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1 Introduction

Ever since derivative asset analysis started with the pathbreaking papers of Black and Scholes

(1973) and Merton (1973), both academics and practioners were concerned about the strong

assumptions this theory imposes on the markets for the underlying securities. Most of the

work on derivative pricing assumes these markets to be complete, frictionless and perfectly

elastic, which is of course a stylized picture of real security markets. Therefore recent research

has studied the consequences of relaxing one or more of these hypothesis.

In this paper we study the pricing and hedging of derivatives assuming that markets are only

�nitely elastic. The framework of our analysis is a continuous-time version of the models

proposed by Jarrow (1992) and Jarrow (1994). The class of economies considered in these

papers is characterized by the interaction of a a \large trader" whose actions a�ect prices

and many price taking \small traders". Jarrow (1992) �nds conditions on the economy that

exclude \market manipulation strategies," i.e. arbitrage opportunities for the large trader.

Jarrow (1994) studies pricing and hedging of derivative securities by the large trader. He

analyzes in detail a modi�ed version of the of the binomial model introduced in (Cox, Ross,

and Rubinstein 1979). He shows that the binomial option pricing model remains valid, but

with a state dependent \volatility". Also the arguments used for the derivation of the model

are di�erent in his framework.

In this paper we extend his results in several ways. We show that even with continuous

security trading it is possible to �nd hedging strategies for the large trader which have

the potential to synthesize the payo� of certain derivative contracts including options. In

the binomial model considered by Jarrow this question boils down to recursively solving a

�nite number of equations, but in our continuous time setting it becomes rather involved.

Nonetheless working in continuous time allows us to give a rather succinct characterization of

the solution to the option replication problem in �nitely elastic markets in terms of a partial

di�erential equation (PDE). The feedback e�ect of the large agent's trades on equilibrium

prices causes this PDE to be non-linear. We provide conditions for existence and uniqueness

of solutions and analyze the shape of the hedging strategies. It turns out that the qualitative

properties of the hedge ratio are unchanged by the feedback e�ects. However, simulations

demonstrate that there may be considerable quantitative di�erences. Our analysis also shows

that in our setting the initial investment into the replicating strategy (the hedge cost per

contract) depends on the total amount of contracts replicated by the large trader. Hence it

is no longer obvious how options should be priced. To settle this issue we generalize the work

of Jarrow (1994) and show that the synchronous market condition proposed in his paper |

a condition relating the markets for the underlying and the derivative security | is su�cient

to conclude that even in our framework the price of a derivative asset must be equal to the

hedge cost. However, hedge cost and hence derivative prices do depend on the large trader's

position in underlying and derivative asset.

We believe the extension of standard option pricing theory to �nitely elastic markets to be

interesting for a number of reasons. To begin with, recent work on feedback e�ects of dynamic

hedging has shown that in �nitely elastic markets perfect replication of option contracts is

no longer feasible if investors restrict themselves to standard hedging strategies which do not
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account for the feedback e�ect of their implementation on market volatility; see for instance

(Frey and Stremme 1995). This immediately raises the question, if there are more general

general strategies that have the potential to replicate certain derivatives even in imperfectly

elastic markets. Our study shows that the answer to this question is to the a�rmative if

certain restrictions on market liquidity and on the nonlinearities of the terminal payo�1not

needed in the standard theory are satis�ed. This is of interest in itself. Moreover, an analysis

of these additional assumptions and a comparison of the hedging strategies with their classical

counterparts sheds light on two important issues. It permits assessing the robustness of the

traditional theory with respect to the elasticity assumption. It also relates certain market

conditions to how well traditional option hedging performs under these conditions. Finally,

as mentioned already in Jarrow (1994), one could use the fact that option prices depend on

the large trader's position to explain certain deviations from the Black-Scholes formula on

real options markets such as the smile pattern of implied volatility. We do not address these

questions in this paper, but our analysis is a necessary prerequisite for tackling them.

Most of the literature dealing with option hedging and portfolio insurance in the context

of imperfectly elastic markets focuses on the e�ects of dynamic trading strategies on the

volatility of the underlying asset. Here we only mention the papers Grossman (1988), Brennan

and Schwartz (1989), Gennotte and Leland (1990), Frey and Stremme (1995), Platen and

Schweizer (1994) or Basak (1995). To my knowledge the previously mentioned work of Jarrow

(1994) is the only study where a pricing theory for derivatives in such markets is developed.

The remainder of this paper is organized as follows: In the next section we introduce the

framework for our analysis. The pricing of derivatives is discussed in Section 3. In Section

4 we characterize the solution of the replication problem by means of a nonlinear PDE. In

Section 5 we carry out a detailed analysis of this PDE. The simulation results are presented

in Section 6. Section 7 �nally concludes.

2 The Model

Essentially our analysis uses the the framework proposed by Jarrow (1992) and Jarrow (1994),

but in contrast to these papers we consider an economy with continuous security trading in

some intervall [0; T ].

Assets: A risky asset, representing some stock, stock index or foreign exchange rate and

a riskless bond which will be used as a numeraire trade in our economy. The price process

of the stock, accounted in units of the numeraire, will be denoted by X = (Xt)0�t�T . For

convenience we normalize the total supply of this asset to 1. We assume that there is

also a market for a derivative securities on the stock2 with maturity date T and payo�

c(XT). The derivative asset is in zero net supply; its relative price process will be denoted

by C = (Ct)0�t�T .

Agents: There are two di�erent types of agents in this economy, a large trader or speculator

and small traders. We do not give a detailed description of these types here. All that matters

1Even in �nitely elastic markets linear payo�s can be replicated by using a static buy and hold strategy.

2In case there is more than one derivative security our analysis applies with only notational changes.
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to us is that the trades of the speculator move prices whereas the small agents act as price

takers. Some examples of economic models characterized by the interaction of a large trader

and price takers are sketched below.

Relative equilibrium prices: Following Jarrow we do not give a fully speci�ed model of

the economy underlying our analysis. Instead we impose only existence and certain structural

properties of a reaction function 	, which provides a reduced form equilibrium relationship

between relative stock prices, the large trader's position in stock and derivative security and

a fundamental state variable process F = (Ft)0�t�T de�ned on some underlying �ltered

probability space (
;F ; P ) with �ltration (Ft)0�t�T satisfying the usual conditions. We

assume that at time t the large trader has access to the information contained in Ft. The

price processes of the derivative will be speci�ed later on; for the moment we only assume

that it is a semimartingale.

Assumption (A.1) 1. The fundamental F is a geometric Brownian motion3 with volatility

�, i.e. it is a solution to the SDE dFt = �FtdWt for some constant � > 0 and a one-

dimensional Brownian motion W on the �ltered probability space (
;F ; P ), (Ft)0�t�T .

2. The relative equilibrium stock price Xt at time t is given by 	(t; Ft(!); �t; 
t). Here

�t represents the stock position of the large trader, 
t denotes his position in the derivative

contract and the reaction function

	 : [0; T ]� IR+ � I0 � I1 ! IR+

is a smooth function with

� 0 < 	f (t; f; �; 
) :=
@
@f
	(t; f; �; 
) for all (t; f; �; 
) 2 [0; T ]� IR+ � I0 � I1.

� 0 < 	�(t; f; �; 
) :=
@
@�	(t; f; �; 
) for all (t; f; �; 
) 2 [0; T ]� IR+ � I0 � I1.

Here the I0 and I1 represent some open intervals.

Note that the condition 	� > 0 re
ects the market power of the large trader since it implies

that his trades actually a�ect prices. Assumption (A.1) is consistent with di�erent types

of economies and equilibrium concepts. Two examples mentioned in (Jarrow 1992) are the

model by Hart (1977) and the class of models considered for instance by Glosten and Milgrom

(1985). In the Hart model one agent has market power because of his wealth, whereas in the

latter class of models some agent moves prices because the others believe that he has superiour

information. In these papers only stock and bond markets are considered. However, it will be

shown below that a reaction function 	 satisfying an additional structural hypothesis, the so-

called synchronous market condition, is completely determined by the values f	(t; f; �; 0),

(t; f; �) 2 [0; T ] � IR+ � I0g. Hence the above models give rise to examples for reaction

functions also in our setting. (A.1) is moreover satis�ed by the temporary equilibrium models

considered by Jarrow (1994) or Platen and Schweizer (1994) where

	(t; f; �; 0) = exp(��) � f

3The choice of the dynamics for F is somewhat arbitrary; however assuming that the fundamental state

variable process is a geometric Brownian motion will facilitate a comparison of our results to those of the

standard Black-Scholes option pricing theory.
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for some positive constant � or in the model of Frey and Stremme (1995), where

	(t; f; �; 0) = � � f=(1� �) :

Trading strategies: A process (�; �; 
) = (�t; �t; 
t)0�t�T giving the speculator's holdings

in stock, bond and derivative security will be termed an admissible trading strategy if it is an

adapted RCLL process such that � and 
 are semimartingales. This quali�cation not needed

in the standard theory together with the smoothness of 	 implies that the stock price process

X is itself a semimartingale such that we may de�ne gains from trade:

De�nition 2.1 Let (�; �; 
) be an admissible trading strategy. The gains from trade of this

strategy up to time t are given by

Gt :=

Z t

0
��s d	(s; Fs; �s; 
s) +

Z t

0

�s dCs

where ��s and 
�s denote the left continuous versions of �s and 
s, respectively. The value

process of this strategy is given by

Vt := �t �	(t; Ft; �t; 
t) + �t + 
t � Ct :(2.1)

The strategy is called sel�nancing if Vt = V0 +Gt for all 0 � t � T .

These de�nitions parallel the usual ones. In particular, every admissible trading strategy

in stock and derivative asset can be turned into a sel�nancing strategy by choosing an

appropriate trading strategy in the bond. However, the feedback of the large trader's position

into prices has an important consequence: linear combinations of sel�nancing strategies need

no longer be sel�nancing.

Our de�nition of the value of the speculator's portfolio in (2.1) is in principle appropriate

only for points in time t < T ; at the terminal date T one should consider the liquidation

value of the portfolio given by ��T �	(T; FT ; 0) + ��T + 
�T � ~CT where ~CT is the price of the

derivative if the large trader has liquidated his position; see Jarrow (1994). However, in order

to avoid arbitrage opportunities for the small traders, we exclude trading strategies for the

speculator leading to predictable jumps of the asset price processes. Hence we may allow for

the large trader unwinding his position only if this does not induce jumps of the asset price

processes at T . In that case the terminal value VT de�ned in (2.1) and the liquidation value

of a sel�nancing strategy are identical.

One possible way to justify the assumption of continuous asset prices at the terminal date is as

follows: Suppose that | as in most equilibrium models | at T the stock price is exogenously

given and equal to the fundamental value FT . As t approaches T the uncertainty about FT is

gradually removed for the price takers such that they become more and more aggressive. This

implies the convergence 	(t; f; �; 
)! f as t! T . If the trading strategy of the speculator

is bounded and if this convergence is locally uniform, asset prices are therefore continuous at

the terminal date. Alternatively we might con�ne the speculator to using trading strategies

which are continuous. If the speculator is replicating the payo� of derivatives | which is our

primary concern in this paper | this amounts to assuming that there is physical delivery of

the underlying security at the maturity date of the contract.
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3 Derivative Pricing under the Synchronous Market Condition

In this section we give a theory for derivative pricing suitable for our framework. Our

arguments are an extension of the pricing theory developed by Jarrow (1994).

De�nition 3.1 Let (�; �; 
) be an admissible sel�nancing strategy for the speculator.

1. We say that there are no opportunities for market manipulation at the trading strategy

(�; �; 
), if there is no other admissible sel�nancing strategy that requires the same initial

investment and that yields a strictly higher terminal value.

2. Suppose we are given an arbitrary derivative contract with maturity date T and payo�

~c(XT ). An adapted RCLL trading strategy � = (�t)0�t�T in the stock is said to replicate the

derivative contract at the speculator's position (�; �; 
), if ~c(XT ) admits a representation

~c(XT ) = ~c0 +

Z t

0
��s d	(s; Fs; �s; 
s)(3.2)

where ~c0 is constant and XT = 	(T; FT ; �T ; 
T ). At time t the value of the corresponding

hedge portfolio or, equivalently, the hedge cost of � equals V �
t := ~c0 +

R t
0 �

�
s d	(s; Fs; �s; 
s).

Remarks: If the speculator prefers more terminal wealth to less, absence of market manipu-

lation opportunities at his \optimal" strategy is a prerequisite for any economic equilibrium,

independent of the details of the market structure. Note that the hedging strategy used

by the speculator in
uences his stock position and hence equilibrium prices. Therefore to

compute replicating strategies for the large trader one has to solve a �xed point problem.4

This will become obvious in (3.5) below.

In standard option pricing theory it is argued that the price of a derivative contract must be

equal to the hedge cost per contract, because otherwise agents could make in�nite pro�ts.

Now we will see in the simulations of section 6, that the feedback e�ect of the speculator's

trading causes the hedge costs to be non-linear in the number of replicated contracts. There-

fore in �nitely elastic markets the pricing argument from the standard theory doesn't work

any longer and additional assumptions on the market structure are needed to arrive at a fully

speci�ed pricing theory for the derivative asset. To �ll this gap Jarrow (1994) proposed the

synchronous market condition which relates the markets for the stock and for the derivative

asset. Essentially this condition states that equilibrium prices are unchanged, no matter

if the large trader replicates the payo� of the derivative by dynamic trading in stock and

bond or if he takes his position directly in the derivative contract. To motivate why this

condition should hold Jarrow gives examples of reaction functions which do not satisfy this

condition and for which there exist trading strategies for the large trader allowing for market

manipulation possibilities of arbitrary size.

De�nition 3.2 1. Suppose that we are given an admissible sel�nancing trading strategy

(�; �; 
) for the large trader and a hedging strategy � replicating the payo� of the traded

derivative contract at (�; �; 
). Then the market for the derivative security and for the stock

are said to be in synchrony at (�; �; 
), if a.s. for all 0 � t � T

	(t; Ft; �t + 
t � �t; 0) = 	(t; Ft; �t; 
t)(3.3)

4In section 4 we will actually take a slightly di�erent route to proving existence of replicating strategies.
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The synchronous market condition for the stock holds, if the markets for the stock and for the

traded derivative contract are in synchrony at all admissible sel�nancing trading strategies.

2. Analogously we say that the price process C of the derivative asset satis�es the synchronous

market condition if at all admissible sel�nancing trading strategies C is unchanged by the

variation (3.3) of the large trader's position.

We now assume the synchronous market condition to hold and analyze some of its conse-

quences. First, from (3.3) it is easily seen that the equilibrium price process for the stock is

completely determined by the values f	(t; f; �; 0), (t; f; �) 2 [0; T ]� IR+�I0g: Suppose that

the strategy � replicates the payo� of the derivative at a certain trading strategy (�; �; 
) of

the large trader. Then we get by applying (3.3)

	(t; Ft; �t; 
t) = 	 (t; Ft; �t + 
t � �t; 0) :(3.4)

Substituting (3.4) into (3.2) we see that here � must solve the following equation

c (XT ) = c0 +

Z T

0
��t d	(t; Ft; �t + 
t � �t; 0) :(3.5)

As � appears in both, the integrand and the integrator of the stochastic integral it is not a

priori clear if solutions to this equation exist. We will consider this question in sections 4

and 5 below. The synchronous market condition also helps to determine prices of the traded

derivative contracts:

Proposition 3.3 Suppose that the synchronous market condition holds for the stock and for

the derivative security. Consider an admissible sel�nancing trading strategy (�; �; 
) for

the large trader. Denote by V � the value process of a hedging strategy � that replicates the

derivative contract at (�; �; 
). Then the absence of opportunities for market manipulation

at (�; �; 
) implies that the price process of the derivative asset must be equal to V �.

Proof: Since � replicates the derivative contract we have from (3.5) that V � is a semimartin-

gale. Moreover, the synchronous market condition for the stock implies the synchronous

market condition for V �. To prove that Ct must be equal to V
�
t for all t we consider the fol-

lowing variation (~�; ~�; ~
) of the speculator's strategy: For s < t his position is unchanged; for

s 2 [t; T ] his holdings are given by ~�s := �s + �s and by ~
s := 
s� 1. The new bondholdings

from time t onward are determined by the condition that the new strategy be sel�nancing.

The terminal value ~VT of this new strategy is then given by

~VT = Vt +

Z T

t
(��s + ��s )d	(s; Fs; �s + �s; 
s � 1) +

Z T

t

�s dCs � (CT � Ct) ;(3.6)

where (Vt)0�t�T denotes the value process of the original strategy (�; �; 
). Now by the

synchronous market condition

	(s; Fs; �s + �s; 
s � 1) = 	(s; Fs; �s; 
s)

Hence (3.6) equals

VT +

Z T

t
(�s)

�d	(s; Fs; �s; 
s)� (CT � Ct) = VT + V
�
T � V

�
t � (CT � Ct) = VT + Ct � V

�
t
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The proposition follows, because if Ct 6= Vt either this or the converse variation would yield

a higher terminal value than the original strategy.

Remarks: Note that the synchronous market condition is needed in the proof to ensure

that relative equilibrium prices remain unchanged along the variation of the large trader's

position. From (3.5) it is apparent that the hedging strategy � and hence also the price of

the derivative security depends on the large trader's trading strategy (�:�; 
). We will come

back to this issue in the simulations of section 6.

To complete our development of a pricing theory for derivatives in �nitely elastic markets it

remains to prove existence of replicating strategies, i.e. existence of solutions � to (3.5). We

need some simplifying assumptions on the speculator's trading strategy (�; �; 
):

Assumption (A.2) The speculator's stockholdings are given by � = (��(t; Ft)t)0�t�T , where

�� is a smooth and nondecreasing function on [0; T ]� IR+. His position in the derivative is

given by 
 = (�
(t; Ft)t)0�t�T where �
 is a smooth and nonnegative function on [0; T ]� IR+.

As the underlying fundamental state variable is a Markov process the assumption of the large

trader's position depending only on the current value of F is quite palatable. Assumption

(A.2) allows us to reduce (3.5) to a problem involving only stock and bond markets. We

de�ne a new function  : [0; T ]� IR+ � I ! IR+ by

 (t; f; #) := 	(t; f; ��(t; f) + �
(t; f) � #; 0) :(3.7)

 can be interpreted as a reaction function depending only on the fundamental and on the

speculator's stockholdings as given by #. It is immediate from the de�nition of  in (3.7)

that a trading strategy � solves (3.5) if and only if it is a solution to the following problem

c( (T; FT; �T )) = c0 +

Z T

0
��t d (t; Ft; �t) :(3.8)

4 Perfect Option Replication in Finitely Elastic Markets

We now deal with (3.8) and give a characterization of solutions to this equation in terms of

a nonlinear partial di�erential equation (PDE). In section 5 we then demonstrate that under

some additional quali�cations this PDE actually admits a solution. This is of interest for a

number of reasons. To begin with, it shows that even a large agent whose trades move prices

is able to synthesize the payo� of a derivative by dynamic trading. Moreover, this yields

some insights on the robustness of the Black-Scholes theory with respect to the assumption

of perfectly elastic markets. Finally, by settling this issue we provide the missing ingredient

for the option pricing theory for �nitely elastic markets developed in section 3.

In this section we work with the following assumptions on the reaction function  and the

terminal payo� c(XT ) of the derivative asset.

Assumption (A.3) 1. The relative equilibrium price Xt at time t is given by  (t; Ft(!); �t),

where �t represents the stock position of the large trader at time t and where  : [0; T ]�IR+�

I ! IR+ is a smooth function with the following properties:

� For every compact set K �� I there are constants 0 < C1 � C2 <1 such that

C1 �  f(t; f; �) :=
@
@f (t; f; �) � C2 8 (t; f; �) 2 [0; Tf ]� IR+ �K
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�  �(t; f; �) :=
@
@�
 (t; f; �) > 0 8 (t; f; �) 2 [0; Tf]� IR+ � I.

Here I represents some suitably chosen open intervall with (�1; 1) � I.

2. The function c belongs to the class C3(IR+). It is convex, the �rst derivative c0 satis�es

jc0(x)j < 1 8x > 0, and the second derivative c00 has compact support in IR+.

Remarks: Assumptions (A.1) and (A.2) ensure that (A.3) is satis�ed by the reaction func-

tion de�ned in (3.7). The assumption of c being convex is quite palatable, since the payo�s

which are synthesized in practice are usually convex.5 Assuming di�erentiability is more

problematic, since this excludes the payo�s of ordinary options. However, idealized option

contracts where the kinks have been smoothed are within the scope of our analysis. Moreover,

we may interprete c as an idealized description of the aggregated payo� of a diversi�ed op-

tion portfolio containing a multitude of contracts with many di�erent strikes; see for instance

(Frey and Stremme 1995). As we will see in Theorem 5.2, the restriction on jc0j ensures that

the large trader's demand will never exceed the total supply of the risky asset.

In the following we will represent the derivative's terminal payo� in the form c(XT ) = ��h(XT)

where � is such that supfjh0(x)j; x > 0g = 1. According to our normalization XT gives the

price of the total supply of the stock. Therefore we can interprete � as the fraction of the

total supply of X which is insured by the large trader's hedging strategy. De�ning h0 and ~�

by the relations c0 = � � h0 and � = � � ~� we immediately get that (3.8) is equivalent to

h(XT ) = h0 +

Z T

0

~��s d (s; Fs; � �
~�s) :(4.9)

Guided by the form of the hedge ratio in the classical Black-Scholes model we seek a solution

of the option replication problem (4.9) having the form ~�s(!) = �(s; Fs(!)) for some function

� : [0; T ] � IR+ ! IR.6 We shall always assume that � belongs to the class C1;2([0; T ] �

IR+).
7 Clearly such a strategy is admissible. The resulting asset price process is then given

by (X�(t; Ft))0�t�T , where X
� is shorthand for the composite function  (t; f; �(t; f)). In

particular X is continuous. Since the stock price is now a function of t and Ft, the gains

from trade in (4.9) can be computed by Itô's lemma yielding

h(X�(T; FT)) = h0 +

Z T

0
�(s; Fs) �

@

@f
X�(s; Fs)dFs +(4.10)

+

Z T

0
�(s; Fs) �

 
@

@t
X�(s; Fs) +

1

2
�2F 2

s

@2

@f2
X�(s; Fs)

!
ds :

This representation gives rise to the following

Proposition 4.1 Suppose we are given a strategy function � 2 C1;2([0; T ]� IR+). Then �

satis�es equation (4.10) if there exists a function H : [0; T ]� IR+ ! IR with the following

properties:

5This is obvious for standard options and forwards, and it is even the de�ning characteristic of the so-called

portfolio insurance strategies.

6If a solution � of (4.9) exists, by inverting the reaction function we may of course represent it in the usual

manner as a function of time and asset price.

7By this we mean that � is once continuously di�erentiable in t and twice in f , both on the set [0; T ]� IR+.

8



(i) H belongs to C([0; T ]� IR+) \ C
1;2([0; T )� IR+).

(ii) H satis�es the terminal condition H(T; f) = h(X�(T; f)) 8 f 2 IR+

(iii) We have for the derivatives

@

@f
H(t; f) = �(t; f) �

@

@f
X�(t; f)(4.11)

@

@t
H(t; f) +

1

2
�2f2

@2

@f2
H(t; f) = �(t; f) �

 
@

@t
X�(t; f) +

1

2
�2f2

@2

@f2
X�(t; f)

!
(4.12)

At time t the value of the hedge portfolio corresponding to � is then given by H(t; Ft).

Proof: To proof this proposition simply apply Itô's Lemma to the function H and note

that (4.11) and (4.12) imply (4.10).

Under some technical conditions also the converse of Proposition 4.1 holds. This is of interest,

since it will help us to provide a complete characterization of solutions to the hedge problem

satisfying certain regularity conditions. Suppose we are given a solution �(t; f) 2 C1;2([0; T ]�

IR+) of the hedging problem. To construct a function H as in Proposition 4.1 we proceed as

in the standard option pricing theory and compute the value process of the hedge portfolio

as conditional expectation of the terminal payo� with respect to the equivalent martingale

measure Q for X . Since the Markov property of the process F is preserved under the

transition from P to Q, this conditional expectation is given by some function H(t; Ft). If

this function is su�ciently smooth it will ful�ll the requirements of Proposition 4.1. We now

give a formal proof. De�ne a function �(t; f) : [0; T ]� IR+ ! IR by

�(t; f) :=

 
@

@t
X�(t; f) +

1

2
�2f2

@2

@f2
X�(t; f)

!
�

�
@

@f
X�(t; f)

��1

and a density process Z = (Zt)0�t�T by

Zt := exp

 
�

Z T

0
�(s; Fs) � (�Fs)

�1 dWs �
1

2

Z T

0

�
�(s; Fs) � (�Fs)

�1
�2
ds

!
:

Suppose that

E

"
exp

 
1

2

Z T

0

�
�(s; Fs) � (�Fs)

�1
�2
ds

!#
<1(4.13)

Then Z is a martingale according to the Novikov criterion. Hence we may de�ne a new

probability measure Q on FT by setting dQ=dP := ZT . It follows from Girsanov's theorem

that under Q the process

~Wt := Wt +

Z t

0
�(s; Fs) � (�Fs)

�1 ds

is a Brownian motion. We note that F and X solve the following equations

dFt = �Ftd ~Wt � �(t; Ft)dt ;(4.14)

dXt = � � Ft �
@

@f
X�(t; Ft)d ~Wt ;(4.15)

In particular the stock price process is a local martingale under Q. Now we may state the

converse to Proposition 4.1:
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Proposition 4.2 Suppose that � 2 C1;2([0; T ]� IR+) is a solution to the replication problem

(4.10) and that the following conditions are satis�ed.

(i) The SDE (4.14) is well-posed and the Novikov condition (4.13) holds.

(ii) Both, the asset price processX from (4.15) and the gains from trade
R t
0 �(s; Fs)dX

�(s; Fs)

are Q-martingales.

(iii) There is a solution u 2 C([0; T ]� IR+)\C
1;2([0; T )� IR+) of the terminal value problem

@

@t
u(t; f) +

1

2
�2f2

@2

@f2
u(t; f)� �(t; f)

@

@f
u(t; f) = 0 ; u(T; f) = h(X�(T; f))(4.16)

Then there exists a function H 2 C([0; T ]� IR+) \ C
1;2([0; T )� IR+) satisfying Proposition

4.1 (ii) and (iii).

Proof: Denote by Q(t;f) the law of the solution of the SDE (4.14) starting at time t with

initial value equal to f . Since this SDE is well-posed we know that under Q(t;f) the coordinate

process is a time-inhomogeneous Markov process, see for instance (Karatzas and Shreve 1988,

Theorem 5.4.20). De�ning H(t; f) by

H(t; f) := EQ(t;f)

[h(X�(T; FT)) ]

we therefore get H(t; Ft) = EQ[h(X�(T; FT)) jFt]: It follows from (4.14) and the Feynman-

Kac representation theorem (Karatzas and Shreve 1988, Theorem 5.7.6) that H coincides

with u and hence ful�lls point (i) and (ii) of Proposition 4.1. Since � solves the replication

problem we moreover have

h(X�(T; FT)) =

Z T

0
�(s; Fs)dX

�(s; Fs)

= EQ[h(X�(T; FT) jFt] +

Z T

t
�(s; Fs)dX

�(s; Fs)(4.17)

= H(t; Ft) +

Z T

t
�(s; Fs)dX

�(s; Fs) ;(4.18)

where (4.17) follows since the gains from trade are a martingale. On the other hand, since

h(X�(T; f)) = H(T; f), Itô's Lemma yields

h(X�(T; FT)) = H(t; Ft) +

Z T

t

@

@f
H(s; Fs)dFs(4.19)

+

Z T

t

 
@

@t
H(s; Fs) +

�2

2
F 2
s

@2

@f2
H(s; Fs)

!
ds

By equating (4.18) and (4.19) we see that H satis�es also Proposition 4.1 (iii).

We want to use Proposition 4.1 to construct a solution to the replication problem (4.10). If

a function H with (4.11) and (4.12) exists we know that

@

@t
H(t; f) = �(t; f) �

 
@

@t
X�(t; f) +

1

2
�2f2

@2

@f2
X�(t; f)

!
(4.20)

�
1

2
�2f2

@

@f

�
�(t; f) �

@

@f
X�(t; f)

�
:
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Now if H exists it satis�es the identy @
@t

@
@f
H(t; f) = @

@f
@
@t
H(t; f), yielding the following

integrability condition for �

@

@t

�
�(t; f) �

@

@f
X�(t; f)

�
=

@

@f

�
�(t; f) �

 
@

@t
X�(t; f) +

1

2
�2f2

@2

@f2
X�(t; f)

!
(4.21)

�
1

2
�2f2

@

@f

�
�(t; f) �

@

@f
X�(t; f)

��

Elementary but tedious computations given in Appendix A.1 now lead to the following

Lemma 4.3 A function � 2 C1;2([0; T ]� IR+) satis�es (4.21) if and only if it is a solution

to the following PDE

(4.22)

0 =
@

@t
�(t; f) +

1

2
�2f2

 
1 + 2�

 �

 f
�
@

@f
�(t; f)

!
@2

@f2
�(t; f)

+
�2

 f

@

@f
�(t; f) �

�
f �  f �  t +

f2

2
 ff

+ �
@

@f
�(t; f)

�
f2 �f + f �

�
+

�
�
@

@f
�(t; f)

�2 f2
2
 ��

�

Here the arguments of t  and its derivatives are given by (t; f; � � �(t; f)) .

Remark: The PDE (4.22) is quasilinear in the terminology of Friedman (1964) or Ladyzen-

skaja, Solonnikov, and Ural'ceva (1968), that is the coe�cients depend not only on time and

space variables but also on the solution and its �rst derivative. If there are no feedback

e�ects, that is if  � � 0, and if moreover  (t; f; 0) = f 8 t; f the PDE (4.22) boils down to

the usual linear PDE which is satis�ed by the hedge ratio in the Black-Scholes model.

In the next theorem we show how to construct solutions of the replication problem (4.10) as

solutions to a terminal value problem involving the PDE (4.22) and give a characterization

of all solutions that possess certain smoothness properties.

Theorem 4.4 Suppose that Assumption (A.3) holds. Then a strategy function � belonging

to C1;2([0; T ]�IR+) solves the hedging problem with feedback (4.10) if it solves the PDE (4.22)

and satis�es the terminal condition

�(T; f) = h0(X�(T; f)) 8 f > 0(4.23)

Conversely, if � 2 C1;2([0; T ] � IR+) solves the hedging problem and if moreover the as-

sumptions from Proposition 4.2 are satis�ed for the corresponding asset price process, � is a

solution to the terminal value problem (4.22), (4.23).

Proof: To prove the �rst statement we want to construct a function H satisfying the

requirements of Proposition 4.1. If � solves the PDE (4.22), equations (4.11) and (4.20) de�ne

a vector �eld that satis�es the integrability conditions. Since the domain (0; T )� IR+ � IR2

is convex there exists a function H | uniquely de�ned up to a constant | with (4.11), (4.20)

and hence (4.12). Since the derivatives of � are continuous functions on the set [0; T ]� IR+

the derivative @
@t
H(t; f) given by (4.20) is bounded on every strip of the form [T � �; T ]�K

for K �� IR+. Hence we may extend H to a continuous function on [0; T ]� IR+. Moreover,

H can be de�ned in such a way that H(T; f0) = h(X�(T; f0)) for some f0 2 IR+.
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It remains to prove that @
@f
H(T; f) = h0(X�(T; f)), since then also requirement (iii) of

Proposition 4.1 is ful�lled. Since the product �(t; f) � @
@f
X�(t; f) converges locally uniformly

to �(T; f) � @
@fX

�(T; f) as t! T we get

�(T; f) �
@

@f
X�(T; f) = lim

t!T
�(t; f) �

@

@f
X�(t; f) = lim

t!T

@

@f
H(t; f) =

@

@f
H(T; f)

On the other hand we have @
@f h(X

�(T; f)) = h0(X�(T; f))� @@fX
�(T; f) such that the terminal

condition (4.23) yields the desired equality of the derivatives.

To prove the converse statement we �rst note that Proposition 4.2 implies the existence of

a smooth function H with (4.11) and (4.20) such that � satis�es the integrability conditions

and solves hence the PDE (4.22). The terminal condition must hold since again @
@fH(T; f)

and @
@f
h(X�(T; f)) must be equal.

Note that the terminal value �(T; f), which re
ects the special form of the replicated payo�,

is given by the solution '� to the equation

h0( (T; f; � � ')) = '(4.24)

Lemma 4.5 Suppose that Assumption (A.3) holds. If then for some � > 0

� � sup
�
h00( (T; f; � � ')) �  �(T; f; � �'); f 2 IR+; ' 2 I

	
< 1� �(4.25)

there exists for every f 2 IR+ a unique solution '�(f) to (4.24). The function f 7! '�(f) is

twice continuously di�erentiable with bounded derivatives and its �rst derivative is positive.

Proof: Existence of a solution follows since for all f 2 IR+ the mapping ' 7! '�h0( (T; f; ��

')) is continuous. Condition (4.25) implies that this mapping is strictly increasing which

implies uniqueness. Di�erentiability follows from the Implicit Function Theorem. By di�er-

entiating both sides of (4.24) we get

@

@f
'�(f) =

h00 ( (T; f; � �'�)) �  f(T; f; � � '
�)

1� �h00 ( (T; f; � �'�)) �  �(T; f; � � '�)

which is positive by (4.25) and the convexity of h. Boundedness of the derivatives of the

function '�(f) follows, since h00 has compact support by (A.3).

5 Analysis of the PDE for the Hedging-Strategy

In this section we prove existence and uniqueness of a solution to the terminal value problem

given by the PDE (4.22) and the terminal condition

�(T; f) = g(f) :(5.26)

We make the following regularity assumptions on the terminal values.

Assumption (A.4) The function ~g : IR ! IR, x 7! g(exp(x)) belongs to C2(IR), its deriva-

tives are bounded and ~g00 is H�older-continuous on IR for some H�older-exponent � 2 (0; 1).

Moreover supf2IR+
jg(f)j � 1 and @

@f g(f) > 0.
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Note that by Lemma 4.5 (A.4) is satis�ed for the function de�ned by the terminal condition

(4.23). Before we can state the main result of this section we have to specify the regularity

conditions we impose on our solutions.

De�nition 5.1 Let � be some number from the intervall (0; 1).

1. A function u 2 C1;2([0; T ]�IR) is said to be H�older-continuous of class H2+�;1+�=2([0; T ]�

IR), if u and its derivatives are bounded on [0; T ]� IR, and if moreover the derivatives ux,

uxx and ut satisfy a H�older condition in x with exponent � and a H�older condition in t with

exponent �=2.

2. A function � 2 C1;2([0; T ] � IR+) belongs to the space H2+�;1+�=2([0; T ] � IR+) if the

function u de�ned by u(t; x) := �(t; exp(x)) belongs to H2+�;1+�=2([0; T ]� IR).

A more formal de�nition of this and related H�older spaces is given in (Ladyzenskaja, Solon-

nikov, and Ural'ceva 1968, chapter 1). To guarantee existence of a solution to the terminal

value problem we have to impose the following restrictions on the reaction function  .

Assumption (A.5) For every compact set K � I there are �nite constants K1; : : : ; K5 such

that for all t 2 [0; T ]; f > 0; � 2 K

j �(t; f; �)= (t; f; �)j < K1; j ��(t; f; �)= (t; f; �)j < K2; j f�(t; f; �)j < K3

jf �  ff(t; f; �)j < K4; j t(t; f; �)= (t; f; �)j < K5

Remarks: The constants K1; : : : ; K3 can be interpreted as measures of market liquidity.

Assumption (A.5) is always satis�ed if | as in the models of Jarrow (1994), Platen and

Schweizer (1994) or Frey and Stremme (1995) | the reaction function is of the particular

form  (t; f; �) = e (t; �) � f . It holds true for many other reaction functions with similar

asymptotic properties for f ! 0 and f !1, too.

Theorem 5.2 Suppose that Assumptions (A.3), (A.5) hold and that (A.4) is satis�ed for

some H�older exponent �. Then the following holds

(i) There is some 0 < �� � 1 such that for every � � �� the terminal value problem (4.22),

(5.26) has a solution contained in H2+�;1+�=2 ([0; T ]� IR+).

(ii) Every solution � 2 H2+�;1+�=2 ([0; T ] � IR+) of this terminal value problem has the

following properties

� inff2IR+ g(f) � �(t; f) � inff2IR+ g(f)

� @
@f
�(t; f) > 0

(iii) For every � > 0 and every � 2 [0; 1) there is at most one solution of the terminal value

problem (4.22), (5.26) belonging to the H�older space H2+�;1+�=2 ([0; T ]� IR+).

Remarks: To guarantee existence of a solution to the terminal problem for the hedge ratio

we have to restrict the market weight � of the large trader. This additional quali�cation

is needed, since when dealing with nonlinear PDE's one has to impose certain restrictions

on the character of the nonlinear occurrences of the solution and its �rst derivative in the

coe�cients of the equation, cf. (Ladyzenskaja, Solonnikov, and Ural'ceva 1968, chapter 1.3).

The constant �� depends essentially on two factors, �rst on the \Gamma" of the terminal
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payo�, that is on supfg0(f) � f; f 2 IR+g and second on the liquidity of the market as

measured by the Ki in (A.5). Statement (ii) implies that the qualitative properties of the

hedge ratio are unaltered by tworking in �nitely elastic markets. However, we will see in the

simulations of section 6 that there are quantitative di�erences which may be quite large.

The rest of this section is devoted to the proof of theorem 5.2. Our main tool will be some

results from Ladyzenskaja, Solonnikov, and Ural'ceva (1968). To apply these results we have

to transform the terminal value problem on IR+ into an initial value problem on IR. To this

end we introduce the new time variable �(t) = T� t and the new space variable x(f) = ln(f).

We de�ne a function u : [0; T ]�IR+ ! IR by �(t; f) =: u(�(t); x(f)). Elementary calculations

show that � solves the terminal value problem (4.22), (5.26) if and only if the function u is

a solution of the Cauchy problem

ut = a(�; t; x; u; ux) � uxx + b(�; t; x; u; ux) � ux(5.27)

u(0; x) = ~g(x) ;(5.28)

where the functions a and b are given by

a(�; t; x; u; q) =
1

2
�2 �

 
1 + 2 � � � q � e�x �

 �(T � t; ex; � � u)

 f (T � t; ex; � � u)

!
(5.29)

b(�; t; x; u; q) =
�2

 f
�

 
1

2
 f +

1

2
� ex ff � e�x t + �q f�+

�2q2

2
e�x �  ��

!
:(5.30)

In (5.30) the arguments of  and its derivatives are given by (T � t; ex; � � u), too. From now

on we concentrate on the initial value problem (5.27) (5.28). For technical reasons we have

to introduce truncated versions �a and �b of our coe�cients. Their precise de�nition is given

in the Appendix A.2. For an appropriate choice of �a the PDE

ut = �a(�; t; x; u; ux) � uxx + �b(�; t; x; u; ux) � ux(5.31)

is parabolic, such that we can apply results from the theory of quasilinear parabolic PDE's

to our problem. In the next proposition we establish existence and uniqueness of the Cauchy

problem (5.31) (5.28). After that we will proof certain properties of the solutions, thereby

showing that for � su�ciently small a solution to the PDE (5.31) solves also the original

equation (5.27), which proves Theorem 5.2 (i) and (ii).

Proposition 5.3 Suppose that the initial values g satisfy Assumption (A.4).

(i) Then for all � 2 [0; 1) there is at least one solution u to the Cauchy problem (5.31), (5.28)

belonging to H2+�;1+�=2([0; T ]� IR).

(ii) For every 0 � �0 < 1 there is some constant K depending only on the H�older norm of the

initial values ~g and on the size of the constants in Assumption (A.5), such that jux(t; x)j < K

for all 0 � � � �0; t 2 [0; T ]; x 2 IR.

(iii) For any � 2 (0; 1) and any � 2 [0; 1] there is at most one solution of the Cauchy problem

(5.31), (5.28) belonging to H2+�;1+�=2([0; T ]� IR).

The proof consists of an application of (Ladyzenskaja, Solonnikov, and Ural'ceva 1968, The-

orem 5.8.1) and is given in Appendix A.2.
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In the following proposition we prove the most important properties of solutions to the

Cauchy problem (5.31), (5.28) and show that they carry over to the unrestricted Cauchy

problem (5.27), (5.28).

Proposition 5.4 Every solution of the Cauchy problem (5.31), (5.28) belonging to some

H�older space H2+�;1+�=2([0; T ]� IR) for some � > 0 satis�es 8 (t; x) 2 [0; T ]� IR :

inf
x2IR

~g(x) � u(t; x) � sup
x2IR

~g(x) and ux(t; x) � 0

These properties carry over to solutions of the unrestricted Cauchy problem (5.27), (5.28)

belonging to H2+�;1+�=2([0; T ]� IR) for some � > 0.

Proof: The key of the proof is the following observation: Whenever u solves the quasilinear

PDE (5.31), it is also a solution to the following linear parabolic equation

ut = au(t; x)uxx + bu(t; x)ux(5.32)

where au(t; x) := �a(�; t; x; u(t; x); ux(t; x)) and bu(t; x) := �b(�; t; x; u(t; x); ux(t; x)).
8 The

bounds on u follow therefore directly from the maximum principle for linear parabolic PDE's,

or they can be read from the Feynman-Kac representation of u.

To prove the positivity of ux we �rst note that (Ladyzenskaja, Solonnikov, and Ural'ceva 1968,

Theorem 3.12.2) can be applied to the PDE (5.32), yielding u 2 H3+�;(3+�)=2((0; t)� 
) for

every 
 �� IR. In particular the derivatives @
@t

@
@x
u and @3u=@x3 are well-de�ned. Hence by

di�erentiating (5.32) we obtain the following linear parabolic PDE for v(t; x) := ux(t; x)

vt = au(t; x)vxx+ vx �

�
@

@x
au(t; x) + bu(t; x)

�
+ v �

@

@x
bu(t; x)

Of course v is continuous on [0; T ] � IR and has initial values v(0; x) := @
@x
g(exp(x)). By

Assumption (A.4) we hence get v(0; x)� 0. It can be checked that the regularity conditions

for the Feynman-Kac theorem are ful�lled. Therefore we obtain the following stochastic

representation for v:

v(t; x) = E(T�t;x)

"
v(0; YT) � exp

 Z T

T�t

@

@x
bu(s; Ys)ds

!#
(5.33)

where Y solves the SDE

dYt =
q
au(t; Yt)dWt +

�
bu(t; Yt) +

@

@x
au(t; Yt)

�
dt

Since all the terms in (5.33) are nonnegative it follows immediately that v(t; x) � 0.

Now let us turn to the second claim. Suppose we are given a function u 2 H2+�;1+�=2([0; T ]�

IR) solving the PDE (5.27) with initial values (5.28), for which there exists some (t0; x0)

with ux(t0; x0) < 0. Since ux(0; x) � 0, and since by de�nition of the H�older space

H2+�;1+�=2([0; T ] � IR) ux is H�older continuous in t uniformly in x, there is then for ev-

ery " > 0 some pair (t�; x�) with

8We omit � from the de�nition of au and bu since in the proof this parameter is kept constant
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� 8 t � t�; 8 x 2 IR ux(t; x) > �"=2.

� ux(t
�; x�) < 0

On the other hand for appropriate truncation functions u is also a solution to the restricted

Cauchy problem (5.31), (5.28) on [0; t�]� IR. Hence ux(t
�; x�) � 0, a contradiction.

Remark: The proof of the positivity of ux shows that option prices are convex functions

of the price of the underlying security in any Markovian model where the stock price follows

a di�usion equation of the form dXt = �(t; Xt)XtdWt for a su�ciently smooth function �.

This result has independently been proven by Bergman, Grundy, and Wiener (1995) and,

using a probabilistic argument, by El Karoui, Jeanblanc-Picqu�e, and Shreve (1995).

It is now easy to proof Theorem 5.2 using Propositions 5.3 and 5.4; see Appendix A.2.

6 Results from Simulations

In case there are no feedback e�ects from the large trader's position into equilibrium prices

our theory for option pricing and hedging boils down to the standard theory as developed

for instance by Black and Scholes (1973) and Harrison and Pliska (1981). Using explicit

numerical computations we now want to compare the hedge ratio and the value of the hedge

portfolio for an option in a �nitely elastic market to option prices and hedge ratios in the

Black-Scholes model. In all simulations we work with the reaction function

 (t; f; �) = f=(1� �)

introduced in section 2 and with a terminal payo� given by

h(x) =
1

2

�
x�K +

q
(x�K)2 + �

�

for some small � > 0, i.e. we are considering Call options with \smoothed kinks". For these

data there exists a solution to the option replication problem (3.8) by Theorems 4.4 and

5.2. To numerically solve the PDE (4.22) we used the method of implicit �nite di�erences as

explained for instance in (Willmott, Dewynne, and Howison 1993, Chapter 19). By Theorem

5.2 (ii) we know that @
@f
�(t; f) > 0. Therefore we get @

@f
X�(t; f) > 0. Hence for every �xed

t the fundamental f can be expressed as (X�)�1(t; x). This allows us to represent also the

hedging strategy as a function '(t; x) of the equilibrium price:

�(t; f) = �
�
t; (X�)�1(t; X�(t; f))

�
=: '(t; X�(t; f))(6.34)

The �rst simulation we have run illustrates that the qualitative properties of the hedge ratio

remain unaltered by assuming that markets are only �nitely elastic, a fact we have proven

already in point (ii) of Theorem 5.2. In �gure 1 we have graphed the solution of our hedge

problem as function '(t; x) of time t and price of the underlying asset x for � = 0:2. The

plot looks very similar to usual pictures of the \Delta" in the Black-Scholes model. However,

there are quantitative di�erences, as it is shown by �gure 2 where we have plotted the hedge

ratio at t = 1 as a function of x for di�erent values of �.
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We have also computed H0, the hedge costs per contract as de�ned in Proposition 4.1, for

di�erent values of �. The results of the simulations are plotted in �gure 3 and �gure 4. It is

obvious that the initial value of the hedge portfolio increases with increasing �. Comparing

�gure 3 where we have plotted H0 against the fundamental f to �gure 4 where we have varied

the underlying's price x we see that in �gure 3 the increase in the value of the hedge portfolio

caused by a rise in � is much more pronounced. This comparison reveals two reasons for the

increase in the hedge costs. First an increasing � implies an increase in the large trader's

stock position and hence increasing asset prices. Second the rise in � causes a rise in stock

price volatility, which explains why the hedge costs increase even if the asset price is kept

constant.

This dependence of the hedge costs on the overall amount of hedging is genuine to our model

with �nitely elastic markets. It also shows that | in contrast to standard option pricing

theory | in our framework derivative prices do depend on the large trader's derivative

position. As indicated already by Jarrow (1994) this could possibly explain some anomalies

on real options markets such as the smile pattern of implied volatilities �rst observed by

Rubinstein (1985).

7 Conclusion

The paper studies the pricing and hedging of derivatives in an economy with a large trader

whose trades move prices. It extends previous results of Jarrow (1994) on this issue to a

continuous time setting. First a theory for option pricing in this framework is developed. It

turns out that in �nitely elastic markets we need an additional assumption, the synchronous

market condition, to arrive at a fully speci�ed pricing theory. We then go on and study

the problem of option replication in our framework. We characterize the strategy by which

the large trader can synthesize the payo� of a derivative contract as solution of a nonlinear

PDE. Additional quali�cations on market liquidity and the second derivative of the payo�

not needed in the standard theory are necessary to guarantee existence of a solution to this

PDE. We show that the qualitative shape of the hedge portfolio is unaltered by working in

�nitely elastic markets. However, simulations reveal that there are qualitative di�erences

which may be quite large. Moreover, we �nd that hedge costs and hence option prices do

depend on the large trader's position in stock and derivatives. This observation might help

to explain some \anomalies" on real options markets. However, this awaits future research.9

9A �rst attempt into this direction has already been made in the paper (Platen and Schweizer 1994) which

seeks to explain volatility smiles by feedback e�ects from dynamic hedging.
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8 Results from Simulations
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Figure 1: Hedge ratio as function of price and time for a value � = 0:2
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Figure 2: Hedge ratio '(1; x) at t = 1 for di�erent values of �
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Figure 3: Cost of hedging per contract H0 as a function of the fundamental f for di�erent
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A Mathematical Appendix

A.1 Proof of Lemma 4.3

To shorten the notation we will always omit the arguments (t; f). We start by computing
@
@t
(� � @

@f
X�) and get

@

@t
(� �

@

@f
X�) =

@

@t
� �

@

@f
X� + � �

@2

@f@t
X�(A.35)

Now we turn to calculating the right hand side of (4.21). We get

�

 
@

@t
X� +

1

2
�2f2

@2

@f2
X�

!
�

1

2
�2f2

@

@f

�
� �

@

@f
X�

�
=

= � �
@

@t
X� �

1

2
�2f2 �

@

@f
� �

@

@f
X�(A.36)

Computation of the derivative of (A.36) wrt. f now yields the right hand side of (4.21). Here

we get

� �
@2

@f@t
X� +

@

@f
� �

@

@t
X� � �2f �

@

@f
� �

@

@f
X� �(A.37)
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@2

@f2
X�

Equating both sides of (4.21), i.e. (A.35) and (A.37) now yields the following PDE for �:

@

@t
� �

@

@f
X� + � �

@2

@f@t
X� = � �

@2

@f@t
X� +

@

@f
� �

@
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X� � �2f �

@

@f
� �

@

@f
X�(A.38)
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X�:

Since

@

@t
� �

@

@f
X� =

@

@t
� �

�
 f + � �  � �

@

@f
�

�
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@

@f
� �

@

@t
X� =

@

@f
� �

�
 t + � � � �

@

@t
�

�
;

cancelling terms on both sides yields the following version of the PDE (A.38).
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Now we use that

@

@f
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and obtain the following version of (A.38)

 f �
@

@t
� = �

1

2
�2f2 �

@2

@f2
� �

�
 f + � � � �

@

@f
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@
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� �

�
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�2f2 ff
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�2
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�
@

@f
�
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�

�
1

2
�2 � �2 �  ��

�

Rearranging terms we see that this is the PDE from Lemma 4.3.

A.2 Complements to the Proof of Theorem 5.2

Definition of the truncated coefficients in the PDE (5.31)

We de�ne the truncated versions �a and �b of the coe�cient functions de�ned in (5.29) and

(5.30) as follows. We set

�a(�; t; x; u; q) := a(�; t; x; u;
1

�
� c1(�q)) ; �b(�; t; x; u; q) := b(�; t; x; u;

1

�
� c2(�q))

Here c1; c2 : IR ! IR are smooth functions with

(A.39)
1 � c01 � 0; c1(y) = y on [�"=2;M � "=2] ; c1(y) 2 [�";M ]

1 � c02 � 0; c2(y) = y on [�M + "=2;M � "=2]; c2(y) 2 [�M;M ];

where " > 0 is small and M is some large positive constant. As the solutions to our Cauchy

problems are bounded (see Proposition 5.4), by Assumption (A.5) we are able to �nd for

every 0 � �0 < 1 some " in (A.39) which is small enough to ensure that there is some

constant ~K0 > 0 such that

inf f�a(�; t; x; u; q); � 2 [0; �0]; t 2 (0; T ]; x 2 IR; u 2 Ig; q 2 IRg > ~K0(A.40)

Hence for this choice of c1 the PDE (5.31) is parabolic.

Proof of Proposition 5.3

To prove the proposition we have to show that (Ladyzenskaja, Solonnikov, and Ural'ceva

1968, Theorem 5.8.1) can be applied to the Cauchy problem (5.31), (5.28). This theorem is

on equations in divergence form that is on PDEs of the form

ut �
@

@x
[adiv(t; x; u(t; x); ux(t; x))] + bdiv(t; x; u(t; x); ux(t; x)) = 0

To write the PDE (5.31) in divergence form we have to choose

adiv(�; t; x; u; q) :=

Z q

0
�a(�; t; x; u; �)d�

bdiv(�; t; x; u; q) := ��b(�; t; x; u; q) � q +
@adiv

@x
(�; t; x; u; q)+

@adiv

@u
(�; t; x; u; q) � q :
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To prove the statement on existence of solutions we now check that the hypothesis of (La-

dyzenskaja, Solonnikov, and Ural'ceva 1968, Theorem 5.8.1) are satis�ed.

ad a): This hypothesis is directly implied by Assumption (A.4).

ad b): Here we have for A(�; t; x; u; q) de�ned in (Ladyzenskaja, Solonnikov, and Ural'ceva

1968, Chapter 5, equation (8.5) )

A(�; t; x; u; q) := bdiv(�; t; x; u; q)�
@adiv

@x
(�; t; x; u; q)�

@adiv

@u
(�; t; x; u; q)�q = ��b(�; t; x; u; q)�q

and hence A(�; t; x; u; 0) = 0.

ad c) To verify this hypothesis we have to work a little harder. We have to check condition

b) of (Ladyzenskaja, Solonnikov, and Ural'ceva 1968, Theorem 5.6.1). Suppose we want to

prove existence for some � 2 [0; 1). Let us �rst �x some 1 > �0 � �. De�ning ~K1 by

~K1 := sup fj�a(�; t; x; u; q)j; � 2 [0; �0]; t 2 [0; T ]; x 2 IR; u 2 Ig; q 2 IRg(A.41)

we get immediately from the �rst inequality in Assumption (A.5) that ~K1 < 1. Here Ig

denotes the interval [minf>0 g(f);maxf>0 g(f)]. Moreover, we have

~K0 � �a(�; t; u; q)� ~K1 ;

where ~K0 is de�ned in (A.40). This proves the �rst part of the condition. The following

estimates show that the second half is ful�lled, too:

jadiv(�; t; x; u; q)j � (1 + jqj) � jqj � ~K1 � (1 + jqj) � ~K1 � (1 + jqj)2

Now, using Assumption (A.5) it is easily shown that the following constants are �nite:

~K2 := sup

(�����@a
div

@u
(�; t; x; u; q)

����� ; � 2 [0; �0]; t 2 [0; T ]; x 2 IR; u 2 Ig; q 2 IR

)
(A.42)

~K3 := sup

(�����@a
div

@u
(�; t; x; u; q)

����� ; � 2 [0; �0]; t 2 [0; T ]; x 2 IR; u 2 Ig; q 2 IR

)
(A.43)

~K4 := sup fj�b(�; t; x; u; q)j; � 2 [0; �0]; t 2 [0; T ]; x 2 IR; u 2 Ig; q 2 IRg(A.44)

These constants depend of course on �0, on the \cuto�-level" M in (A.39) and on the value

of the constants in Assumption (A.5). Now we get���� @@uadiv(�; t; x; u; q) � (1 + jqj)

���� � jqj � ~K2 � (1 + jqj) � ~K2 � (1 + jqj)2���� @@xadiv(�; t; x; u; q)
���� � jqj � ~K2 � ~K2 � (1 + jqj) and

jbdiv(�; t; x; u; q)j �

 
j�b(�; t; x; u; q)j+ j

@adiv

@u
(�; t; x; u; q)j

!
� jqj+ j

@adiv

@x
(�; t; x; u; q)j

� ( ~K2 + ~K3 + ~K4) � (1 + jqj)2

Since the above estimates are valid for all x 2 IR we get u 2 H2+�;1+�=2([0; T ]� IR) which

proves the �rst statement of the proposition. As explained in (Ladyzenskaja, Solonnikov,

and Ural'ceva 1968, p 451) the norm

kuxkT := sup fjux(t; x)j; x 2 IR; t 2 [0; T ]g

24



is bounded by some constant K depending only on the H�older norm of the initial values ~g

and the constants ~K0; : : : ; ~K4 from the above estimates. As these are valid for all � 2 [0; �0]

the second claim follows.

Uniqueness follows immediately from (Ladyzenskaja, Solonnikov, and Ural'ceva 1968, The-

orem 5.6.1), since the coe�cients of the PDE (5.31) are smooth functions. Hence for every

� 2 [0; 1) these functions and their derivatives are bounded on every the compact set of

the form f(t; x; u; q); t 2 [0; T ]; jxj < N; u 2 Ig; jqj � Kg; where K is the bound on ux

established in (ii).

Proof of Theorem 5.2

ad (i): It is enough to prove existence of a solution to the initial value problem (5.27), (5.28).

By Proposition 5.3 for every � 2 [0; 1) the restricted Cauchy problem (5.31), (5.28) has a

solution from H2+�;1+�=2([0; T ] � IR). Moreover for every �0 2 [0; 1) there is a constant

K = K(�0;M) depending10 only on �0 and the \cuto� level" M from (A.39) such that for

all � 2 [0; �0] the norm of the derivative ux of the solution u to (5.31), (5.28) is bounded by

K. Moreover by Proposition 5.4 we have ux � 0. Hence whenever

� � �� := sup

�
min

n
�0;

M

K(M; �0)

o
; M > 0; �0 2 [0; 1]

�

the \constraints" of equation (A.39) are not binding such that u is also a solution of the

unrestricted PDE (5.27).

ad (ii) This statement follows directly from Proposition 5.4.

ad (iii): Uniqueness for the terminal value problem for �(t; f) is equivalent to uniqueness for

the initial value problem for u(t; x). Now suppose that u1 and u2 are both solutions belonging

to H2+�;1+�=2([0; T ]� IR) for some � > 0. By Proposition 5.4 we know that u1x and u2x are

both nonnegative such that forM large enough both functions solve also the restricted PDE

(5.31). Hence the claim follows from Proposition 5.3.

10K depends on M and �0 via the constants ~Ki de�ned in the proof of Proposition 5.3.
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