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Abstract

We study a model of local evolution. Agents are located on a network and interact
strategically with their neighbors. Strategies are chosen with the help of learning
rules that are based on the success of strategies observed in the neighborhood.

The standard literature on local evolution assumes these learning rules to be
exogenous and fixed. In this paper we consider a specific evolutionary dynamics
that determines these learning rules endogenously.

We find with the help of simulations that in the long run learning rules behave
deterministically but are asymmetric in the sense that while learning they put more
weight on the learning players’ experience then on the observed players’ one. Nev-
ertheless stage game behavior under these learning rules is similar to behavior with
symmetric learning rules.

Keywords: Evolutionary Game Theory, Networks. JEL-Code: C63, C72, D62, D63,
D73, D83, R12, R13.
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1 Introduction

In many models on local evolution (see Axelrod (1984, p. 158ff), Lindgren and
Nordahl (1994), Nowak and May (1992, 1993), Nowak, Bonnhoeffer and May (1994),
Eshel, Samuelson and Shaked (1996), Kirchkamp (1995)) the ‘evolving part’ of play-
ers’ characteristics are players’ strategies. How these strategies evolve is given exo-
genously by a so called ‘learning rule’. There are of course learning rules which lead
to different results. In this paper we want to find out, whether the above learning
rules or the properties implied by the above rules can be justified by an evolution-
ary argument. We will analyze a model where players’ learning rules are not given
exogenously but instead are chosen by the players themselves. In other words, we
replace a fixed learning rule by a dynamics which selects learning rules.

Such a dynamics will yield a set of learning rules which we can compare with
the exogenously given learning rules from the literature. Further we can compare
the stage game behavior of a population using endogenous learning rules with the
stage game behavior of a population with fixed learning rules.

We want to ask two questions: First we will investigate whether the learning
rules discussed in the above literature are likely to be selected by evolution. Second
we want to know whether the behavior of a society with endogenous learning rules
is different from the behavior of one with a fixed learning rule. In this paper we will
present simulation results to give an answer to this question.

We find it particularly interesting to analyze evolution of learning rules in a local
framework because it is a ‘fragile’ framework. Small changes of players’ learning
rules are more influential in a local framework than in a global one. With local
evolution some reasonable learning rules imply cooperation in prisoners’ dilemmas!
others do not.? In a global framework both kinds of learning rules imply the same
(noncooperative) result.

Binmore and Samuelson (1994) study endogenous learning rules in a global
framework. In contrast to the model we present below, their players vary only
a single parameter of their learning rules, an aspiration level. In the model dis-
cussed below players will vary an aspiration level and two other parameters which
characterize sensitivity to the player’s own and an observed neighbor’s payoff.

2 The Model

2.1 Overview

The environment We will consider a population of players each occupying one
cell of a torus of size 50 x 50. Players will play games with their neighbors on
this network, learn repeated game strategies from their neighbors and update their
learning rule using information from their neighbors.

'E.g. the rules that we have studied in Kirchkamp (1995).
2E.g. learning rules where switching probabilities are linear in payoffs and always stochastic.



Simulations will start from random initial configurations which are described in
detail in section 2.6 on page 10. The games that players play within these neighbor-
hoods will change from time to time. A more detailed description of these games is
given in section 2.2 on page 4.

Players’ characteristics Players are described by three characteristics: Stage
game strategies, a repeated game strategy, and a learning rule.
We visualize the three parameters with the help of figure 1 on the following page.

e Learning rules of a player are influenced by three factors: A selection dynam-
ics which is given exogenously, information on the players’ own learning rule
and its payoffs, and information on her neighbors’ learning rules and their
payoffs. One might interpret the selection dynamics as a function that takes
information on learning rules and payoffs as arguments and, thus, determines
a new learning rule for a player. The selection process will be perturbed by
mutations. How learning rules are determined by the selection dynamics is
discussed in more detail in section 2.5 on page 8.

e A player’s repeated game strategy is influenced by following factors: A learning
rule, information on the player’s own payoff and repeated game strategy and
information on her neighbors’ payoff and their repeated game strategy. One
might interpret the learning rule as a function that takes a player’s and her
neighbors’ payoff and repeated game strategy as arguments, thus, determining
a new repeated game strategy for the player. The process will again be per-
turbed by mutations. How repeated game strategies are selected by learning
rules is discussed in more detail in section 2.4 on page 5.

e A player’s stage game strategies are determined by her repeated game strategy
and her neighbors’ stage game behavior. One might interpret a player’s re-
peated game strategy as a function that takes her neighbors’ stage game be-
havior as arguments to determine a player’s stage game strategies. How stage
game strategies are determined by repeated game strategies is discussed in
more detail in section 2.3 on page 5.

Stage game strategies determine interactions among players. Given a game
which is specified exogenously and which changes from time to time, stage
game strategies of two players determine stage game payoffs. These payoffs
contribute to the payoffs of the repeated game strategies and the learning
rules. On the basis of the latter payoffs, then new repeated game strategies
and learning rules are selected.

The above properties change stochastically at different speeds. Players interact
with a high probability and change their repeated game strategy with a low probab-
ility. The probability that the underlying stage game changes is smaller than the
individual probability to change a repeated game strategy and even smaller is the
probability that a learning rule is updated.
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Figure 2: The space of considered games.

2.2 Stage Games

Players play games within a neighborhood. In the simulations that we will discuss
in the following such a neighborhood has the following shape:

|
_%%%_

O!O!O

A player (marked as a black circle) plays against those eight neighbors (gray) which
live no more than one cell horizontally or vertically apart. In each period a random
draw will decide for each neighbor separately whether an interaction will take place.
In the simulations that we will discuss in the following, each possible interaction
will take place with probability 1/2. This probability is low enough to avoid syn-
chronization among neighbors, it is still high enough to make simulations sufficiently
fast.

We will assume that games change from time to time. In the simulations that
we will discuss in the following, every 2000 periods a new game will be selected for
the whole population. This game will be a symmetric 2 x 2 game of the following
form:

Player I1
D C
g —1
Pla}yer D g h (1)
h 0
¢ -1 0

The parameters g and h in the above game will be selected randomly following an
equal distribution over the intervals —1 < g < 1 and —2 < h < 2. We can visualize
the space of games in a two-dimensional graph (see figure 2).

The range —1 < g < 1 and —2 < h < 2 includes both prisoners’ dilemmas
and coordination games. All games with ¢ € (—1,0) and h € (0,1) are prisoners’
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dilemmas (DDpp in figure 2), all games with ¢ > —1 and h < 0 are coordination
games.

In Kirchkamp (1995) we have found that, given the learning rule ‘copy best
strategy’, players cooperate at least in some prisoners’ dilemmas. Further they did
not always coordinate on the risk dominant equilibrium but followed a criterion
which put also some weight on Pareto dominance. In the following we want to
analyze whether this behavior persists also with endogenous learning rules.

2.3 Repeated Game Strategies

We assume that each player uses a single repeated game strategy against all her
neighbors. Repeated game strategies will be chosen (see section 2.4 for details of
the choice procedure) from the set of (Moore) automata with less than three states.
Table 1 on the next page gives a list of all these automata.

2.4 Learning Rules

From time to time a player has the opportunity to revise her repeated game strategy.
In our simulations we will assume that this opportunity is a random event that occurs
for each player independently with probability 1/24. Thus, learning will be a rare
event, as compared to interaction.

If a player updates her repeated game strategy she samples randomly one member
of her neighborhood and then applies her individual learning rule.®> Neighborhoods
contain again the eight immediate neighbors:

Tololat
10/@O[
/e

The learning rules that we study in the following use the following information:

1. The learning player’s repeated game strategy.

2. The payoff uwn of the player’s repeated game strategy, i.e. the average payoff
per interaction that the player received while she used this repeated game
strategy.

3. A sampled player’s repeated game strategy.

3Notice, that this learning rule uses information on a single sampled player. The learning rules
discussed in Axelrod (1984, p. 158ff), Lindgren and Nordahl (1994), Nowak and May (1992, 1993),
Nowak, Bonnhoeffer and May (1994), Eshel, Samuelson and Shaked (1996), Kirchkamp (1995)
use information on all neighbors from the learning neighborhood simultaneously. We assume here
that only a single player is sampled to simplify our learning rule in the sense that only a single
alternative to the players current repeated game strategy is present. In section 3.3 on page 13 we
will see that, at least for cooperation in prisoners’ dilemmas and behavior in coordination games,
this simplification has almost no effect on the properties. E.g. cooperation in prisoners’ dilemmas
occurs with the learning rule ‘copy best player’ for almost the same range of games, regardless
whether only one or all neighbors are sampled.
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Table 1: All 26 automata with less than three states




4. The sampled player’s repeated game strategy payoff usamp, i.e. the average
payoff per interaction that the player received while she used this repeated
game strategy.

Learning rules are characterized by a vector of three parameters (4o, a1, a2) € R3.
Given a learning rule (do, a1, a2) a learning player samples one neighbors’ strategy
and payoff and then switches to her strategy with probability

p(uowna usamp) = <d0 + dluown + d2usamp> (2)
where
1 ifz>1
(x) =40 ifzx<0 . (3)
z otherwise

Uown and Usamp denote the player’s and her neighbor’s payoff respectively.

Thus, the two parameters a; and a» reflect sensitivities of the switching probab-
ility to changes in the player’s and the neighbor’s payoff. The parameter ay reflects
a general readiness to change to new strategies, which can be interpreted as a higher
or lower inclination to make an experiment or to try something new.

Note that with (dg,as,a2) € (—00,+00)> we can specify both stochastic and
deterministic rules. An example for a deterministic rule (‘switch if better’) is
(do, dl, dg) = (0, —a, (_l) with a — oo.

Notice also that our parameter ag is similar to the aspiration level A from the
global model studied in Binmore and Samuelson (1994). However, the learning rules
studied in Binmore and Samuelson are not special cases of our learning rules, since
their decisions are perturbed by exogenous noise. For cases where this noise term
becomes small our rule can approximate the rule of Binmore and Samuelson (1994)
with (do, dl, &2) = (A, —a, (_l) with a — oo.

Normalization To represent (g, a1, a2) € R* we will use in the following normal-
ized values (ag, a1, az) € [0, 1] such that

d; = tan (ﬂ'a,; - g) Vi€ {0,1,2} . (4)

1.00 +
0.75 T
0.50

25 T




We use normalized values for the following reason: The learning rules from the liter-
ature are often deterministic, which means that they can be represented as extreme
points of our parametrization. If we want to allow for deterministic rules, we have to
allow for values of a; and a, that tend to —oo and +oo respectively. In the following
(see section 2.5) we will analyze a dynamics where players try to choose parameters
of their learning rule optimally. If the long run learning rule is, as in the literature, a
deterministic one, thus optimal parameter values are infinite, optimization becomes
a problem. We therefore map the unbounded space of parameters of our learning
rules into a bounded space.

Mutations When a player learns a repeated game strategy, with probability %
learning fails and she learns a random strategy. In this case, any repeated game
strategy, as described in section 2.3, is selected with equal probability.

2.5 Exogenous Dynamics that Select Learning Rules

From time to time a player also has the opportunity to revise her learning rule. In
our simulations we will assume that this opportunity is a random event that occurs
for each player independently with probability 1/4000.

Thus, such an update occurs very rarely. We find it justified that for these rare
events players make a larger effort to select a new learning rule. If a player updates
her learning rule she samples all members of a neighborhood. Here we assume that
this neighborhood is larger than the one used for interaction and learning of repeated
game strategies. Players learn learning rules from neighbors which are no more than
two cells horizontally or vertically apart:*

]
oo
oo
o
@]

O!O

OlOI0I0[O
OlOI0I0[O
OlOO[OIO

For all their neighbors and for themselves they have the following information:
1. The normalized parameters of the respective learning rule ag, a1, as.

2. The average payoff per interaction that the respective player received while
this learning rule was used, u(ag, a1, as).

Figure 3 shows (only for one dimension) an example for a sample of several pairs of
a parameter a; and a payoff u (black dots) together with the respective estimation
of the functional relationship (gray line) between a; and wu.

Since in our model learning rules are updated very rarely, we want to implement
a learning rule which makes some effort to evaluate available information efficiently.
We assume that players make an estimation of a model that helps them explaining

4Results do not change substantially if this neighborhood is smaller or larger.
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Figure 3: An example for samples of pairs of parameters and payoffs (black) which
are used to estimate a functional relationship (gray) between a; and u. Given this
relationship an optimal value a} is determined.

their environment, in particular their payoffs. Players use such a model to choose
an optimal learning rule.

To model such a decision process we assume that players use a quadratic func-
tion of the learning parameters to explain success of a learning rule. Formally the
quadratic function can be written as follows:

bo
u(ao,al,ag) =c+ (ao,al,ag) bl +
by
qoo qo1 4o2 Qo
+(ag,a1,a2) | go1 @1 Q2 a; | te (5)
qo2 qi12 422 az

Players make an OLS-estimation to derive the parameters of this model (e describes
the noise).’

The OLS-Regression determines the parameters (c,bo, b1, b2, G0, Go1, o2,
q11, 12, @22) of the above model. Given this model, the player can determine the
combination of ag, a1, as that maximizes u(ag, a1, as). Of course, such a maximum
need not exist. For our simulations we find that a unique interior maximum can be
found for more than 99% of all updates. In the rare case where we find no unique
interior maximum, the most successful neighbor is copied.

Mutations We will also introduce mutations for players’ learning rules. When a
player updates her learning rule, with probability % learning fails and she learns

5We have chosen a quadratic function because it is one of the simplest models which still has
an optimum. Similarly we assume that players derive this model using an OLS-estimation because
this is a simple and canonical way of aggregating the information players have. We do not want
to be taken too literally: We want to model players that more or less behave as if they would
maximize a quadratic model which is derived using an OLS-estimation.
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Figure 4: Long run distribution over parameters of the learning rule (ag, a1, as).
Average over 188 simulations runs, each lasting for 400000 periods. Relative fre-
quencies are given as percentages.

a random learning rule that is chosen following an equal distribution (for the nor-
malized parameters) over (ag, as,az) € [0,1]3, which is equivalent to a random and
independent selection of ag, a1, as following each a Cauchy distribution.

2.6 Initial Configuration

At the beginning of each simulation each player starts with a random learning rule
that is chosen following an equal distribution over (ag,a,az) € [0,1]3. Thus the
parameters ag, a1, ao are distributed independently following a Cauchy distribution.
Also each player starts with a random repeated game strategy, again following an
equal distribution over the available strategies.

3 Results with Endogenous Learning Rules

3.1 Distribution over Learning Parameters

We have run several simulations on a 50 x 50 grid, lasting 400000 periods each.
Figure figure 4 displays averages over several simulations.

Since we can not display a distribution over the three-dimensional space
(ag, a1, as) we will analyze two different projections into subspaces. The left part
of figure 4 displays the distribution over (ai, az), the right part over (ag,a; + as)
respectively. Axes range from 0 to 1 for ag, a; and as and from 0 to 2 in the case of
a1 + as. Labels on the axes do not represent the normalized values but instead ay,
a1, o which range from —oo to +00.%

6The figure was derived from a table of frequencies with 30 x 30 cells. The scaling of all axes
follows the normalization given in equation 4 on page 7. To be precise, the value “a4;+as” represents
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Both pictures are simultaneously a density plot and a table of relative frequencies:

Density plot: Different densities of the distribution are represented by different
shades of gray. The highest density is represented by the darkest gray.”

Table of relative frequencies: The pictures in figure 4 also contains a table of
relative frequencies. The left picture is divided into eight sectors, the right
picture is divided into six rectangles. The percentages within each sector
or rectangle represent the amount of players that use a learning rule with
parameters in the respective range.

The left part of figure 4 shows two interesting properties of endogenous evolution:
First, with endogenous evolution learning rules are sensitive to a player’s own payoff.
Second, they are substantially less sensitive to observed payoffs. We call this latter
property suspicion.

Sensitivity to own payoffs: Remember that the initial distribution over a; and
ae is an equal distribution. Thus, had we drawn the right part of figure 4
in period one, the result would have been a smooth gray surface without
any mountains or valleys. Starting from this initial distribution our learning
parameters have changed substantially. Even if not in all cases a; became
—o00, the distribution over learning parameters puts most its weight on small
values of a;.

Insensitivity to sampled payoffs: In the left part of figure 4 we see that 71.5%
of all players use a learning rule with |as| < |a;], i.e. a learning rule which puts
more weight on the player’s own payoff than on the sampled payoff.

If we restrict ourselves to ‘reasonable’ learning rules with a; < 0 and as > 0
then 76.1% of all these rules have the property that |as| < |a4].

Notice that in both cases the initial distribution over parameters of the learning
rule implies that 50% of all rules fulfill |as| < |a4].

We call this kind of behavior ‘suspicious’ in the following sense: A sampling
player may realize that an observed learning rule is successful for her neighbor.
Nevertheless she does not know whether the same rule is equally successful at
her own location. Perhaps the success of her neighbor’s rule is related to the
particular behavior of players which are neighbors of her neighbor, but not her
own. Thus, our player might fear that the sampled neighbor’s experience can
not be generalized for her own case.

actually tan(rw - (41 + d2) — 7/2) and not a1 + d2. In the current context this difference should be
negligible.

"Densities are derived from a table of frequencies with a grid of size 30 x 30 for each picture.
We actually map logs of densities into different shades of gray. The interval between the log of
the highest density and the log of 1% of the highest density is split into seven ranges of even
width. Densities with logs in the same interval have the same shade of gray. Thus, the white
area represents densities smaller than 1% of the maximal density while areas with darker shades of
gray represent densities larger than 1.9%, 3.7% 7.2%, 14%, 27% and 52% of the maximal density
respectively.
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Figure 5: Long run distribution over switching probabilities

Our aim is to compare properties of endogenous learning rules with properties of
those studied in parts of the literature on local evolution.

In this section we have seen that endogenous learning rules may be similar to
the above fixed learning rules in the sense that small changes in the player’s own
payoff may lead to drastic changes in the probability to adopt a new strategy.

Endogenous learning rules differ from those studied in parts of the literature on
local evolution in the sense that changes in an observed player’s payoff only lead to
small changes in the probability to adopt a new strategy.

In the next section we want to investigate how these properties are reflected in
actual switching probabilities.

3.2 Probabilities to Switch to a Sampled Learning Rule

When a player follows her learning rule as specified in equation 2 on page 7 she
determines a probability to switch to the observed repeated game strategy. Figure 5
shows the distribution of these switching probabilities.® In addition to the distri-
bution of switching probabilities in the long run, figure 5 also shows three reference
distributions:

initial: The distribution of switching probabilities, given the initial distribution
over learning rules.

stochastic: The distribution of switching probabilities, given a fixed learning rule
(dO) dl) d?) = (1/2’ _1/8’ 1/8)

deterministic: The distribution of switching probabilities, given a fixed learning
rule (ao, a1, az) = (1/2,—100, 100).

8This figure was derived from a table of frequencies with 30 cells. The scaling of the horizontal
axis follows the normalization given in equation 4 on page 7.
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The horizontal axis represents o + G1Uown + G2Usamp. Following the learning rule
2 a player will switch stochastically with probability ao + @1Uown + G2Usamp if this
expression is between zero and one. Otherwise the player will either switch with
certainty or not at all. Figure 5 shows that in the long run more than 50% of all
learning events a player will not switch at all and in more than 30% of all events she
will switch with certainty. Only in about 12% of all learning events her decision will
be a stochastic one. Thus, we might be tempted to describe switching behavior in the
long run as mainly deterministic. But we have to be careful: Comparison with the
other three distributions leads to the conclusion that this degree of deterministic
behavior is already present in the initial distribution. Switching probabilities of
endogenous learning rules still seem to be significantly different those of deterministic
rules.

In the previous two sections we have found that some properties of endogenous
learning rules are different from those of fixed deterministic rules. Endogenous
learning rules are less sensitive to changes in a sampled player’s payoff and switching
is stochastic at least sometimes.

In the next section we will study whether these differences carry over to stage
game behavior.

3.3 Stage Game Behavior

Figure 6 on the next page shows proportions of stage game strategies for various
games both for endogenous and for fixed learning rules. Remember that in our
simulations the underlying game changes every 2000 periods. Just before the game
changes we determine the proportion of stage game strategies C' and D. These pro-
portions are represented in figure 6 as circles. The position of the circle is determined
by the parameters of the game, g and h. The size of the circle is proportional to the
proportion of C' or D, whichever is the larger. The color of the circle is white if the
proportion of C's is larger and black otherwise.

Figure 6 compares two cases: An exogenously given learning rules of the ‘switch
if better’ type, approximated as (ao, a1, a2) = (0, —100000, 100000) and the case of
endogenous learning rules.

In both pictures two areas can be distinguished. One area where most of the
simulations lead to a majority of C' and another one where most simulations lead to
a majority of D. We make two observations:

e The fixed learning rule ‘switch if better’, which is only an approximation of
one of the learning rules studied in Kirchkamp (1995), leads to very similar
results.

— There is cooperation for a wide range of prisoners’ dilemmas.

— In coordination games players do not follow the principle of risk domin-
ance but another principle which is between risk dominance and Pareto
dominance.

13



g
1 4
Player 11 .
e ppcq PP
1
Player © p I A } } f f [
! } 0 2 DD
C . 0 CC > DD PD DD
14+
ccC CD,DC

switch if better

endogenous

Figure 6: Stage game behavior depending on the game. (o=most players play C,
e=most players play D).

14



e Endogenous learning rules lead to a stage game behavior which is similar to
the one achieved with the fixed rule ‘switch if better’. There is still some
cooperation for prisoners’ dilemmas (however, less cooperation than with the
‘switch if better’ rule) and behavior in coordination games does not follow risk
dominance.

The first point is interesting to note, because it shows that the model that we have
studied in this paper is comparable with the model analyzed in Kirchkamp (1995)
at all.

The second point shows that properties of network evolution discussed in Kirch-
kamp (1995) do not depend on the choice of the particular learning rule. They persist
even with endogenous evolution of learning rules. Since Axelrod (1984, p. 158ff),
Lindgren and Nordahl (1994), Nowak and May (1992, 1993), Nowak, Bonnhoeffer
and May (1994), Eshel, Samuelson and Shaked (1996) all use learning rules which
are exogenously given and which are similar to ‘switch if better’ we can hope that
part of their results still hold, even if we allow players to choose their own learning
rules — at least as long as the set of learning rules they may choose from is as
limited as in our above discussion.
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4 Conclusions

In the previous two sections we have followed two questions.

The first one was whether learning rules, which are used in Axelrod (1984,
p. 158ff), Lindgren and Nordahl (1994), Nowak and May (1992, 1993), Nowak,
Bonnhoeffer and May (1994), Eshel, Samuelson and Shaked (1996), in Kirchkamp
(1995) can be justified as the outcome of an evolutionary selection dynamics.

We have found that the dynamics that we have analyzed here selects rules which
are different from the ones commonly assumed in the literature. In particular the
learning rules which are selected following our dynamics are much less sensitive to
changes in a sampled player’s payoff.

The second question we asked was whether endogenous learning rules lead at
least to a similar stage game behavior. Here we have found that indeed important
properties of stage game behavior, like cooperation for some prisoners’ dilemmas and
coordination not on risk dominant equilibria, is present both with our endogenous
learning rules and with fixed learning rules specified above and in the literature.

Besides the selection dynamics that we have presented above we have also ana-
lyzed other selection dynamics. In Kirchkamp and Schlag (1995) we study dynamics
where players use less sophisticated update rules than the OLS-model used in this
paper. We have analyzed models where players move only in the direction of the
maximum of the OLS model, but do not adopt the estimate of the optimal rule
immediately. Further we have analyzed models where players do not estimate any
model at all but instead copy successful neighbors. Both alternative specifications
lead to similar properties of learning rules: Switching probabilities are less sensitive
to changes in payoff of the neighbor and more sensitive to changes in payoffs of the
player herself. Also properties of the induced stage game behavior are similar: Both
alternative specifications lead to cooperation for some prisoners’ dilemmas and co-
ordination not on risk dominant equilibria. Thus, we can regard the above results
as fairly robust.

References

AXELROD, R. (1984): The evolution of cooperation. Basic Books, New York.

BINMORE, K., aND L. SAMUELSON (1994): “Muddling Through: Noisy Equilib-
rium Selection,” Discussion Paper B-275, SFB 303, Rheinische Friedrich Wilhelms
Universitat Bonn.

ESHEL, I., L. SAMUELSON, AND A. SHAKED (1996): “Altruists, Egoists and Hoo-
ligans in a Local Interaction Model,” Tel Aviv University and University of Bonn.

KirRcHKAMP, O. (1995): “Spatial Evolution of Automata in the Prisoners’ Di-
lemma,” Discussion Paper B-330, SFB 303, Rheinische Friedrich Wilhelms Uni-
versitat Bonn.

16



KircHkAMP, O., anp K. H. ScHLAG (1995): “Endogenous Learning Rules in
Social Networks,” Rheinische Friedrich Wilhelms Universitat Bonn, Mimeo.

LINDGREN, K., AND M. G. NORDAHL (1994): “Evolutionary dynamics of spatial
games,” Physica D, 75, 292-309.

MaAy, R. M., ano M. A. Nowak (1992): “Evolutionary Games and Spatial
Chaos,” Nature, 359, 826-829.

Nowak, M. A., S. BONNHOEFER, AND R. M. MAy (1994): “More Spatial
Games,” International Journal of Bifurcation and Chaos, 4, 33-56.

Nowak, M. A., anp R. M. MAy (1993): “The Spatial Dilemmas of Evolution,”
International Journal of Bifurcation and Chaos, 3, 35-78.

17



	Simultaneous Evolution of Learning Rules and Strategies
	Abstract
	Contents
	Introduction
	The Model
	Overview
	Stage Games
	Repeated Game Strategies
	Learning Rules
	Exogenous Dynamics that Select Learning Rules
	Initial Configuration

	Results with Endogenous Learning Rules
	Distribution over Learning Parameters
	Probabilities to Switch to a Sampled Learning Rule
	Stage Game Behavior

	Conclusions
	References


