act of copying or mimicking the action of others, a com-

monly observed behavior in human decision making. This is perhaps the

reason why lately, with the growing popularity of Evolutionary Game The-

ory, many models of social learning have emerged in which individuals select

their future actions by imitating others (e.g., Banerjee [1]; Bj�ornerstedt and

Weibull [3]; Cabrales [5]; Ellison and Fudenberg [7]; Gale et al. [8]; Hofbauer

[9]; Rogers [12]). We propose to answer why individuals should follow an

imitative behavior in a social learning environment. Especially, we want to

point out that the answer is directly related to the answer to how imitation

should take place. Our approach follows the traditional line of decision and

game theory in that we allow individuals to determine their behavior before

we derive implications of individual behavior on the evolution of the society.

At the same time we depart from traditional decision theory (Savage [16])

and suggest two alternative approaches to selecting individual behavior, a

bounded rational approach and a population-oriented approach. What is

interesting is that either approach leads to the same unique prescription of

how to choose future actions:

� follow an imitative behavior, i.e., only change actions through imitating

others,

� never imitate an individual that performed worse than oneself, and

� imitate an individual that performed better with a probability that is

proportional to how much better this individual performed.

This result is not only interesting for its own sake but also for its implica-

tions on the global adjustment of a large population in which each individual

follows the individually most preferred rule. In this regard, it turns out that

the global process governing the change of actions in the population can be
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approximated by the well known replicator dynamic (Taylor [20]). In this

dynamic, the growth rate of an action is equal to its relative payo� measured

with respect to the average payo� in the population.

This paper generalizes an earlier work by the author (Schlag [17]) to a

multi-armed bandit setting. Individuals must repeatedly choose an action

from a �nite set of actions A. Choosing an action yields an uncertain payo�.

Payo�s are realized independently, their distribution has �nite support and

belongs to a bounded interval [�; !] : This basic setting of multi-armed ban-

dits has a wide range of applications to economics and behavioral sciences;

choosing an action can be a synonym for the choice of a technology, of an

organizational structure or of a restaurant, it may be the setting of a price

(Ellison and Fudenberg [7]; Schmalensee [19]). In our model, individuals be-

long to a �nite population and are able to learn from others. After each payo�

realization each individual is able to observe (or sample) the present perfor-

mance of another individual; she observes the action chosen and the payo�

received by the sampled individual. Sampling occurs according to some ex-

ogenously given distribution. However, we do require that this procedure of

sampling is symmetric, i.e., that individual `c' samples individual `d' with the

same probability as individual `d' samples individual `c'. Random sampling

will play a special role regarding aggregate population behavior.

The action chosen by an individual in the next round as a function of the

information that she has acquired in the past will be called a behavioral rule.

We want to focus on simple behavioral rules and thus limit the amount of

information available to the individual about previous occurrences as follows.

We assume that an individual forgets all about actions and observations

from previous rounds. Hence, the rule determining play in the next round

is a function of the payo�s achieved and actions taken both by oneself and

the sampled individual in the present round. Moreover, we assume that an

individual faces many multi-armed bandits that she can not distinguish a

priori except for the fact that they all have the same set of possible actions.

Hence, an individual must follow the same behavior (use the same behavioral

rule) whenever she is faced with a multi-armed bandit with the same set of

actions. Especially we have implicitly ruled out an individual that has enough
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memory capacity to be able to choose future actions by updating some prior.

Similarly we have ruled out complex strategies as used in the classical multi-

armed bandit problem (e.g., see Rothschild [13]). In the following consider

the set of actions A and the interval [�; !] containing the realized payo�s

�xed. As mentioned above, we follow two alternative approaches for selecting

a behavioral rule for our setting.3

The �rst approach (formalized in Section 4.1) is from the standpoint of

a boundedly rational individual. The individual enters a �nite population

of individuals who each face a multi-armed bandit. All multi-armed bandits

yield the same payo� distributions. Entry occurs by replacing a randomly

selected individual and adapting the action this individual chose in the last

round. As mentioned above, the individual must use the same behavioral

rule when facing each multi-armed bandit. The following assumptions are

made. The individual measures her success in a given decision situation by

the expected increase (or decrease) in payo�s her present choice yields in

comparison to her previous choice. The individual wants to perform well in

each situation in contrast to performing badly in some and very well in others.

Hence, we aim to investigate if there is a rule in our setting that always

leads to an increase in expected payo�s. At this point we add an additional

bounded rational assumption, namely, we assume that the entering individual

treats each round as if she had just entered. This means that the individual

does not anticipate how her decisions a�ect future distributions of actions

played in the population. A rule that (weakly) increases expected payo�s in

any decision situation, i.e., in any state regardless of the underlying payo�

distributions associated to the various actions, under the above assumption

of ignorance of previous play, will be called improving. If an improving rule

induces constant expected payo�s in all decision situations then the rule will

be called stationary.

Our second approach to selecting behavioral rules (formalized in Section

4.2) takes a population-oriented perspective. In this scenario we will search

3Unless otherwise stated, we ignore the issue of which action to choose when the indi-

vidual has no prior experience.
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for a rule that, when played by each individual in a �nite population, is

expected to (weakly) increase average payo�s in the population over time

in any decision situation. Such a rule will be called payo� increasing. For

large (i.e., in�nite) populations, this means that we search for a rule that

induces a better reply dynamic (Hofbauer [9]) in all decision situations when

the population is made up of replicas of the individual using this rule. In a

model that includes evolutionary pressure on behavioral rules it is plausible

that only payo� increasing rules can survive the entry of an alternative rule

in all environments. Bj�ornerstedt and Schlag [2] con�rm this intuition, a

result explained further in Appendix B.

The two approaches above have in common that a certain property must

hold in all decision situations. A fundamental connection between these two

approaches is that a rule is improving in the boundedly rational model if

and only if it is payo� increasing in the population model. Hence, from the

standpoint of either selection approach our initial aim will be to characterize

the improving rules. Trivial examples of stationary improving rules are easily

given, e.g., the self-explanatory rules `never switch' and `always switch'. We

note that an improving rule is stationary if and only if it always induces

constant average payo�s in the population. For this reason, we will focus

special attention on the class of non-stationary improving rules.

One important aspect of our �rst lemma is that improving rules are imi-

tating, i.e., that switching actions occurs by imitating the sampled individual.

From this, the main theorem (Theorem 1) characterizes the set of improving

rules. The criterion for an imitating rule to be improving is that the di�er-

ence in the probabilities of switching when two individuals sample each other

is proportional to the di�erence in the payo�s each individual achieved. The

reason for this strong condition on the probabilities of switching relies on

the linear structure of taking expectations. An intuitive and hence popular

behavioral rule is the rule we call `imitate if better' (used e.g. by Ellison and

Fudenberg [7] and Malawski [10]). This rule prescribes to imitate the action

of the observed individual whenever she achieves a higher payo�. Our analy-

sis reveals that this rule is not improving. Another consequence of our main

theorem is that a bound on the set of feasible payo�s (in our model, payo�s
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are contained in [�; !]) is necessary to obtain non stationary improving rules.

Our classi�cation of the improving rules reveals a clear structure among

the improving rules. This leads in both selection approaches to a natural

criterion for selecting a best rule among the improving rules. In fact, in

either selection approach the same behavioral rule is selected. This rule is a

speci�c rule from the class of rules we call proportional imitation rules that

were described at the beginning of this introduction. Especially, we obtain a

unique prescription of how to choose actions in our model.

Next we investigate implications for the population adjustment process

under random sampling when each individual is using our prescribed best be-

havioral rule. We show that the process governing the adaptation of actions

in a large population can be approximated in the short run by a discrete

version of the replicator dynamic (Taylor [20]) applied to this setting. Es-

pecially, with probability arbitrarily close to one, most individuals will be

playing after a �nite number of rounds an action that is best (measured in

terms of expected payo�s) among those initially present.

In a further section we consider a two population random matching sce-

nario. All the previous analysis and results are shown to apply to this gen-

eralized setting. Especially, individuals prefer to use a speci�c proportional

imitation rule. Moreover, in an in�nite population under random sampling in

which each individual uses the optimal individual behavior, the adjustment

is described by a discrete version of the replicator dynamic (Taylor [20]).

The rest of the paper is organized as follows. In Section two the basic pay-

o� realization and sampling scenario is introduced. The feasible behavioral

rules for using in this scenario are presented in Section three. Section four

contains two alternative approaches to selecting a behavioral rule, each lead-

ing to the condition of improving. In Section �ve we present a �rst lemma

concerning improving rules. In Section six this lemma is applied to show

that `imitate if better' is not improving. Section seven contains the central

theorem of this paper, a complete characterization of an improving rule. In

Section eight we select among the improving rules. Section nine contains the

implications this has for the population dynamic. In Section ten we consider

an alternative two population matching scenario. Section twelve contains a
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discussion. Appendix A contains some the proof of the main theorem. In

appendix B some in sights to the evolutionary model of Bj�ornerstedt and

Schlag [2] are given.

2 The Payo� Realization and Sampling Sce-

nario

Consider the following dynamic process of choosing actions, sampling and

updating. Let P denote the underlying probability measure. Let W be

a �nite population (or set) of N individuals, N � 2. In a sequence of

rounds, each individual must choose an action from a �nite set of actions A =

f1; ::; ng, n � 2:Choosing the action i yields an uncertain payo� drawn from a

probability distribution Pi with �nite support in [�; !] where � and !; � < !,

are exogenous parameters. Payo�s are realized independently of all other

events. Let �i denote the expected payo� generated by choosing action i; i.e.,

�i =
P

x2[�;!] xPi (x) ; i 2 A. Then the tuple
D
A; (Pi)i2A

E
constitutes a multi-

armed bandit or a game against nature. The set of all multi-armed bandits

with action set A yielding payo�s in [�; !] will be denoted by G (A; [�; !]) :

A state s 2 AW of the population in a given round t is the description

of the action that each individual is choosing in round t. Let mi = mi (s)

denote the number of individuals choosing the action i in state s; i.e., mi =

jfc 2 W : s (c) = igj (i 2 A). Let � (A) be the set of probability distributions

on A. For a given state s let p 2 �(A) denote the probability distribution

that is associated with randomly selecting an individual and observing the

action she has chosen for this round, i.e., pi = mi=N . The set of all such

probability distributions will be denoted by �N (A), i.e., p 2 �N (A) and

i 2 A implies N � pi 2 N . Given this notation, the average expected payo� of

the population in state s; �� (s) ; is given by �� (s) =
P
pi�i.

Between the rounds of payo� realization, each individual meets (or sam-

ples) another individual from the population and receives the following in-

formation. When individual `c' samples individual `d' (c; d 2 W ), then indi-

vidual `c' observes the action `d' used and the payo� `d' achieved in the last
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round without observing the identity of `d'. For each individual `c' this sam-

pling occurs according to some exogenously given probability distribution

zc 2 �(Wn fcg) where zc (d) is the probability that individual `c' samples

individual `d'. zc is called a sampling rule for individual `c'. The assignment

of a sampling rule zc to each individual c in the population will be called

a sampling procedure. Formally, z = (zc)c2W is called a sampling procedure

if zc 2 �(Wn fcg) for all c 2 W . A sampling procedure z will be called

symmetric if for any c; d 2 W the probability of `c' sampling `d' (this event

denoted by c; d) is the same as vice versa, i.e., P (c; d) = P (d; c). In

the following we will restrict attention to symmetric sampling procedures.

The above conditions restrict the variety of individual sampling proce-

dures without specifying explicitly how the sampling rules of di�erent indi-

viduals relate to each other. A scenario in which each individual is sampled

at most once (due to time constraints) is equally feasible as one in which

an individual can be sampled a multiple number of times. The sampling

could be such that individuals sample independently, i.e., P (c; djd; c) =

P (c; d). Similarly, we allow for a model in which individuals sample each

other. In this case c; d is the same event as d; c for each c; d 2 W , espe-

cially, P (c; djd; c) = 1 and the sampling rule is symmetric. For exam-

ple, a symmetric sampling procedure results from the following assumptions

on individual sampling behavior. Individuals are located on a circle. Each

individual randomly samples with equal probability among her 2m closest

neighbors (m to the left, m to the right, m < N=2). Special attention will

focus on the symmetric sampling procedures referred to as random sampling.

Here each individual randomly samples an individual (with equal probability)

from the population (except for herself), i.e., P (c; d) = 1
N�1

for c; d 2 W;

c 6= d.

3 Behavioral Rules

Let A, [�; !] andN be �xed throughout the rest of the paper. The description

of how an individual in our model chooses her next action whenever she faces
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a multi-armed bandit with action set A that realizes payo�s in [�; !] is sum-

marized by a behavioral rule. Especially, the individual may not change her

rule over time. We allow for an individual to use a randomizing device that

generates independent events when they determine which action to choose

in the next round. Following the assumptions on individual information and

memory made in the introduction, a behavioral rule F is characterized by

a function F : A � [�; !] � A � [�; !] ! �(A) where F (i; x; j; y)k is the

probability of choosing action k in the next round after previously choosing

action i, receiving payo� x and sampling an individual who chose action j

and received payo� y. For simplicity we will disregard the issue of which

action to choose in the �rst round.

One of the simplest behavioral rules is the rule `never switch', formally

de�ned by the behavioral rule F that satis�es F (i; x; j; y)i = 1 for i; j 2 A

and x; y 2 [�; !]. An opposite behavior is exhibited by the self explanatory

rule `always switch'. A more plausible rule seems to be to act according to

`imitate if better ' (Ellison and Fudenberg [7]; Malawski [10]), i.e., use the

rule F given by F (i; x; j; y)j = 1 if y > x and F (i; x; j; y)i = 1 if y � x.

The three rules described above belong to the class of behavioral rules that

are based on imitation, i.e., either the individual does not change actions

or she switches to the action used by the individual she sampled. More

generally, we call a behavioral rule F imitating if F (i; x; j; y)k = 0 when k =2

fi; jg (x; y 2 [�; !]). The class of imitating rules, referred to as proportional

imitation rules, described at the beginning of the introduction will play an

important role in our analysis. A behavioral rule F is called a proportional

imitation rule if F is imitating and there exists � with 0 < � � 1
!��

such that

F (i; x; j; y)j = 0 if y � x and F (i; x; j; y)j = � (y � x) if y > x, i 6= j and

x; y 2 [�; !]. The constant � associated to a given proportional imitation

rule will be referred to as the rate.4

4Switching behavior as displayed by proportional imitation rules appears in a paper by

Cabrales [5] where it is justi�ed through uniformly distibuted costs for switching actions.
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4 Selection of Rules

The major part of our analysis concerns the issue of which behavioral rule

an individual should choose in all of her future encounters of the scenario de-

scribed in Section 2. The individual enters the setting by randomly replacing

one of the individuals in the population (with equal probability). In her �rst

round, the entering individual uses the action last chosen by the individual

she replaced.5 Exit occurs when the individual is replaced by a new entrant.

The individual under consideration knows that she will be confronted with

many such circumstances throughout her lifetime.

We present two alternative scenarios (or approaches) for analyzing which

behavioral rule is best for an individual.

4.1 A Bounded Rational Approach

In the �rst scenario we consider a bounded rational individual. We make

the following assumptions on how the individual evaluates the performance

of a behavioral rule. The individual wants to avoid under all circumstances

a decrease in her expected payo�s from one round to the next. When cal-

culating expected payo�s in a given round the individual ignores the e�ect

her behavior has on future states of the population. This means that she

calculates the expected payo�s in a given state and a given round as if she

just entered the population. A behavioral rule that ful�lls this criterion will

be called improving. This will be formalized in the following.

For a given behavioral rule F , and a given multi-armed bandit, let F k
ij

denote the probability of playing action k in the next round after playing

action i and sampling an individual using action j (i; j; k 2 A). Then

F k
ij =

X
x;y2[�;!]

F (i; x; j; y)k Pi (x)Pj (y) : (1)

Let st be the state in round t: The expected increase in the payo�s, eip (c; st),

5This assumption is made in order to simplify the presentation. It can be motivated

directly by means of either of the two scenarios that will be introduced in the following.
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of individual `c' between rounds t and t+ 1, is given by

eip
�
c; st

�
=
X
r2A

X
d2Wnfcg

P (c; d)F r
st(c)st(d)

�
�r � �st(c)

�
: (2)

An individual's expected increase in payo�s from rounds t to t + 1 a priori

to entering into the population in round t; denoted by EIPF (s
t), is given by

EIPF

�
st
�
=

1

N

X
c2W

eip
�
c; st

�
: (3)

Due to the above `ignorance' assumption, of previous play, EIPF (s
t) is also

an individual's expected increase in payo�s from rounds t to t+ 1 when she

entered into the population in some round before round t: EIPF (s) will be

called the expected improvement under F in state s. The behavioral rule F is

called improving if EIPF (s) � 0 for any state s 2 AW and any multi-armed

bandit in G (A; [�; !]) : An improving rule F is called stationary if EIPF (s) =

0 for all states s 2 AW and all multi-armed bandits in G (A; [�; !]) ; otherwise

it is called non-stationary.6

4.2 A Population Oriented Approach

In this alternative scenario we assume that an individual evaluates the per-

formance of a rule in a population of replicas, i.e., in a situation where all

other individuals use the same behavioral rule as she does. A population in

which each individual follows the same behavior will be called a monomor-

phic population. We assume that the individual chooses a rule that causes

average expected payo�s in a monomorphic population to increase in any

feasible encounter. Such a behavioral rule will be called payo� increasing.

A motivation for this condition through an evolutionary model of selecting

6The concept of improving is very closely related to the concept of absolute expediency

de�ned by Sarin [14] in a slightly di�erent context. Applied to our model, an absolutely

expedient rule is an improving rule with the property that the expected improvement

is strictly positive whenever not each action currently used in the population achieves

the same expected payo�. As such this concept leads to a re�nement of non-stationary

improving rules.
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rules in a large population is provided by Bj�ornerstedt and Schlag [2] (see

also Appendix B).

Formally, for a given round t, a given state st in round t, and a given multi-

armed bandit, let EF ��
0 (st) denote the expected average payo� in round t+1

when all individuals are using the rule F; i.e.,

EF ��
0
�
st
�
=

1

N

X
r2A

X
c;d2W

P (c; d)F r
st(c)st(d)�r .

A behavioral rule F is called payo� increasing if EF ��
0 (s) � �� (s) for any

state s 2 AW and any multi-armed bandit in G (A; [�; !]).

4.3 An Equivalence Result

Rewriting (3), using (2), we obtain

EIPF (s) = EF ��
0 (s)� �� (s) : (4)

This leads to the following result.

Remark 1 A behavioral rule is improving if and only if it is payo� increas-

ing. An improving rule is stationary if and only if it induces constant average

expected payo�s in a monomorphic population, i.e., EF ��
0 (s) = �� (s) in any

state s 2 aW and in any multi-armed bandit in G (A; [�; !]).

5 A First Lemma

Clearly, the rules `never switch' and `always switch' are stationary improving

rules. Given Remark 1, an analysis of non-stationary improving rules is of

interest from the viewpoint of either selection approach of Section 4. The

following preliminary result contains a characterization of the improving rules

that is independent of the population state. According to this result, a

behavioral rule F is improving if and only if it is an imitating rule that

satis�es the following condition. Consider two individuals using di�erent

actions, both following the same behavior F , that sample each other. Then
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it cannot be, a priori to observing the other's payo�, that the individual

obtaining the strictly higher expected payo� of the two is more likely to

switch actions.

Lemma 1 The behavioral rule F is improving if and only if F is imitating

and for any multi-armed bandit in G (A; [�; !]) ; for any i; j 2 A, i 6= j;

�
F
j
ij � F i

ji

�
(�j � �i) � 0: (5)

The proof of the imitation property is quite intuitive. An individual

will avoid switching to an action that she did not observe since it might be

that the action she observed is a dupli�cation of her own strategy (i.e., it

generates the same probability distribution of payo�s) whereas all actions

not observed lead necessarily to the worst outcome. Notice that imitation

remains necessary to ensure the improving condition even after the event of

receiving the lowest possible payo� � and sampling an individual who used

the same action and also obtained �. This is because it may be that obtaining

� is an unlucky event for the own action whereas it is the only outcome for

any other action.

Proof. We will �rst show the \if" statement. Rewriting (3) for imitating

rules yields

EIPF (s) =
1

N

X
c;d2W

P (c; d)F
s(d)

s(c)s(d)

h
�s(d) � �s(c)

i
:

Using the fact that the sampling rule is symmetric we obtain

EIPF (s) =
1

N

X
i<j

2
6664
X

c:s(c)=i
d:s(d)=j

P (c; d)

3
7775
�
F
j
ij � F i

ji

�
(�j � �i) ; (6)

which completes the proof of the \if" statement.

We will now show that improving rules are imitating. Assume that the

behavioral rule F is improving. Let x; y 2 [�; !] ; i; j 2 A and r 2 An fi; jg

be such that F (i; x; j; y)r > 0. Construct a multi-armed bandit in which

Pi (x) = Pi (y) = Pi (!) =
1
3
; Pj � Pi and Pk (�) = 1 for all k 2 An fi; jg.
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It follows that �i = �j > �k. Choose c; d 2 W such that P (c; d) > 0 and

consider a population state s such that s(c) = i, s(d) = j and mi +mj = N .

Then F (i; x; j; y)r > 0 implies EIP (s) < 0 which contradicts the fact that

F is improving.

Finally, we will show that an imitating rule F that violates (5) for some

i 6= j and some multi-armed bandit in G (A; [�; !]) is not improving. Choose

again c; d 2 W such that P (c; d) > 0 and consider a population state s

such that s(c) = i, s(d) = j and mi +mj = N . Since
�
F
j
ij � F i

ji

�
(�j � �i) <

0, and following (6), EIPF (s) < 0 which implies that F is not improving.

6 The Drawback of `Imitate if better'

`Imitate if better' is a plausible rule. In fact, it performs well in multi-armed

bandits in which uncertainty is driven solely through idiosyncratic shocks.

Consider a multi-armed bandit in G (A; [�; !]) with the following properties.

There is a probability distribution Q with �nite support and mean 0 such

that Pi (x) = �i+Q (x) for each i 2 A: Throughout this section, let F denote

the rule `imitate if better'. Then

F
j
ij�F

i
ji =

1

2

X
x;y

Q (x)Q (y)

2
4 F (i; �i + x; j; �j + y)

j
� F (j; �j + y; i; �i + x)

i

+F (i; �i + y; j; �j + x)
j
� F (j; �j + x; i; �i + y)

i

3
5

and hence, F j
ij �F i

ji � 0 when �j � �i: With (6) it follows that the expected

improvement of `imitate if better' is non negative in such a multi-armed

bandit.

However, we will see `imitate if better' generates negative expected im-

provement in some extremely simple multi-armed bandits; it can not distin-

guish between lucky payo�s and certain payo�s. Let x 2
�
�; �+!

2

�
. Consider

a multi-armed bandit in which P1 (x) = 1, P2 (�) = � and P2 (!) = 1� � for

some 0 < � < 1. It follows that

�2 > �1 if and only if � <
! � x

! � �
:
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On the other hand, F 2
12 = 1� � = F 1

21 and hence,

F 1
21 > F 2

12 if and only if � >
1

2
:

Consequently, when 1
2
< � < !�x

!��
then (5) is violated and hence `imitate if

better' is not improving.

7 A Complete Characterization

The fact that being improving is equivalent to being imitating and more

likely to imitate an action with a higher expected payo� than vice versa

(Lemma 1) is quite intuitive. The di�culty in �nding improving rules is

the fact that an individual is not able to condition her behavior on expected

payo�s but must base her decision on realized payo�s. The following theorem

constitutes the central result of this paper. It states a somewhat surprising

characterization of the set of behavioral rules that are improving. According

to this result only switching in a way that \net" switching behavior is linear

in payo� di�erences ensures that an imitating rule is in fact improving. The

consequent proof reveals that this strong characterization is due to the linear

structure of taking expectations.

Theorem 1 The behavioral rule F is improving if and only if

i) F is imitating and

ii) for all i; j 2 A, i 6= j there exists �ij = �ji 2
h
0; 1

!��

i
such that

F (i; x; j; y)j � F (j; y; i; x)i = �ij (y � x) for all x; y 2 [�; !] : (7)

From (7) we see that the rule `imitate if better' is not improving, a fact

also shown in Section 6.

Proof. (in the Appendix)

From (6) and (16) we obtain that

Corollary 1 an improving rule is stationary if and only if �ij = 0 for all

i; j 2 A; i 6= j.
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It follows that non-stationary improving rules induce stochastic behavior.

Moreover, non-stationary improving rules only exist if, as assumed through-

out this paper, payo�s are contained in a pre-speci�ed bounded interval [�; !].

The later statement follows from the fact that �ij is bounded above by 1
!��

(Theorem 1).

The next corollary supplements the characterization of improving rules

given in Theorem 1.

Corollary 2 Condition ii) in Theorem 1 holds if and only if the following

condition holds:

ii') for all i; j 2 A, i 6= j; either F (i; x; j; y)j = F (j; y; i; x)i for all x; y 2

[�; !] or there exists �ij = �ji > 0 and a function gij : [�; !] � [�; !] ! R

such that for x; y 2 [�; !] ;

�minfx; yg � gij (x; y) � �max fx; yg+
1

�ij
;

F (i; x; j; y)j = �ij � (y + gij (x; y)) and

F (j; y; i; x)i = �ij � (x + gij (x; y)) :

Proof. The fact that ii') implies ii) follows directly. Conversely, let i; j 2

A; i 6= j and let F satisfy ii). If �ij = 0 then ii) implies F (i; x; j; y)j =

F (j; y; i; x)i for all x; y 2 [�; !]. Assume now that �ij > 0. Let gij (�; �) be

de�ned by gij (x; y) =
1
�ij
F (i; x; j; y)j�y (x; y 2 [�; !]). It follows that �y �

gij (x; y) � �y+ 1
�ij

and F (i; x; j; y)j = �ij � (y + gij (x; y)). Together with ii)

we obtain F (j; y; i; x)i = F (i; x; j; y)j��ij (y � x) = �ij �(x + gij (x; y)). This

implies �x � gij (x; y) � �x + 1
�ij

which completes the proof of condition

ii').

8 Selecting among Improving Rules

We now proceed with our selection of a best rule for the individual to use.

In the following we show that there is a common subset of improving rules

(which we will call dominant) that perform best according to the expected

improvement they generate.
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We will say that a behavioral rule F dominates the improving rules (or

short, is a dominant rule) if there is no improving rule F 0; state s and multi-

armed bandit in G (A; [�; !]) such that EIPF
0 (s) > EIPF (s). A dominant

rule always achieves a (weakly) higher expected improvement than any other

improving rule. With (4) it follows that dominant rules are also the rules

that maximize the expected increase in the average payo�s of a monomorphic

population in any state among the set of payo� increasing rules. Hence,

regarding either approach to selecting individual behavior, it is natural for

an individual to choose a dominant rule if such a rule exists.

Following (6) and (16), the expected improvement, EIPF (s) ; of an im-

proving rule F in state s is given by

EIPF (s) =

2
6664 1

N

X
i<j

X
c:s(c)=i
d:s(d)=j

P (c; d)

3
7775 �ij (�j � �i)

2 . (8)

From (8) we obtain that the expected improvement of an improving rule only

depends on the factors (�ij)i;j2A
i6=j

. Hence,

Proposition 1 a behavioral rule is a dominant rule if and only if it is im-

proving and for any i 6= j, �ij =
1

!��
.

Among the set of dominant behavioral rules the proportional imitation

rule with rate 1
!��

(de�ned in Section 3), denoted by F p; has the following

unique properties.

Theorem 2 i) F p is the unique dominant rule that never imitates an action

that achieved a lower payo�.

ii) In any state and for any multi-armed bandit in G (A; [�; !]) ; F p mini-

mizes the probability of switching among the set of dominant rules. Moreover,

F p is the unique dominant rule that has this property in all states and all

bandits.

iii) In any round t, for any state in round t and for any multi-armed

bandit in G (A; [�; !]) ; F p minimizes the variance of the average payo�s in

the monomorphic population playing F p in round t + 1 among the set of
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dominant improving rules. Moreover, F p is the unique dominant rule that

has this property for all states and all multi-armed bandits in G (A; [�; !]) :

Following part i) in Theorem 2, it can be argued that F p is the unique

dominant rule that performs best when payo�s are deterministic; realized

payo�s never decrease in such degenerate bandits. Statement ii) implies that

F p is the dominant rule that changes actions the least number of times.

From part iii) it follows that the monomorphic population using F p exhibits

minimal variance in average payo�s. Together with the fact that F p is a

dominant rule we conjecture that F p maximizes the probability that average

payo�s in a monomorphic population increase over time.

Proof. Statements i) and ii) follow easily from Corollary 2 since the propor-

tional imitation rule is the unique dominant rule with gij (x; y) = �min fx; yg.

Part iii) follows from part ii) of Theorem 1 and some easy calculations.

The proportional imitation rule with rate 1
!��

is improving. Moreover, it

is dominant (Proposition 1), and hence always performs at least as well as any

other improving rule regarding expected improvement. Finally, its unique

properties among the set of dominant rules (Theorem 2) lead us naturally to

strictly preferring it to any other dominant rule. We argue therefore that the

proportional imitation rule with rate 1
!��

is the best, i.e., the optimal, rule

for an individual to use in our model. Especially, notice that the optimal

rule does not depend on the size of the population N .

One might mention that there is a dominant rule that requires less infor-

mation than the dominant proportional imitation rule. Consider the imitat-

ing rule F that satis�es F (i; x; j; y)j =
!�x
!��

for i; j 2 A and x; y 2 [�; !] : We

will call this rule the dominant proportional reviewing rule. 7 It can be eas-

ily shown (see Schlag [17]) for more details) that the dominant proportional

reviewing rule is the unique dominant improving rule that does not depend

on the sampled individual's payo�.

7Bj�ornerstedt and Weibull (1993) and Gale et al. (1995) both use a variant of this rule

in their model, the later interpret it on the basis of random aspiration levels.

19



9 Population Dynamics

In this section we consider the implications of the analysis in the previous

sections. We have argued that any given individual should choose the domi-

nant proportional imitation rule. If each individual in the population does so,

we obtain a speci�c monomorphic population. Average expected payo�s in

this population increase over time since everyone uses the same rule which is

payo� increasing. In the following we will characterize the induced dynamic

in large populations in more detail.

First we will derive a law of large numbers type of result to simplify

the analysis of the dynamic. If sampling is random and independent and

the population is large, then we will show that actual adjustment can be

approximated by the expected adjustment, at least in the short run. In the

following we will derive this approximation for any monomorphic population

(i.e., all individuals use the same rule).

For a monomorphic population of sizeN which is in state pN (1) 2 �N (A)

in round 1, let pN (t) 2 �N (A) be the random state in round t, t = 2; 3; ::.

Let k�k denote the supremums norm.

Theorem 3 Assume that sampling is random and independent. Assume that

each individual is using the behavioral rule F . Then for each � > 0; � > 0 and

T 2 N there exists N0 2 N such that for any population size N > N0 and any

~p 2 �N (A) ; the event that



pN (T )� p (T )




 > � occurs with a probability

less than � given that pN (1) = p (1) = ~p and (p (t))t2N satis�es

pi (t+ 1) =
X
j;r

pj (t) pr (t)F
i
jr; t 2 N: (9)

Notice that, in fact, we approximated the stochastic adjustment in the

�nite population by the limit of the expected adjustment when taking the

population size to in�nity.

Proof. We will �rst prove the statement for T = 2: Let i 2 A and �x

~p 2 �N (A). For c 2 W let zi (c) be the random variable such that zi (c) = 1

if individual `c' uses action i in round two, otherwise zi (c) = 0: Then

P (zi (c) = 1) =
ms(c) � 1

N � 1
F i
s(c)s(c) +

X
j 6=s(c)

mj

N � 1
F i
s(c)j
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and pNi (2)= 1
N

P
c2W zi (c) : Then

E
h
pNi (2)

i
=

N

N � 1

X
j;r

~pj ~prF
i
jr �

1

N � 1

X
j

~pjF
i
jj: (10)

Since zi (c) and zi (d) are independent variables for c 6= d and V AR (zi (c)) �

1 it follows that V AR
�
pNi (2)

�
� 1

N
: Applying Tschebyshe�'s inequality we

obtain that the event
n���pNi (2)� E

h
pNi (2)

i��� > �
2

o
occurs with a probability of

less than 4
N�2

. Let N0 be such that 4
N0�2

< � and
���E hpNi (2)

i
�
P

j;r ~pj ~prF
i
jr

��� <
�
2
for N > N0. Then

n���pNi (2)�
P

j;r ~pj ~prF
i
jr

��� > �
o
occurs with probability

less than � when N > N0: Since N0 has been chosen independent of ~p the

proof for T = 2 is complete.

We will now prove the statement for T = 3 by iterating the proof for

T = 2. Let � > 0 and � > 0 be given. Let f : � (A) � �(A) ! R be

de�ned by f (p)i =
P

j;r pjprF
i
jr, i 2 A. Let pN (t; ~p) be the random state

in round t given state ~p 2 �N (A) in round one (t > 1). Since f is a

continuous function on a compact space there exists � 2
�
0; �

2

�
such that

kf (w)� f (w0)k < �
2
if kw � w0k < �. Let � be such that (1� �)2 = 1 � �.

Following the proof for T = 2 there exists N0 such that for N > N0 and

~p 2 �N (A) ; P
�


pN (2; ~p)� f (~p)




 < �
�
> 1 � �: For N > N0 we therefore

obtain that

P
�


pN (3; ~p)� f (f (~p))




 � �
�

=
X

w2�N (A)

P
�


pN (2; w)� f (f (~p))




 � �
�
P
�
pN (2; ~p) = w

�

�
X

w2�N (A):kw�f(~p)k<�

P

 


pN (2; w)� f (w)



 � �

2

!
P
�
pN (2; ~p) = w

�

� (1� �)2 = 1� �

which completes the proof for T = 3: The proof for the more general case of

T > 3 follows similarly using induction.

According to the above theorem the adjustment of a monomorphic popu-

lation can be approximated by the deterministic process (pt)t2N that satis�es

(9). If the underlying rule F is improving then, using (16), (9) simpli�es to

pt+1
i = pti + pti

X
i;j2A

�ijp
t
j � (�i � �j) : (11)
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Consequently, if F is improving with underlying �ij > 0 for all i 6= j; then all

individuals in an in�nite monomorphic population under random sampling

will in the long run play actions achieving maximal expected payo� among

those that were initially present, i.e., actions in argmaxi2A f�i; p
1
i (1) > 0g.

In fact, it can easily be shown that the converse of this statement is also

true (use Lemma 1 and (19)). Especially, if all indivduals in an in�nite

population under random sampling use the rule `imitate if better' then they

will eventually all be choosing the ine�cient action in the gamble of Section

6 when 1
2
< � < !�x

!��
and p11 2 (0; 1) :

If F is a dominant improving rule (e.g., the dominant proportional imi-

tation rule), then we obtain

pt+1
i = pti +

1

! � �

h
�i � ��

�
pt
�i
� pti; (12)

where �� (p) =
P

i �i � pi is the average payo� in the state p 2 �(A) : Hence,

if each individual uses her optimal rule then the dynamic adjustment of the

population is approximated in the short run by (12) | a discrete version of

the replicator dynamic (Taylor [20]) applied to multi-armed bandits.

10 A Two-Population RandomMatching Set-

ting

Previously we assumed that the payo� distribution generated by an action

is stationary over time. In this section we consider a scenario in which indi-

viduals face non stationary multi-armed bandits; individuals obtain payo�s

by being randomly matched in pairs to play a game. We will extend the se-

lection approaches from Section 4 and show that the dominant proportional

imitation rule is still the unique optimal rule. The resulting aggregate behav-

ior of an in�nite population in which each individual is using the optimal rule

will be described by the a discrete version of the replicator dynamic (Taylor

[20]).

Consider two �nite, disjoint populations W1 and W2; each of size N , also

referred to as population one and two. In a sequence of rounds each in-
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dividual must choose an action and is then matched against an individual

from the opposite population. Let Ai be the �nite set of actions available

to an individual in population i; i = 1; 2: When an individual in popula-

tion one using action i 2 A1 is matched with an individual in population

two using action j 2 A2; the individual in population k achieves an un-

certain payo� drawn from a given, independent probability distribution P k
ij;

k = 1; 2. Associating player i to being an individual in population i, the tu-

ple

*
A1; A2;

�
P 1
ij

�
i2A1

j2A2

;
�
P 2
ij

�
i2A1

j2A2

+
de�nes an asymmetric two player normal

form game. In the following we will restrict attention to the class of asymmet-

ric two player normal form games, denoted by G (A1; A2; [�1; !1] ; [�2; !2]), in

which player k has action set Ak; k = 1; 2; where P 1
ij has �nite support in

[�1; !1] and P
2
ij has �nite support in [�2; !2] for all i 2 A1 and j 2 A2; �1 < !1

and �2 < !2 are given. For a given asymmetric game, let �1 (�) and �2 (�)

be the bilinear functions on � (A1) � �(A2) where �k (i; j) is the expected

payo� to player k when player one is using action i and player two is using

action j; i.e., �k (i; j) =
P

x2[�k;!k] xP
k
ij (x) ; k = 1; 2:

Individuals are matched at random, formally this means the following

for an individual in population one. Let s1 2 (A1)
W1 be the current state

in population one and let p 2 �N (A1) be the associated population shares.

Similarly let s2 2 (A2)
W2 and q 2 �N (A2) be the corresponding expressions

for population two. Then an individual in population one is matched with an

individual in population two using action j 2 A2 with probability qj. Since we

consider random matching, �1 (i; q) speci�es the expected payo� of an indi-

vidual in population one using action i 2 A1 and �1 (p; q) speci�es the average

payo� in population one in this state. Especially, given the current state, each

individual in population one is facing a multi-armed bandit
D
A1; (P

0
i )i2A

E
in

G (A1; [�1; !1]) where P
0
i (x) =

P
j2A qjP

1
ij (x) for x 2 [�1; !1] :

Sampling occurs within a population and is otherwise performed as in the

multi-armed bandit setting.

A behavioral rule F for an individual in population k is a function F :

� (Ak)� [�k; !k]��(Ak)� [�k; !k]! �(Ak), k = 1; 2:

We will now analyze the problem of selecting a behavior for an individual
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in population one. Consider �rst the bounded rational approach of Section

4.1. Notice that in any given state the game appears as a multi-armed

bandit. An individual might not recognize that she is being matched to play

an asymmetric game. She might also ignore the possibility that individuals

in the opposite population have of changing their action. Under either of

these assumptions the best behavioral rule for an individual in population

one remains as in the multi-armed bandit setting the proportional imitation

rule with rate 1
!1��1

:

Consider now the approach of Section 4.2 where an individual evaluates

her behavior in a population of replicas. Let F denote this individual's

behavioral rule. Let (s1; s2) 2 (A1)
W1 � (A2)

W2 be the state in round t: Then

the switching probabilities are given by

F i
jr (s) =

X
u

nu (nu � 1)

N (N � 1)
F (j; �1 (j; u) ; r; �1 (r; u))i

+
X
u6=v

nunv

N (N � 1)
F (j; �1 (j; u) ; r; �1 (r; v))i

where nk = jfc 2 W2 : s2 (c) = kgj for k 2 A2 (i; j; r 2 A1): If each individual

in population one is using F then the expected proportion of individuals

choosing action i 2 A1 in round t + 1, denoted by EFp
0
i (s) given state s =

(s1; s2) 2 (A1)
W1 � (A2)

W2 in round t is given by

EFp
0
i (s) =

1

N

X
j;r2A1

X
c;d2W1

s1(c)=j;s1(d)=r

P (c; d) � F i
jr (s) , i 2 A1: (13)

We assume that an individual chooses a rule that is payo� increasing in

any state and in any asymmetric game when the actions played in the op-

posite population remain unchanged. In other words, she chooses a rule

that is expected to produce a better reply to the present state in each state

and bandit. Formally, we will say that a behavior rule F of an individ-

ual in population one induces better replies if for all asymmetric games in

G (A1; A2; [�1; !1] ; [�2; !2]) and all states s = (s1; s2) 2 (A1)
W1 � (A2)

W2 ;

X
i2A1

�1 (i; q (t)) � EFp
0
i (s)�

X
i2A1

�1 (i; q (t)) � pi (t) � 0 . (14)
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In Section B we motivate the above condition as a necessary condition for

the survival of a rule in an evolutionary model when the population is large.

Following practically the same arguments as in Section 4.2 we obtain

that a rule induces better replies if and only if it is improving. Especially, if

each individual in population one is using the same rule that induces better

replies, then (13) simpli�es to

EFp
0
i (s) = pi+

1

N

X
i;j2A1

X
c;d2W1

s1(c)=i;s1(d)=j

P (c; d)�ij [�1 (i; q)� �1 (j; q)] ; i 2 A1:

Hence it follows that an improving rule is dominant if and only if the left

hand side in (14) is maximized for all states and all asymmetric games in

G (A1; A2; [�1; !1] ; [�2; !2]) :

Finally, analogue to property iii) in Theorem 2, the dominant propor-

tional imitation rule for population one is the unique dominant rule that

always minimizes the variance in the adjustment in population one when

both populations are �nite.

Following the above, one may argue that the proportional imitation rule

with rate 1
!1��1

is the optimal rule for an individual in population one

in this random matching setting in both the individually rational and the

population-oriented selection approach.

We now consider population behavior under random sampling when each

individual follows her optimal rule. Using a law of large numbers type of

argument or following the direct approach as in Theorem 3 (see Schlag [17])

the short run behavior of a large population is approximated by the dynamic

adjustment in an in�nite population. This process is given by

pt+1
i = pti +

1

!1 � �1

h
�1
�
i; qt

�
� �1

�
pt; qt

�i
pti; i 2 A1; (15)

qt+1
j = qtj +

1

!2 � �2

h
�2
�
pt; j

�
� �2

�
pt; qt

�i
qtj; j 2 A2 .

Notice that (15), which is the two population analogue to (12), is a discrete

version of the replicator dynamic (Taylor [20]).
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11 Discussion

In this section we discuss some our assumptions and relate our work to the

existing literature.

An important assumption concerning the selection of rules in our model

is that we search for rules that perform well in any situation. Choosing a

rule that is not improving will lead to a decrease in expected payo�s in some

situations. Hence, such a choice implicitly means that the individual consid-

ers good performance in some situations enough to o�set bad performance

in others. We ruled out any such a priori bias of the individual and hence

only improving rules came into question. Of course, one might consider a

model in which an individual has a priori more information about the setting.

Similarly, individuals might have better memory capabilities to be able to

acquire information about the bandit while playing. In such alternate mod-

els, our analysis can be considered a benchmark, especially the proportional

imitation rule is a useful rule to use while gathering information needed for a

more elaborate rule. Sarin [14] incorporates the same idea of performing well

in any situation into one of the axioms he postulates in a model of individual

learning in two person games. Sarin calls this axiom absolute expediency.

Applied to our setting, a rule satisfying this axiom is a payo� increasing rule

such that expected payo�s increase strictly when not all actions present in

the population achieve the same expected payo�. With Theorem 1 and (8)

it follows that a rule is absolutely expedient under random sampling if and

only if it is improving with underlying switching rates �ij > 0 for all i 6= j.

The central theme of our analysis is the selection of an individual's be-

havioral or learning rule, the description of what to do whenever a decision

must be made. We search for behavioral rules that perform well in each

situation. Our notion of performing well leads to the condition of improving,

a rule performing better than any other improving rule in any situation is

called dominant. A rule selected among the dominant rules is called opti-

mal. An individual's decision is based on the information available about the

speci�c situation. Naturally, di�erent informational assumptions lead to the

selection of di�erent behavioral rules.
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In our model, the information of the individual is extremely limited, es-

pecially she only observes the performance of one other individual in between

rounds. Here the proportional imitation rule is a dominant rule, this rule is

argued to be the unique optimal rule. When each individual uses the opti-

mal rule we obtain the replicator dynamic. Our model is the �rst to reveal

a derivation of the replicator dynamic from a model in which individual be-

havior is chosen optimally. Others have been able to construct individual

behavior rules that lead to the replicator dynamic (Bj�ornerstedt and Weibull

[3]; Cabrales [5]; Gale et al. [8]), however they did not choose to justify

individual behavior. Axiomatizations of learning rules in slightly di�erent

contexts have also lead to the replicator dynamic (Easley and Rustichini

[6]; Sarin [14], in combination with the paper by B�orgers and Sarin [4]).

However, it should be noted that the basic approach in these models di�ers

fundamentally from our approach | the former models contain axioms con-

cerning the functional form of a desirable learning rule whereas the selection

of rules in our model is based entirely on individual information and induced

performance.

The existence of dominant rules in our setting is quite a surprising result.

In a recent investigation we expand our model and assume that an individual

may observe two individuals between rounds (Schlag [18]). Here dominant

rules no longer exist. However, we �nd a simple rule (a modi�cation of

the proportional imitation rule) that is best at performing better than the

optimal rule based on one observation. Especially, when each individual in

an in�nite population is using this simple rule, aggregate behavior follows an

aggregate monotone dynamic as de�ned by Samuelson and Zhang [15].

Consider alternatively the situation where the individual has perfect in-

formation about the setting and about the current distribution of the actions

played in the population(s). A behavioral rule now becomes a function that

includes this additional information. In this alternative setting, it follows

immediately that playing a best response is the unique dominant rule. The

resulting adjustment process of the population, when each individual uses

a dominant rule, is trivial in the multi-armed bandit setting; all individuals

immediately adapt an action that achieves the highest expected payo�. In
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the two person game setting of Section 10 the adjustment follows the best

response dynamic (Matsui [11]). Comparing this result to ours (see (15)) we

see that the replicator dynamic and the best response dynamic compromise

extreme points in the class of adjustment dynamics based on individually

optimal behavior.

A sort of intermediate case regarding informational assumptions is a sce-

nario where individuals know the expected payo�s of both the action they use

and of the action they sample. Although this assumption is di�cult to mo-

tivate it is quite popular in the literature (e.g., see Bj�ornerstedt and Weibull

[3]; Hofbauer [9]). Under these informational assumptions, the rule `imitate

if better' is the unique dominant rule. An in�nite population in which each

individual uses the dominant rule eventually learns which of the actions ini-

tially present achieves the highest expected payo�. In this context, one might

argue that our analysis reveals that the dominant proportional imitation rule

comes under minimal information requirements closest to the performance

of `imitate if better' in the model where expected payo�s are observable.

There are some alternative models that analyze why individuals might

imitate. Banerjee [1] presents a model in which individuals imitate for hope

that the observed individual has more information. Rogers [12] presents an

example of a changing environment in which individuals imitate in order to

evade search costs incurred for �nding the best action on their own. The

evolutionarily stable proportions of individual learning (i.e., of individuals

that search for the best action on their own) and of social learning (i.e., of

individuals that adapt their action by imitating others) are computed. In

contrast to our model, individual payo�s are not observable in the model of

Rogers [12].

Finally, we want to mention that Malawski [10] conducted experiments

in the two population random matching setting of Section 10. He refuted an

imitation hypothesis because of the high proportion of individuals switching

to actions other than the one observed in the last round (over 30%). Instead,

the data is partially explained with aspiration level learning, a model that

disregards the observed performance of others. In the mean time, Malawski

and Schlag have informally reviewed the data from this experiment and dis-
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covered that observations of the performance of others, in fact, di�erences

between others and own performance, does in
uence switching behavior. An

extensive reevaluation of the data of the experiment of Malawski has there-

fore been planned.
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A The Proof of Theorem 1

Proof. We will �rst show that conditions i) and ii) are su�cient. Let F be

an imitating behavioral rule that satis�es condition ii). (1) and (7) imply

F
j
ij � F i

ji = �ij (�j � �i) : (16)
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So together with Lemma 1 it follows that F is improving.

We will now prove the necessity of conditions i) and ii). Let F be improv-

ing and �x i; j 2 A with i 6= j. Let g (x; y) := F (i; x; j; y)j �F (j; y; i; x)i for

x; y 2 [�; !]. For given x; y 2 [�; !] ; consider the multi-armed bandit where

Pi (x) = Pj (y) = 1. Then F
j
ij = F (i; x; j; y)j and hence following Lemma 1,

g (x; y) � 0 and g (y; x) � 0 whenever y > x: (17)

Moreover, using arguments involving symmetry it follows that g (x; x) = 0

for all x 2 [�; !]. Next we will show that

g (x; y)

y � x
=

g (x; z)

z � x
8y < x < z. (18)

Given y < x < z; consider a multi-armed bandit where Pi (x) = 1;

Pj (y) = � and Pj (z) = 1 � �; 0 � � � 1: Then �j > �i if and only if

� < z�x
z�y

=: ��. It follows from Lemma 1 that

F
j
ij � F i

ji = �g (x; y) + (1� �) g (x; z) � 0 if � < �� and

�g (x; y) + (1� �) g (x; z) � 0 if � > ��

Therefore, ��g (x; y)+(1� ��) g (x; z) = 0; which, after simpli�cation, shows

that (18) is true.

Following (18) there exists �ij : (�; !)! R
+
0 such that g (x; y) = �ij (x) �

(y � x) for all x; y 2 (�; !). Exchanging the roles of i and j implies that

�ij = �ji is a constant. Hence, we have shown (7) for all x; y 2 (�; !).

Looking back at the above proof we see that the explicit values of � and !

did not enter the argument. Hence, (7) holds for all x; y 2 [�; !].

Finally, �ij (! � �) = g (�; !) � F
j
ij � 1 implies �ij �

1
!��

.

B Some Notes on an Evolutionary Model

The payo� increasing condition in Section 4.2 was partially motivated through

evolutionary arguments, thereby citing Bj�ornerstedt and Schlag [2]. In the

following we will give some more insights to this argument, however, for the
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precise arguments we must refer directly to the paper by Bj�ornerstedt and

Schlag [2].

Bj�ornerstedt and Schlag [2] consider an in�nite population under random

sampling in the setting of Sections 2 and 3 for A = f1; 2g. Behavioral rules

are under selected infrequently based on the replicator dynamic. In the fol-

lowing we demonstrate why all individuals will not adapt the same rule if this

rule is not improving. Consider a behavioral rule F that is not improving.

Then there is a multi-armed bandit in which the induced switching proba-

bilities contradict Lemma 1. This means, w.l.o.g., that there is a gamble in

which �1 > �2 and either F 2
11 > 0 or F 2

12 > F 1
21 holds. When each individual

is using F; then

pt+1
1 =

�
pt1

�2 �
1� F 2

11

�
+ pt1p

t
2

�
F 1
21 � F 2

12

�
+
�
pt2

�2
F 1
22 , (19)

and hence not all individuals will adapt the better action, i.e., action one,

in the long run when starting from a completely mixed initial population

state. Now consider an alternative rule F 0 that prescribes to play action one

regardless of the observations. If most individuals are playing F and only

few are playing F 0 then the individuals using F start adapting the worse

action as they would do if all individuals were using F . Consequently, the

individuals using F perform on average strictly worse than those using F 0

and hence the proportion using F decreases.

Bj�ornerstedt and Schlag [2] show that this can not happen when F is a

non-stationary improving rule. When most individuals are using F then from

any initial distribution of actions played in the population the individuals

using F adapt the better action and thus perform equally well as F 0 before

the alternative rule F 0 takes over a substantial proportion of the population.

Concerning what happens in an evolutionary model in the two population

random matching setting of Section 10 we can no longer refer to Bj�ornerstedt

and Schlag [2] who only deal with multi-armed bandits. Never-the-less, the

arguments made in the previous paragraph imply that a necessary condition

for a rule to survive in an evolutionary framework in this more general setting

is that it does not decrease expected payo�s when all individuals in the

opposite population play an action that maximizes their expected payo�.
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Although this condition is weaker than the `induce better replies' condition

of Section 10, rules that have this property in all games must never-the-less

be improving.
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