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Abstract

We consider the model of social learning by Schlag [5]. Individuals must

repeatedly choose an action in a multi-armed bandit. We assume that each

indivdiual observes the outcomes of two other individuals' choices before her

own next choice must be made { the original model only allows for one ob-

servation. Selection of optimal behavior yields a variant of the proportional

imitation rule { the optimal rule based on one observation. When each indi-

vidual uses this rule then the adaptation of actions in an in�nite population

follows an aggregate monotone dynamic.

JEL classi�cation numbers: C72, C79.

Keywords: social learning, multi-armed bandit, imitation, payo� increas-

ing, proportional imitaiton rule, aggregate monotone dynamic.



1 Introduction

In this paper we consider a variant of a model by Schlag [5]. Schlag considers

a model of social learning in which individuals repeatedly face a multi-armed

bandit. Between their choices each individual may observe the performance

of one other individual, a situation referred to in the following as single

sampling. Individuals forget about observations in the past. Two alternative

approaches to selecting an optimal individual behavior, a bounded rational

approach and a population-oriented approach are suggested. Either approach

leads to the same unique prescription, the so-called proportional imitation

rule, of how to choose future actions:

i) follow an imitative behavior, i.e., only change actions through imitating

others,

ii) never imitate an individual that performed worse than oneself, and

iii) imitate an individual that performed better with a probability that is

proportional to how much better this individual performed.

In this paper we analyze how the above result changes when an individ-

ual is allowed to observe the performance of two other individuals between

her choices. This situation will be referred to as double sampling. In con-

trast to the single sampling setting it turns out that there is no behavior

that is better than all other behavioral rules (according to either of the se-

lection approaches for individual behavior). However, there is a best way of

performing better than under single sampling. This can be achieved by mod-

ifying the proportional imitation rule, the resulting rule we call the adjusted

proportional imitation rule. This variant of the proportional imitation rule

speci�es additionally to i) to iii) above,

iv) to be more likely to imitate the individual in the sample who realized

the higher payo�, and

v) to be more likely to imitate one of the two sampled individuals the lower

the payo� of the other one is, especially not to ignore a sampled individual

that realized a lower payo� even though he will never be imitated.

Its simple functional form and its performance lead us to selecting the

adjusted proportional imitation rule as the optimal rule under double sam-
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pling.

Where aggregate behavior of an in�nite population of individuals using

the optimal rule under single sampling followed the replicator dynamic (Tay-

lor [6]), under double sampling it follows an aggregate monotone dynamic

(as de�ned by Samuelson and Zhang [4]).

The rest of the paper is organized as follows. In Section two the basic

payo� realization and sampling scenario is introduced. The feasible behav-

ioral rules for this setting are presented. In section three we select among

the behavioral rules. Section four contains the implications optimal behavior

has for the population dynamics. In Section �ve we consider an alternative

two population matching scenario. The Appendix contains the proof of the

main theorem which is stated in Section three.

2 The Setting

Consider the following dynamic process of choosing actions, sampling and

updating. Let W be a �nite population (or set) of N individuals, N � 3.

In a sequence of rounds, each individual must choose an action from a �nite

set of actions A = f1; 2; ::; ng where n � 2: Choosing the action i yields an

uncertain payo� drawn from a probability distribution Pi with �nite support

in [�; !] where � and !; � < !, are exogenous parameters. Payo�s are

realized independently of all other events. Let �i denote the expected payo�

generated by choosing action i; i.e., �i =
P

x2[�;!] xPi (x) ; i 2 A. Then the

tuple
D
A; (Pi)i2A

E
constitutes amulti-armed bandit or a game against nature.

The set of all multi-armed bandits with action set A yielding payo�s in [�; !]

will be denoted by G (A; [�; !]) :

A state s 2 AW of the population in a given round t is the description of

the action that each individual is choosing in round t. Let � (A) be the set

of probability distributions on A. For a given state s let p = p (s) 2 �(A)

denote the probability distribution that is associated with randomly selecting

an individual and observing the action she has chosen for this round, i.e.,

pi (s) = 1

N
jfc 2 W : s (c) = igj (i 2 A). The set of all such probability
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distributions will be denoted by �N (A), i.e., p 2 �N (A) and i 2 A implies

N �pi 2 N . Given this notation, the average expected payo� of the population

in state s; �� (s) ; is given by �� (s) =
P
pi (s) �i.

Before each round of payo� realization, each individual meets (or sam-

ples) two other individuals from the population and observes the payo� each

of them received, together with the associated action, in the previous round.

Given three di�erent individuals c; d; e 2 W; the probability that individual

`c' samples individuals `d' and `e' is denoted by P (c; fd; eg). In the follow-

ing we will assume that sampling is symmetric, i.e., that P (c; fd; eg) =

P (d; fc; eg) = P (e; fc; dg) for all c; d; e 2 W: The situation in which

samplings occurs by choosing two individuals randomly from the population

will be called random sampling, in this case P (c; fd; eg) = 1

(N�1)(N�2)
for

all c; d; e 2 W .

The description of how an individual chooses her next action in a multi-

armed bandit in G (A; [�; !]) based on her previous observations is summa-

rized by a behavioral rule. We allow for the individual to use a randomiz-

ing device that generates independent events when making this choice. We

restrict attention to behavioral rules where observations prior to her last

payo� realization do not in
uence her next choice, i.e., essentially an in-

dividual forgets these observations. Hence, a behavioral rule is a function

F : A� [�; !]�fA� [�; !]� A� [�; !]g ! �(A) where F (i; x; fj; y; k; zg)r

is the probability of playing action r after obtaining payo� x with action i

and sampling individuals using action j and action k that obtained payo� y

and payo� z respectively. For i; j; k; r 2 A, let

F r
ijk :=

X
x;y;z2[�;!]

F (i; x; fj; y; k; zg)r Pi (x)Pj (y)Pk (z) ; i; j; k; r 2 A;

be the so-called switching probabilities.

A class of behavioral rules of special importance in our analysis will

be the class of imitating rules. A behavioral rule F is called imitating if

F (i; x; fj; y; k; zg)r = 0 when r =2 fi; j; kg. For an imitating behavioral rule F

let F (i; x; fj; y; k; zg)jk denote the probability of switching actions (to either

action j or k), i.e., F (i; x; fj; y; k; zg)jk = 1� F (i; x; fj; y; k; zg)i : Similarly,

let F
jk
ijk be the associated switching probabilities, i.e., F

jk
ijk = 1� F i

ijk.
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3 Examples

In the following we present some examples of behavioral rules.

Behavioral rules under single sampling can be embedded in the class of

behavioral rules under double sampling by randomly selecting one of the two

sampled individuals and applying the single sampling rule. More speci�cally,

the behavioral rule f under single sampling, i.e., f : A� [�; !]�A� [�; !]!

�(A) ; is associated to the behavioral rule F f under double sampling de-

�ned by F f (i; x; fj; y; k; zg)r =
1

2
f (i; x; j; y)r +

1

2
f (i; x; k; z)r ; i; j; k; r 2 A;

x; y; z 2 [�; !] : Behavioral rules constructed in this way will be called single

sampling rules.

An important behavioral rule under single sampling rule is the imitating

rule f p that satis�es f p (i; x; j; y)j =
1

!��
[y � x]

+
where [x]

+
= x when x > 0

and [x]
+
= 0 when x � 0: Schlag [5] argues that this so-called proportional

imitation rule with rate 1

!��
is the unique optimal rule under single sampling.

The associated single sampling rule will be denoted by F p.

The behavioral rule of importance in the present model of double sampling

is the rule we refer to as the adjusted proportional imitation rule. Let �� :

[�; !]! R
+ be the linearly decreasing function such that �� (�) = 2

!��
and

�� (!) = 1

!��
, i.e.,

�� (x) =
1

! � �
+

! � x

(! � �)
2
for x 2 [�; !] :

Consider the behavioral rule F̂ such that F̂ (i; x; fj; y; k; zg)j =
1

2
�� (z) [y � x]

+
;

F̂ (i; x; fj; y; k; zg)k =
1

2
�� (y) [z � x]

+
and F̂ (i; x; fj; y; j; zg)j =

1

2
�� (z) [y � x]

+
+ 1

2
�� (y) [z � x]

+
; jfi; j; kgj = 3. In order for F̂ to be in

fact a behavioral rule we must show that F̂ (i; x; fj; y; k; zg)jk � 1 when

x < y � z; this is true since

F̂ (i; �; fj; y; k; zg)jk =
1

2

y � �

! � �

�
1 +

! � z

! � �

�
+

1

2

z � �

! � �

�
1 +

! � y

! � �

�
:

We will call F̂ the adjusted proportional imitation rule (based on [�; !]).

Notice that an individual following this rule will be more likely to imitate the

individual in the sample that realized the higher payo�. He will never imitate
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an individual that realized a lower payo�, will never-the-less use the payo� of

such an individual to determine how likely to switch to the other individual.

Some extreme situations for how the payo� of the one individual in
uences

the probability of switching to the other are as follows: F̂ (i; x; fj; y; k; �g)j =

f p (i; x; j; y)j and F̂ (i; x; fj; y; k; !g)j =
1

2
f p (i; x; j; y)j :

A popular rule under single sampling is the imitating rule `imitate if bet-

ter', where the individual adapts the action of the observed individual if and

only if it achieved a higher payo�. In the literature this rule is extended

to the framework of multiple sampling in the following two di�erent ways.

`Imitate the best ' (Axelrod [1]) is the imitating behavioral rule F that sat-

is�es: F (i; x; fj; y; k; zg)j = 1 if y > max fx; zg and F (i; x; fj; y; k; zg)i = 1

if x � max fy; zg ; i; j; k 2 A; x; y; z 2 [�; !] : `Imitate the best average'

(Bruch [2]; Ellison and Fudenberg [3]) is the imitating behavioral rule F

that satis�es F (i; x; fj; y; j; zg)j = 1 if 1

2
(y + z) > x and 0 otherwise,

F (i; x; fi; y; j; zg)j = 1 if z > 1

2
(x+ y) and 0 otherwise, F (i; x; fj; y; k; zg)j =

1 if y > max fx; zg ; F (i; x; fj; y; k; yg)j = F (i; x; fj; y; k; yg)k = 1

2
if y > x

and F (i; x; fj; y; k; zg)
i
= 1 if x � max fy; zg ; i; j; k 2 A with jfi; j; kgj = 3;

x; y; z 2 [�; !] :

4 Selection Among the Rules

The so-called expected improvement EIPF (s) in state s is given by the fol-

lowing expression:

EIPF (s) :=
1

N

X
j

X
c;d;e2W

P (c; fd; eg)F j

s(c)s(d)s(e)

h
�j � �s(c)

i
:

Individuals are assumed to prefer so-called improving behavioral rules, these

are rules that always generate non negative expected improvement. Formally,

a behavioral rule F is called improving if EIPF (s) � 0 for all s 2 �N (A)

and all multi-armed bandits in G (A; [�; !]) : Schlag [5] gives two alternative

scenarios that cause an individual to choose an improving rule.

1) Individuals are boundedly rational. They enter the population by re-

placing a random individual in the population. They adapt the action last
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chosen by this individual. In each round an individual evaluates the perfor-

mance of her behavior as if she just entered. Individuals prefer a rule that

always increases expected payo�s in any multi-armed bandit in G (A; [�; !]).

2) Individuals evaluate the performance of their behavior in a population

of replicas. An individual considers a population in which each individual

is using her behavioral rule. She prefers a rule that is expected to increase

average payo�s in each state and each multi-armed bandit in G (A; [�; !]).

Schlag [5] characterizes the set of improving rules under single sampling.

Especially it turns out that the proportional imitation rule with rate 1

!��
is

improving and that the rule `imitate if better' is not improving. Clearly, an

improving behavioral rule f in the single sampling setting is associated to

a single sampling rule F f (see Section 3) that is improving in the present

double sampling setting. The following theorem characterizes the entire set

of improving behavioral rules under double sampling.

Theorem 1 The behavioral rule F is improving if and only if F is imitating

and for all subsets fi; j; kg � A with jfi; j; kgj > 1 there exists a function

�fi;j;kg : [�; !]! R
+

0
such that

F (i; x; fj; y; k; zg)jk � F (j; y; fi; x; k; zg)i � F (k; z; fi; x; j; yg)i

=
1

2
�fi;j;kg (z) (y � x) +

1

2
�fi;j;kg (y) (z � x) ; (1)

if i =2 fj; kg.

Proof. (in the Appendix)

Theorem 1 and its proof give little insight as to which functions �fi;j;kg (�)

are associated to an improving rule. Of course, the right hand side of (1)

must be bounded above by 1; especially �fi;j;kg (y) � max
n

1

y��
; 1

2(!��)

o
for

all y 2 [�; !] :

However, Theorem 1 enables us to verify whether a behavioral rule is

improving or not. Consider for example the rules `imitate the best average'

and `imitate the best'. (1) implies that neither of these rules is improving.

In the following we show this statement using a counterexample in order to

explicitly illustrate how these two rules fail to be improving.
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Fix x 2
�
�; 2

3
� + 1

3
!
�
. Consider a multi-armed bandit in which P1 (x) =

1, P2 (�) = � and P2 (!) = 1�� for some 0 < � < 1. Then �1 > �2 if and only

if � < !�x
!��

: Notice that the rule `imitate the best' and the rule `imitate the

best average' induce the same switching probabilities F 2

122
= 1�F 1

212
= 1��2

and F 1

211
= 1 � F 2

121
= �: Especially, � > 2

3
implies F 1

211
� 2F 2

121
> 0 and

F 2

122
�2F 1

212
< 0. Following (8), this leads to negative expected improvement

if only action 1 and action 2 are played in the population, with positive

probability some individual using action 1 observes some individual using

action 2 and if 2

3
< � < !�x

!��
. Hence we see that neither `imitate the best'

nor `imitate the best average' is improving.

Under the single sampling rules, Schlag [5] shows that the proportional

imitation rule F p never achieves a lower expected improvement than any

other improving single sampling rule. Hence, we say that F p dominates the

single sampling rules. More generally, let F be a set of behavioral rules.

We say that a behavioral rule F dominates the set of behavioral rules F if

EIPF (s) � EIPF 0 (s) for all F 0 2 F , for any state s and for any multi-armed

bandit in G (A; [�; !]). Consequently, if F contains an improving rule and F

dominates F then F is improving.

In the following we will show that improving rules under double sampling

with constant switching rates �fi;j;kg (�) are of no advantage compared to

the single sampling scenario. As mentioned above, the highest expected

improvement is realized by the proportional imitation rule F p: Following (8),

EIPF p (s) =
1

2N (! � �)

X
c;d;e2W

P (c; fd; eg)
�
�s(d) � �s(c)

�
2

: (2)

Since �fi;j;kg (!) �
1

!��
, following (2) and (8), an improving rule under dou-

ble sampling with constant switching rates �fi;j;kg never achieves a higher

expected improvement than F p.

The advantage of double sampling lies in the fact that switching rates of

improving rules must no longer be constant. The following theorem states

that, unlike under single sampling, under double sampling there is no be-

havioral rule that dominates all other improving rules. However, we show

that following the adjusted proportional imitation rule F̂ is the best way of
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performing better than the proportional imitation rule F p.

Theorem 2 Let F1 be the set of single sampling rules that are improving.

Let F2 be the set of rules that dominate F1. Then the adjusted proportional

imitation rule F̂ dominates F2.

There is no behavioral rule that dominates the set of improving rules.

In the following, let F3 be the set of rules that dominate F2:

Proof. Consider an improving rule F 0 2 F2, let �
0
fi;j;kg be the associated

switching rates. We will �rst show that �0
fi;j;kg (!) = 1

!��
: As mentioned

above, �0
fi;j;kg (!) �

1

!��
: Consider the multi-armed bandit in which Pi (�) =

1 and Pj (!) = Pk (!) = 1. Consider a population with one individual using i,

one using j and the rest using k: Using the fact that a
j
ijk = akijk = �0

fi;j;kg (!)

it follows that EIPF 0 = 1

N
�0
fi;j;kg (!) (! � �)

2 � 1

N

1

!��
(! � �)

2
= EIPF p.

Since F 0 dominates F p and F p 2 F1 we obtain that �0
fi;j;kg (!) =

1

!��
.

Notice that

1

2
�0
fi;j;kg (!) (y � �) +

1

2
�0
fi;j;kg (y) (! � �) � F 0 (i; �; fj; y; k; !g)jk � 1

implies

�0
fi;j;kg (y) �

1

! � �

h
2� (y � �) �0

fi;j;kg (!)
i
=

1

! � �
+

! � y

(! � �)
2
= �� (y) :

(3)

Hence, (3) and (8) imply EIPF̂ � EIPF 0 for any state s and any multi-armed

bandit in G (A; [�; !]) which means that F̂ 2 F3. Especially, it follows that

�fi;j;kg (y) = �� (y) for any rule F 2 F3:

We will now construct a rule that is not dominated by any rule in F3:

This will show that there is no rule that dominates all other improving rules.

Let ~F be the behavioral rule that is constructed like F̂ using the function

~� where ~� (y) = 2

!��
when y � �+!

2
and ~� (y) = 0 for y > �+!

2
: It follows

that ~F (i; �; fj; y; k; zg)
jk
� 1 and hence that ~F is in fact a behavioral rule.

Moreover, by construction, ~F is improving and ~� (y) > �� (y) for all � < y �
�+!

2
: Hence, ~F is not dominated by any rule in F3.

One can argue that an individual will choose an improving rule that

dominates the improving rules under single sampling, i.e., a rule in F2. She
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might as well choose a rule that is best at doing this, i.e., a rule in F3.

We presented such a rule, the adjusted proportional imitation rule, that

additionally never imitates lower payo�s and has a simple form. This leads

us to selecting this rule as the optimal rule under double sampling.

5 Population Dynamics

In this section we consider the aggregate behavior of a population in which

each individual uses the optimal rule. We will restrict attention to random

sampling. Moreover, we will consider adjustment in in�nite populations as an

approximation of the short run adjustment of a large population. Schlag [5]

speci�es the exact meaning of this approximation for the single sampling set-

ting. In an in�nite population, random sampling means that the probability

that an individual observes action i is equal to the proportion of individuals

using this action. In this sense, a description of the proportions pi using

action i for each i 2 A is su�cient to determine the population adjustment.

Hence we will identify the state of a population with p = (pi)i2A 2 �(A) :

Straightforward calculations show that the adjustment process (pt)t2N of a

monomorphic population (each individual is following the same behavior) in

which the underlying rule is improving, given an initial state p1 2 �(A), is

given by

pt+1

i = pti + pti
X
j;k

1

2
ptjp

t
k

h
a
j
ijk (�i � �k) + akijk (�i � �j)

i
,

for i 2 A and t 2 N . If, in addition, the underlying rule is the adjusted

proportional imitation rule F̂ , we obtain

pt+1

i = pti +

"
1

! � �
+

! � �� (pt)

(! � �)
2

# �
�i � ��

�
pt
��
� pti , (4)

where �� (p) =
P

i2A pi�i:
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6 A Two Population Matching Scenario

What about a setting in which the multi-armed bandit is not stationary

over time? We will consider a popular example for such a situation; in-

dividuals will be randomly matched to play a game. Consider two �nite,

disjoint sets (populations) of individuals W1 and W2, each of size N , also

referred to as population one and two. Let Ai be the �nite set of actions

available to an individual in population i; i = 1; 2: Payo�s are realized by

matching individuals from di�erent populations. When an individual in pop-

ulation one using action i 2 A1 is matched with an individual in population

two using action j 2 A2; the individual in population k achieves an un-

certain payo� drawn from a given, independent probability distribution P k
ij;

k = 1; 2. Associating player i to being an individual in population i, the tu-

ple

*
A1; A2;

�
P 1

ij

�
i2A1

j2A2

;
�
P 2

ij

�
i2A1

j2A2

+
de�nes an asymmetric two player normal

form game. We will restrict attention to the class of asymmetric two player

normal form games, denoted by G (A1; A2; [�1; !1] ; [�2; !2]), in which player

k has action set Ak; k = 1; 2; where P 1

ij has �nite support in [�1; !1] and P 2

ij

has �nite support in [�2; !2] for all i 2 A1 and j 2 A2; �1 < !1 and �2 < !2

are given. For a given asymmetric game, let �1 (�) and �2 (�) be the bilinear

functions on � (A1)��(A2) where �k (i; j) is the expected payo� to player

k when player one is using action i and player two is using action j; i.e.,

�k (i; j) =
P

x2[�k;!k]
xP k

ij (x) ; k = 1; 2:

Individuals of opposite populations are matched at random in pairs, for

an individual in population one this means the following. Let s1 2 (A1)
W1

be the current state in population one and let p 2 �N (A1) be the associated

population shares. Similarly let s2 2 (A2)
W2 and q 2 �N (A2) be de�ned for

population two. Then an individual in population one is matched with an in-

dividual in population two using action j 2 A2 with probability qj. Since we

consider random matching, �1 (i; q) speci�es the expected payo� of an indi-

vidual in population one using action i 2 A1 and �1 (p; q) speci�es the average

payo� in population one in this state. Especially, each individual in popula-

tion one is facing a multi-armed bandit
D
A1; (P

0
i )i2A

E
2 G (A1; [�1; !1]) that
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depends on the population shares in population two; P 0
i (x) =

P
j2A qjP

1

ij (x)

for x 2 [�1; !1] and i 2 A.

Sampling occurs within the same population and is performed as in the

multi-armed bandit setting.

A behavioral rule F for an individual in population k is a function F :

� (Ak)� [�k; !k]��(Ak)� [�k; !k]! �(Ak), k = 1; 2:

Schlag [5] gives two scenarios in which an individual prefers to use the

same rule in this population matching setting as in the former multi-armed

bandit setting:

1) It might be that individuals do not realize that the multi-armed bandit

is non stationary or that they simply ignore this fact.

2) An individual might choose her rule according to its performance in a

population of replicas and prefers a rule that is expected to increase average

payo�s whenever all individuals in the opposite population do not change

their action.

Hence, we consider the adjusted proportional imitation rule based on

[�i; !i] to be the optimal rule for an individual in population i in this popu-

lation matching setting. In the following we consider the aggregate behavior

of the two populations under random sampling when each individual uses her

optimal rule. As in Section 5 we consider the limit of this adjustment as the

population size N tends to in�nity and apply a law of large numbers type

of argument. Analogue to (4), the resulting adjustment process (pt; qt)t2N is

given by

pt+1

i = pti +

"
1

!1 � �1

+
!1 � �1 (p

t; qt)

(!1 � �1)
2

# h
�1
�
i; qt

�
� �1

�
pt; qt

�i
� pti; (5)

qt+1

j = qtj +

"
1

!2 � �2

+
!2 � �2 (p

t; qt)

(!2 � �2)
2

# h
�2
�
pt; j

�
� �2

�
pt; qt

�i
� qtj ,

for i 2 A1; j 2 A2 and t 2 N . According to Samuelson and Zhang [4],

(5) is called an aggregate monotone dynamic. Under single sampling the

adjustment generated when each individual is using her optimal rule (i.e., the

proportional imitation rule with rate 1

!i��i
for population i) is approximated

11



by the following discrete version of the replicator dynamic (Taylor [6]):

pt+1

i = pti +
1

!1 � �1

h
�1
�
i; qt

�
� �1

�
pt; qt

�i
� pti; (6)

qt+1

j = qtj +
1

!2 � �2

h
�2
�
pt; j

�
� �2

�
pt; qt

�i
� qtj .

Comparing this to (5) we see that the advantage of double sampling for

individuals using their optimal rule F̂ is greatest when average payo�s in

their own population are low.
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A The Proof of Theorem 1

Proof. For i; j; k 2 A and s 2 AW let

pijk (s) =
X

c;d;e2W
fs(c);s(d);s(e)g=fi;j;kg

P (c; fd; eg) .

12



We will �rst show the `if' statement.

EIPF (s) =
1

N

X
c;d;e2W
s(d)=s(e)

P (c; fd; eg)
h
F

s(d)

s(c)s(d)s(e)

�
�s(d) � �s(c)

�i

+
1

N

X
c;d;e2W
s(d) 6=s(e)

P (c; fd; eg)

h
F

s(d)

s(c)s(d)s(e)

�
�s(d) � �s(c)

�
+ F

s(e)

s(c)s(d)s(e)

�
�s(e) � �s(c)

�i

=
1

3N

X
i;j2A

pijj (s)
�
F

j
ijj � 2F i

jij

�
(�j � �i) (7)

+
1

3N

X
i;j;k2A

jfi;j;kgj=3

pijk (s)

2
6664

�
F

j
ijk � F i

jik

�
(�j � �i)

+
�
F k
ijk � F i

kij

�
(�k � �i)

+
�
F k
jik � F

j
kij

�
(�k � �j)

3
7775

Consider actions i; j; k 2 A such that i =2 fj; kg : Then

F
jk
ijk � F i

jik � F i
kij

=
X
x;y;z

Pi (x)Pj (y)Pk (z)

h
F (i; x; fj; y; k; zg)jk � F (j; y; fi; x; k; zg)i � F (k; z; fi; x; j; yg)i

i

=
X
x;y;z

Pi (x)Pj (y)Pk (z)

�
1

2
�fi;j;kg (z) (y � x) +

1

2
�fi;j;kg (y) (z � x)

�

=
1

2

"X
z

Pk (z) �fi;j;kg (z)

#
(�j � �i) +

1

2

"X
y

Pj (y)�fi;j;kg (y)

#
(�k � �i)

and, given alijk =
P

y Pl (y)�fi;j;kg (y), l 2 fi; j; kg, we obtain

�
h�
F

j
ijk � F i

jik

�
(�j � �i) +

�
F k
ijk � F i

kij

�
(�k � �i) +

�
F k
jik � F

j
kij

�
(�k � �j)

i
=

�
F

jk
ijk � F i

jik � F i
kij

�
�i +

�
F ik
jik � F

j
ijk � F

j
kij

�
�j +

�
F

ij
kij � F k

ijk � F k
jik

�
�k

=

�
1

2
(�k � �i) a

j

fi;j;kg +
1

2
(�j � �i) a

k
fi;j;kg

�
�i

+

�
1

2
(�i � �j) a

k
fi;j;kg +

1

2
(�k � �j) a

i
fi;j;kg

�
�j

+

�
1

2
(�i � �k) a

j

fi;j;kg +
1

2
(�j � �k) a

i
fi;j;kg

�
�k

= �
1

2

h
(�i � �j)

2
akfi;j;kg + (�i � �k)

2
a
j

fi;j;kg + (�j � �k)
2
aifi;j;kg

i
� 0:

13



Hence, (7) simpli�es to

EIPF (s) =
1

2N

X
c;d;e2W

P (c; fd; eg)
�
�s(d) � �s(c)

�
2

a
s(e)

fs(c);s(d);s(e)g (8)

and it follows that EIPF � 0:

We now come to the proof of the `only if' statement. In order to simplify

the presentation of the proof we will assume that P (c; fd; eg) > 0 for all

c; d; e 2 W (jfc; d; egj = 3). The proof can be easily adjusted to the more

general case.

The fact that F is imitating follows just like under single sampling (Schlag

[5]). Assume that F (i; x; fj; y; k; zg)r > 0 for some r =2 fi; j; kg and x; y; z 2

[�; !]. Consider a multi-armed bandit in which Pi (x) = Pi (y) = Pi (!) =
1

3
;

Pj � Pk � Pi and Pl (�) = 1 for all l =2 fi; j; kg. In a state s which only

actions in fi; j; kg are being played it follows that EIPF (s) < 0:

Next we will show (1) for i 6= j = k. Consider a population state in which

one individual is playing action i and the rest are playing action j. Then

EIPF (s) =
1

N

�
F

j
ijj � 2F i

jij

�
(�j � �i) : (9)

Let

g (x; y; z) = F (i; x; fj; y; j; zg)j � F (j; y; fi; x; j; zg)i � F (j; z; fi; x; j; yg)i ;

x; y; z 2 [�; !] : Let y = z. We now follow the same arguments as in the proof

of Theorem 1 in Schlag [5] to shows that there exists �ijj : [�; !]! R
+

0
such

that

g (x; y; y) = �ijj (x) (y � x) for all x; y 2 [�; !] : (10)

For given x; y 2 [�; !] ; consider the multi-armed bandit where Pi (x) =

Pj (y) = 1. Then F
j
ijj � 2F i

jij = g (x; y; y) and hence following (9),

g (x; y) � 0 and g (y; x) � 0 whenever y > x: (11)

Moreover, using arguments involving symmetry it follows that g (x; x) = 0

for all x 2 [�; !]. Next we will show that

g (x; y; y)

y � x
=

g (x; z; z)

z � x
8y < x < z. (12)
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Given y < x < z; consider a multi-armed bandit where Pi (x) = 1;

Pj (y) = � and Pj (z) = 1 � �; 0 � � � 1: Then �j > �i if and only if

� < z�x
z�y

=: ��. Again following (9), we obtain

F
j
ijj � 2F i

jij = �g (x; y) + (1� �) g (x; z) � 0 if � < �� and

�g (x; y) + (1� �) g (x; z) � 0 if � > ��

Therefore, ��g (x; y)+(1� ��) g (x; z) = 0; which, after simpli�cation, shows

that (12) is true.

Following (12) there exists �ijj : (�; !) ! R
+

0
such that g (x; y; y) =

�ijj (x) � (y � x) for all x; y 2 (�; !). Looking back at the above proof we see

that the explicit values of � and ! did not enter the argument. Hence, (10)

holds for all x; y 2 [�; !].

Consider now a multi-armed bandit with Pi (x) = 1; Pj (y) = � and

Pj (z) = 1� � for y < x < z and 0 � � � 1. Following (9) and given

I (�) = F
j
ijj � 2F i

jij (13)

= �2�ijj (y) (y � x) + 2� (1� �) g (x; y; z) + (1� �)
2
�ijj (z) (z � x)

we obtain that I � 0 if and only if �j � �i: Hence I = 0 if and only if

�j = �i if and only if � = z�x

z�y
=: ��. Since I (��) = 0, � (z � x) �ijj (y) +

2g (x; y; z) + (x� y)�ijj (z) = 0 and hence

g (x; y; z) =
1

2
�ijj (z) (y � x) +

1

2
�ijj (y) (z � x) : (14)

We will now derive g (x; y; z) for y � z < x. Consider a multi-armed

bandit with Pj (x) = 1; Pi (y) = �; Pi (z) = � and Pi (z
0) = 1 � � � � for

z0 > x: Then

I = �2�ijj (y) (y � x) + �2�ijj (z) (z � x) + 2��g (x; y; z) (15)

+� (1� �� �) [�ijj (z
0) (y � x) + �ijj (y) (z

0 � x)]

+� (1� �� �) [�ijj (z
0) (z � x) + �ijj (z) (z

0 � x)]

+ (1� �� �)
2
�ijj (z

0) (z0 � x) .

As before, I = 0 if and only if �i = �j if and only if � (x� y) + � (x� z) =

(1� �� �) (z0 � x). Setting � (x� y) + � (x� z) = (1� �� �) (z0 � x), to-

gether with (15) implies that (14) also holds for y � z < x.
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Repeating such calculations for the remaining values of (x; y; z) not yet

considered �nally yields that (14) holds for all x; y; z 2 [�; !] : This completes

the proof of the `only if' statement for j = k:

We now proceed with the case where j 6= k: Consider a population in

which one individual is playing i, one is playing k and the rest are playing j.

Consider a multi-armed bandit in which �j = �k: Then

EIPF (s) =
1

3N
pijj (s)

�
F

j
ijj � 2F i

jij

�
(�j � �i)

+
1

3N
pijk (s)

h
F

jk
ijk � F i

jik � F i
kij

i
(�j � �i)

Since F
j
ijj � 2F i

jij = 0 if �i = �j it follows that F
jk
ijk � F i

jik � F i
kij = 0 if

and only if �i = �j must hold. Following the same arguments as in the proof

where j = k we obtain that there exists �ijk � �ikj : [�; !]! R
+ such that

F (i; x; fj; y; k; zg)jk � F (j; y; fi; x; k; zg)i � F (k; z; fi; x; j; yg)i

=
1

2
�ijk (z) (y � x) +

1

2
�ijk (y) (z � x)

holds for all x; y; z 2 [�; !] :

The only thing remaining to show is that �ijk is independent of a permu-

tation of i, j and k. Consider a multi-armed bandit with Pi (x) = Pj (y) =

Pk (z) = 1 and a population in which one individual is playing i, one is play-

ing k and the rest are playing j. Following the calculations when proving the

`if' statement, we obtain

EIPF (s) =
1

3N
pijj (s)�ijj (y) (y � x)

2

+
1

3N
pkjj (s) �kjj (y) (y � z)

2
(16)

�
1

3N
pijk (s)

2
6664

x
h
1

2
�ijk (z) (y � x) + 1

2
�ijk (y) (z � x)

i
+y

h
1

2
�jik (z) (x� y) + 1

2
�jik (x) (z � y)

i
+z

h
1

2
�kij (x) (y � z) + 1

2
�kij (y) (x� z)

i
3
7775

Setting y = z this simpli�es to

EIPF (s) =
1

3N
pijj (s)�ijj (y) (y � x)

2

+
1

3N
pijk (s)

�
x�ijk (y)�

1

2
y�jik (y)�

1

2
y�kij (y)

�
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which implies, when setting y = x 6= 0, that �ijk (x) �
1

2
�jik (x) �

1

2
�kij (x) = 0 for any x 6= 0: Similarly, setting x = y in (16) leads to

�kij (x) �
1

2
�ijk (x) �

1

2
�jik (x) = 0 for any x 6= 0: Together this means that

�kij (x) = �ijk (x) = �jik (x) for all x 6= 0: The special case of x = 0 is

easily shown using more general multi-armed bandits and hence the proof is

complete.
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