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Abstract:

Nonparametric density estimation is a useful tool for examining the

structure of data, in particular, for the stationary time series, since usu-

ally it is really di�cult to �nd the real marginal density of the series. Some

papers contributed to this aspect for �-mixing stationary sequence can be

found in the literature, e.g., Robinson (1983), Tran (1989, 1990). However,

just as Tran et al (1996) stressed, yet there are a great number of processes

which may not be �-mixing. In this paper, we will adopt a nonparametri-

cal method to estimate unknown density function of a sample data process

which is based on relaxing � -mixing assumptions (see Billingsley (1968)

and Bierens (1983)). Uniformly weak and strong consistency and the con-

vergence rates of the estimator we adopted will be discussed, and some

numerical examples will be given.

AMS Classi�cations: Primary 62G07; Secondary 62G20, 62M10.

JEL Classi�cations: C13, C14, C22.

Keywords: Relaxing �-Mixing Sample, Stationary Sample Process, Non-
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1. Introduction

Probability density estimation and nonparametric, nonlinear regression

are probably the two most widely studied nonparametric estimation prob-

lems. Many techniques have been developed under independent observa-

tions. In recent years, extending these techniques to dependent observations

and time series data which are not Gaussian cases is much attractive. Robin-

son (1983) gives several reasons why a nonparametric approach to time series

analysis is of interest. For example, nonparamteric methods can be used to

estimate the �nite dimensional densities and these can be used for detecting

Gaussianity or non-Gaussianity of the process. Nonparametric approaches

can also be extended for prediction, and the estimation of the regression

function for the processes satisfying weak dependence conditions, such as

mixing. In this paper, we will use general kernel estimator to estimate the

unknown density function of a sample stationary, v-stable process based on

a �-mixing sequence, and study its consistency and the rate of convergence.

Some numerical examples will be given to show how the estimation works

on practical data.

Before we start our paper, �rst let us recall the de�nition of the �-mixing

process. Let fzj ; �1 < j < +1g be a sequence of random variables

de�ned on an Euclidean space. Suppose that fzjg is stationary. Denote

by F j
�1

the � �eld generated by the random vectors zj ; zj�1; � � � ; and by

F+1

j+k the � �eld generated by the random vectors zj+k; zj+k+1; � � �. If there

is a nonnegative real function �k satisfying limk!1 �k = 0 such that for

every set A 2 F j
�1

and every B 2 F+1

j+k , there is

jP (A \B)� P (A)P (B)j � �kP (A);

for each j(�1 < j <1) and each k � 1, then fzjg is said to be a �-mixing

process (Billingsley, 1968). In particular, we note that an independent

process is �-mixing with �0 = 1; �k = 0; k � 1. Although �-mixing

condition is much weaker than usual iid assumption on data analysis till now

we have been using in nonparametric statistical density estimation, some

processes of interest in time series analysis, for example, the normal AR(1)

process, are not �-mixing. In the following, we discuss some estimation

problem based on relaxing �-mixing assumption process. Let fzjg be a

�-mixing process in Rp and fxjg be de�ned as

xj = g(zj ; zj�1; zj�2; � � �); j = 1; 2; � � � ; (1:1)
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where g is a Borel measurable function on Rp�Rp�� � � �! R1. It is known

that fxjg is still the stationary process, but it need not be a �-mixing any

more. In Bierens(1983), he introduced the following sample transformation.

Assume Ejxj j2 <1 and for any integer m � 1, let

x
(m)

j = E(xj jzj ; zj�1; zj�2; � � � ; zj�m+1); j = 1; 2; � � � : (1:2)

It is easy to know that fx(m)

j g is ��-mixing,

��n =

8<
:

�n�m n � m,

1 n < m.

Denote

v(m) = Ejxj � x
(m)

j j2:

De�nition 1. The process fxjg is said v-stable (in L2) with respect to

the process fzjg if

lim
m!1

v(m) = 0:

A simple example of v-stable process is the stationary AR(1) process, xj =

�xj�1 + zj , where j�j < 1 and fzjg is �-mixing stationary with zero mean

and �nite variance.

Let x1; x2; � � � ; xn be a realization of v-stable process de�ned above and

have an unknown common density function f(x). In the following, we will

introduce a nonparametrical kernel estimator of f , and discuss its statistical

properties based on v-stable process. De�ne the kernel density estimator of

f(x) by

fn(x) = (nhn)
�1

nX
i=1

K(
x� xi

hn
): (1:3)

Here K(�) is a known kernel density function on R1, and hn > 0 is a smooth-

ing parameter, or a sequence of bandwidths tending to zero as n tends to

in�nity. In Section 2, the weak consistency of fn(x) by the similar method

used in Bierens(1983) will be discussed. The pointwise strong consistency

and uniform strong consistency will be given in Section 3 by using an in-

equality in Chai(1989), which will be given as a useful formulation. The

rates of convergence will be considered in Section 4, and some numerical

results will be given in Section 5.
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At the end of this section, we refer to some references in the literature

concerned with the kernel density estimation for the stationary sequences.

Under �-mixing context, see Robinson (1983), Tran (1989, 1990) and the

references therein. However, just as a recent paper of Tran et al (1996)

stressed, there exist a great number of processes which may not be �-mixing.

In (1.1), when fztg is an iid sequence and g is a linear function, the kernel

density function of fXtg is discussed recently by Hallin and Tran (1996),

which is clearly a special case of the context of this paper. We remark that

in nonlinear time series analysis, the stationary solutions of many models are

nonlinear functions of the iid sequences. The following examples highlight

this point.

Example 1. Consider a random coe�cient model

Xt = (�+ et)Xt�1 + "t; (1:4)

where fetg and f"tg are two independent iid sequences with Eet = E"t = 0,

Ee2t = �2 < 1; E"2t = �21 < 1. Then if �2 + �2 < 1, the second-order

stationary solution of the model is

Xt = "t + (�+ et)"t�1 + (�+ et)(�+ et�1)"t�2 + � � � ;

by which fXtg is a v-stable sequence with

zt = ("t; et); v(m) = (�2 + �2)m�21=[1� (�2 + �2)]:

Example 2. Consider a bilinear model

Xt = (�+ aet)Xt�1 + et � bet�1; (1:5)

where fetg is an iid sequence with Eet = 0, Ee2t = �2 < 1. Then if

�2 + a2�2 < 1, the second-order stationary solution of the model is

Xt = et�bet�1+(�+aet)(et�1�bet�2)+(�+aet)(�+aet�1)(et�2�bet�3)+� � � :

Clearly, fXtg is a v-stable sequence with

zt = et; v(m) = (�2 + a2�2)m(1 + b2)�2=[1� (�2 + a2�2)]:

2. Weak consistency of fn(x)
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Lemma 1. For nonnegative integer n, let v(n) = O(n��); � > 0. Assume

that the kernel density function K(x) has an absolutely integrable character-

istic function �(t), say

�(t) =

Z
R
eitxK(x)dx;

satisfying
R
R jtjj�(t)jdt <1. Let �n =

1

n

Pn
i=1 �

1=2
i , then

E sup
x2R

jfn(x)�Efn(x)j = O(
p
��nh

�1

n ); (2:1)

where ��n = maxf�n; h�2=(�+1)n (
p
n)�2�=(�+1)g.

Proof. The proof of this lemma is completely similar to that of Lemma 4

of Bierens (1983) and hence is omitted.

Remark 1. We here remark that there is a slight error in (4.2) of Bierens

(1983), in which ��n = maxf�n; h
�2=(�+1)
n (

p
n)�2=(�+1)g. However, substi-

tuting his (4.6) into his (4.5), one should take that

��n = maxf�n; h�2=(�+1)n (
p
n)�2�=(�+1)g;

as in (2.1) of this paper.

Lemma 2. Let K(�) be p.d.f., and hn # 0 as n!1. Then

(i) if f is continuous at x,

jEfn(x)� f(x)j ! 0; (2:3a)

(ii) if f uniformly continuous on R,

sup
x2R

jEfn(x)� f(x)j ! 0; (2:3b)

as n!1.

Proof: The proof of this lemma is easy and hence cancelled.

Theorem 1. Under conditions of Lemma 1 and Lemma 2, let

1X
m=0

�1=2m <1;
1

hn
(hn(

p
n)�)�

1
�+1 ! 0;

then (i) under Lemma 2 (i),

jfn(x)� f(x)j P�! 0:
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(ii) under Lemma 2 (ii),

sup
x2R

jfn(x)� f(x)j P�! 0:

Proof. Only prove the second result. Recall the de�nition of �n; �n =

O( 1n). From Lemma 1, we get

E sup
x2R

jfn(x)�Efn(x)j = O(maxf(
p
nhn)

�1; h�1n (hn(
p
n)�)�

1
�+1 g) ! 0;

when n!1: From Lemma 2, 8� > 0, when n is large enough, there

is

P (supx jfn(x)� f(x)j > �) � P (supx jfn(x)�Efn(x)j > �=2)

� 2E supx jfn(x)�Efn(x)j=�:

Then, from Lemma 1 we get

P (sup
x2R

jfn(x)� f(x)j > �)! 0; n!1:

3. Strong Consistency of fn(x)

Let f�ng1n=1 be a �-mixing, stationary random variable sequence.

E�1 = 0; j�1j � p a.s. Let Sn =
Pn

i=1 �i. For each n, there are l =

l(n); k = k(n), such that

2lk � n < 2(l + 1)k: (3:1)

Lemma 3. Under the above notations and assumptions, if
P
1

n=1 �n <1;

then for 8� > 0; and t > 0 satisfying

0 < 2tkp < 1=2; (3:2)

there is always

P (Sn > �) � e � e�t�+c0tl(1 + c1�k)
l; (3:3)

in which c0; c1 are constants depending only on p; �. If c = 1+4
P
1

n �n >

1, c0 = pc; c1 = 2e1=2 (Chai, 1989).

Proof. This is Theorem 1 of Chai (1989).
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In the following, we use c to denote a generic constant which may be

di�erent at each place.

Corollary. Let f�g1i=1 be a stationary, ��-mixing sequence of random

variables, in which

��m =

8<
:

�m�l� ; m � l�,

1; m < l�.

and � is the same as in Lemma 3. E�1 = 0; j�1j � p; a:s: l� = cn1=3:

Then 8� > 0; when n is large enough, there is

P (
1

n
j

nX
i=1

�ij > �) � c2 expf�c3� 3
p
ng; (3:4)

where constants c2; c3 do not depend on n; �.

Proof. From the symmetric of (3.4), we only need prove 9c02 > 0; c03 >

0; 8� > 0 such that

P (
1

n

nX
i=1

�i > �) � c02 expf�c03� 3
p
ng; (3:5)

where constants c02; c
0

3 may be di�erent from c2; c3, and free from n; �.

When n is large enough, from Lemma 3, take l; k; t satisfying (3.1) and

(3.2), then for any �xed l� � 1, there is

P (
1

n

nX
i=1

�i > �) � e � e�tn�+(1+4
P
1

m=1
��m)tlp(1 + c1�

�

k)
l

= e � e�tn�+(1+4l�+4
P
1

n=1
�n)tlp(1 + c1�k�l�)

l:

Let k = O(n2=3); l = O(n1=3); t = O(n�2=3) (such that (3.1) and (3.2)

hold), l� = O(n1=3), then

(1 + 4l� + 4
1X
n=1

�n)tlp = O((1 + 4
1X
n=1

�n)tlpl
�) = O(1);

and since
P

�n <1, �k � 1=k for k large enough,

(1 + c1�k�l�)
l = O((1 +

c1

n2=3 � l�
)n

1=3
) = O(1):
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Thus we get (3.5) and then (3.4).

Theorem 2. Let K(�) 2 R in (1.3) satisfy Lipschitz condition, that is,

9c > 0, such that jK(x) �K(y)j � cjx � yj for any x; y 2 R. And letP
1

n=1 �n < 1, v(l) = E(x1 � x
(l)
1
)2 = O(l��) with � > 0. If l = l(n) =

O(n1=3), hn ! 0, when n ! 1, such that
P
1

n=1(n
�=6h2n)

�1 < 1, and

8c > 0;
P
1

n=1 expf�c 3
p
nhng <1. Then we have

(i) For any �xed x at which f is continuous,

jfn(x)� f(x)j ! 0; a:s: n!1: (3:6)

(ii) If the variation of K(�) is bounded, and f is uniformly continuous on

R, then

sup
x2R

jfn(x)� f(x)j ! 0; a:s: n!1: (3:7)

Proof. Denote

f ln(x) =
1

nhn

nX
i=1

K(
x� x

(l)
i

hn
);

then

jfn(x)�Efn(x)j � jfn(x)� f ln(x)j
+ jf ln(x)�Ef ln(x)j
+ jEf ln(x)�Efn(x)j: (3.8)

Since

sup
x2R

jfn(x)�f ln(x)j =
1

nhn
sup
x2R

j
nX
i=1

(K(
x� xi

hn
)�K(

x� x
(l)
i

hn
))j � c

nh2n

nX
i=1

jxi�x(l)i j;

therefore

P (sup
x2R

jfn(x)� f ln(x)j � �) � P (
nX
i=1

jxi � x
(l)
i j � c�1n�h2n)

� c

n�h2n

nX
i=1

Ejxi � x
(l)
i j

� c

n�h2n

nX
i=1

E1=2(jxi � x
(l)
i j2)

=
c

�h2n
v(l)1=2:
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Let l = l(n) = c0n1=3; 0 < c0 < 1, then

1X
n=1

P (sup
x2R

jfn(x)� f l(n)n j � �) = O�(
1X
n=1

(n�=6h2n)
�1):

For any � > 0,

1X
n=1

P (sup
x2R

jfn(x)� f l(n)n (x)j � �) <1;

hence

sup
x2R

jfn(x)� f l(n)n (x)j ! 0; a:s: (3:9)

Next, consider

jEf l(n)n (x)�Efn(x)j � c

nh2n

nX
i=1

Ejxi � x
(l(n))
i j

� c

nh2n

nX
i=1

E1=2(jxi � x
(l(n))
i j2)

� c
v(l(n))1=2

h2n
= O((n�=6h2n)

�1);

which is free from x, thus

sup
x2R

jEf l(n)n (x)�Efn(x)j ! 0; n!1: (3:10)

Finally,

jf l(n)n (x)�Ef l(n)n j = j 1

nhn

nX
i=1

(K(
x� x

(l(n))
i

hn
)�EK(

x� x
(l(n))
i

hn
))j;

and for any �xed x, a random variable sequence fK(
x�x

(l(n))
i
hn

)�EK(
x�x

(l(n))
i
hn

)gni=1
satis�es conditions in Corollary of Lemma 3. Hence 8� > 0; when n is

large enough

P (jf l(n)n (x)�Ef l(n)n (x)j > �) = P (
1

nhn
j

nX
i=1

(K(
x� x

(l(n))
i

hn
)�EK(

x� x
(l(n))
i

hn
))j > �)

� c1 expf�c2 3
p
nhn�g:
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Thus, from
1X
n=1

P (jf l(n)n (x)�Ef l(n)n (x)j > �) <1;

and when x is �xed, we get

jf l(n)n (x)�Ef l(n)n (x)j ! 0; a:s: (3:11)

Therefore, together with (3.8) - (3.11), and from (2.3a), we get (3.6).

Next, we prove (3.7). Observe

sup
x2R

jf l(n)n (x)�Ef l(n)n (x)j = sup
x2R

j 1

nhn
j

nX
i=1

(K(
x� x

(l(n))
i

hn
)�EK(

x� x
(l(n))
i

hn
))j:

(3:12)

Let Fn denote the empirical function for x
(l(n))
1

; � � � ; x(l(n))n ; and F be a

marginal distribution function of x
(l(n))
1

; � � � ; x(l(n))n : Then (3.12) equals

sup
x2R

j 1
hn

Z
K(

x� u

hn
)d(Fn(u)� F (u))j:

Since Fn(u) � F (u) is a bounded variation function, from integration by

parts, (3.12) can be done as

sup
x2R

j 1
hn

K(
x� u

hn
)[Fn(u)� F (u)]j+1

�1
� 1

hn

Z
(Fn(u)� F (u))dK(

x � u

hn
)j

� sup
x2R

1

hn

Z
jFn(u)� f(u)jdjK(

x� u

hn
)j

� 1

hn
sup
u2R

jFn(u)� F (u)jV (K);

where V (K) denotes the complete variation of K(�), and is bounded.

From well known Gnedenko Theorem, to prove supu2R jFn(u) � F (u)j !
0; a:s: (n!1), we only need to prove for each u, there is

jFn(u)� F (u)j ! 0; a:s: n!1:

But we know

1

hn
jFn(u)� F (u)j = 1

nhn
j

nX
i=1

(I(x
(l(n))
i � u)�EI(x

(l(n))
i � u))j:
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Here, random variable sequence fI(x(l(n))i � u) � EI(x
(l(n))
i � u)gni=1

satis�es conditions in the Corollary of Lemma 3, therefore,

P (
1

hn
jFn(u)� F (u)j � �) = P (

1

nhn
j

nX
i=1

(I(x
(l(n))
i � u)�EI(x

(l(n))
i � u))j � �)

� c1 expf�c2 3
p
nhn�g;

that is

1X
n=1

P (
1

hn
jFn(u)� F (u)j � �) �

1X
n=1

c1 expf�c2 3
p
nhn�g <1:

Then
1

hn
jFn(u)� F (u)j ! 0; a:s: n!1;

thus

sup
x2R

jf l(n)n (x)�Ef l(n)n (x)j ! 0; a:s: n!1:

From Lemma 2, we get (3.7).

4. Convergence Rates of fn(x)

Lemma 4. If f is bounded, uniformly continuous function with bounded

2nd order derivative, andZ
uK(u)du = 0;

Z
u2K(u)du <1;

then

sup
x
jEfn(x)� f(x)j = O(h2n); (4:1)

Proof. Clearly,

jEfn(x)� f(x)j = j 1

nhn

Z nX
i=1

K(
x� u

hn
)f(u)du� f(x)j

= j
Z
K(u)f(x� hnu)du� f(x)j

= j
Z
K(u)(f(x� hnu)� f(x))duj:

11



According to the Taylor expansion,

f(x� hnu)� f(x) = (�hnu)f 0(x) +
(�hnu)2

2
f 00(�);

� 2 (x� hnu; x), thus

jEfn(x)� f(x)j = j
Z
K(u)[(�hnu)f 0(x) +

h2nu
2

2
f 00(�)]duj

= jh
2
n

2

Z
u2K(u)f 00(�)duj:

Therefore,

sup
x
jEfn(x)� f(x)j � h2n

2
sup
y2R

jf 00(y)j
Z
u2K(u)du:

From given conditions, we get (4.1).

Theorem 3. In Theorem 1, let � > 0; hn = n��=(6�+8); K(�); f satisfy

conditions in Lemma 4. Then

sup
x
jfn(x)� f(x)j = Op(�n); (4:2)

in which

�n = O(n�
�

3�+4 ): (4:3)

Proof. From Lemma 4,

sup
x
jEfn(x)� f(x)j = O(h2n) = O(�n);

and then from Lemma 1

E sup
x
jfn(x)�Efn(x)j = O(

p
��nh

�1

n ):

Because

P (sup
x
jfn(x)�Efn(x)j > c�n) � c�1��1n E sup

x
jfn(x)�Efn(x)j

� c�1 ��1n h�1n maxfn�1=2; h
�1
�+1
n n

�
�

2(�+1) g

= c�1 ��1n h
�1�

1
�+1

n n
�

�
2(�+1) ;
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from (4.3), we get

P (sup
x
jfn(x)�Efn(x)j > c�n)! 0; n!1; c!1:

Then �nish the proof.

Theorem 4. In Theorem 2, if � > 9; hn = n�1=9, then

(i) for �xed x at which f(x) is continuous, there is

fn(x)� f(x) = o(rn) a:s:; (4:4a)

(ii) under Theorem 2 (ii),

sup
x2R

jfn(x)� f(x)j = o(rn) a:s: (4:4b)

where rn = n�2=9(log logn) log n.

Proof. From Lemma 4,

sup
x

r�1n (Efn(x)� f(x)) = O(r�1n h2n); (4:5)

In the following, we need to get

r�1n (fn(x)�Efn(x))! 0; a:s: n!1:

That is, we need to prove 8� > 0,

1X
n=1

Pfr�1n (fn(x)�Efn(x)) > �g <1:

From the proof of Theorem 2, we know

P (r�1n jfn(x)�Efn(x)j > �) = P (jfn(x)�Efn(x)j > rn�)

� c

�
(rnn

�=6h2n)
�1 + c1 expf�c2 3

p
nhnrn�g:

(4.6)

When hn = n�1=9; rn = n�2=9(log log n) logn, there are

r�1n h2n ! 0; n!1;

3
p
nhnrn = n1=3n�1=9n�2=9(log logn) log n !1

13



and

expf�c2 3
p
nhnrn�g = expf�c2�(log logn) log ng

= e�c2�(log log n) log n

= e(log n)
�c2� log log n

= n�c2� log log n:

And then for n large enough, �xed �, we get c2� log log n > 1, thus

1X
n=1

expf�c2 3
p
nhnrn�g <1: (4:7)

Because

1X
n=1

(rnn
�=6h2n)

�1 =
1X
n=1

(n�
2
9 (log logn)(log n)n

�
6 n�

2
9 )�1 =

1X
n=1

(n
�
6
�

4
9 (log log n) logn)�1;

when � is suitable large, say � > 9, there is

1X
n=1

(rnn
�=6h2n)

�1 <1: (4:8)

From (4.5) - (4.8), we get (4.4).

Since f is uniformly continuous on R, we can immediately extend result

of the above to

sup
x2R

jfn(x)� f(x)j = o(rn); a:s:

for all x 2 R.

5. Numerical Example

A simulation of Example 2 in Section 1 has been made. Here constants

a = b = 1=2, and � = 0:4 in (1.5), that is

Xt = (0:4 + 0:5et)Xt�1 + et � 0:5et�1; (5:1)

14



in which fetg come from iid uniform distribution on [-1/2, 1/2]. Fig. 1.1

shows the realization of the stationary solution of (5.1) with the size of sam-

ples = 1000. Fig. 1.2 to Fig. 1.4 indicate the marginal density estimations

of Xt by using estimator (1.3) with Gaussian kernel and di�erent window

widths, from which the asymmetric property of the density of Xt is clear.

A simple practical example is given by using foreign exchange data of

Canadian Dollar vs. Australian Dollar and British Pound from January 2,

1991 to June 4, 1996. The number of total observations for each pair is 1359.

Since the real data processes are not stationary, we use the �rst di�erence

in the logarithms to get stationarity. We call the new process as the �rst

log-di�erence stationary process. These are shown in Figure 2. To use

(1.3), we employ the following three kinds of kernels:

(i) Triangular kernel on [�1; 1]:

K1(u) =

(
1� juj; if juj � 1,

0; otherwise,
(5:2)

(ii) Epanechnikov kernel:

K2(u) =

8<
:

3

4
(1� u2); if juj < 1,

0; otherwise,
(5:3)

(iii) Gaussian kernel:

K3(u) = (2�)�1=2 expf�1

2
u2g; �1 < u <1: (5:4)

From the literature, we know that the choice of kernel function, K, is

of essentially negligible concern, but the choice of smoothing parameter is

crucial. It is well known that the optimal smoothing parameter hn in (1.3)

is

hn = C(K)f
Z
f 00(x)2dxg�1=5n�1=5; (5:5)

C(K) = f
R
t2K(t)dtg�2=5f

R
K(t)2dtg1=5. From (5.5), we know that hn

itself depends on the unknown density being estimated. If we consider an

easy and natural approach to f , a standard family of distribution is used to

assign a value to the term
R
f 00(x)2dx in hn for an ideal smooth parameter.

15



Without lose of generality, for example, consider f coming from a normal

distribution with zero mean and �nite variance �2 (Silverman, 1986). ThenZ
f 00(x)2dx = (3=8)���5 � 0:212��5: (5:6)

Therefore, from (5.2) - (5.6), smoothing parameters could be obtained as

h1 = 2:58�̂1n
�1=5;

h2 = 2:34�̂2n
�1=5;

h3 = 1:06�̂3n
�1=5;

where �̂2i = 1

n�1

Pn
j=1(xj � �x)2 is a sample variance of the given data se-

quence.

Figure 3 gives density estimation for each �rst log-di�erence stationary

process in three kinds of kernels. They show approximately normality.
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X_t=(0.4+0.5e_t)X_{t-1}+e_t-0.5e_{t-1}, e_t~iid Unif[-0.5, 0.5], 
 Fig.3.1: Realization of {X_t}, size of samples=1000
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Fig.3.2: Estimated density of X_t, bandwidth=1000^(-1/5)

density(x[6000:7000], n = 100, width = 1000^(-1/5), from = -1, to = 1)$x
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Fig.3.3: Estimated density of X_t, bandwidth=1000^(-1/6)

density(x[6000:7000], n = 100, width = 1000^(-1/6), from = -1, to = 1)$x
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Fig.3.4: Estimated density of X_t, bandwidth=1000^(-1/4)

density(x[6000:7000], n = 100, width = 1000^(-1/4), from = -1, to = 1)$x
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