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Abstract:

This paper points towards formally undecidable statements in non-cooperative

game theory. We present a general theory where rational players base their de-

cisions solely on the provable implications of their assumptions. For a version of

the centipede game, we show that it is undecidable whether a deviation from the

backward induction path is possible under commonly assumed rationality or not.

The approach retraces various impossibility results in the de�nition of rational

behavior to the presence of undecidable statements. It is argued that the pro-

blem of undecidability can be avoided by assuming that each player has a private

epistemic model of his opponents.
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I Introduction

What characterizes rational behavior in games? Is it at all possible to give a pre-

cise de�nition of perfect rationality? A series of game-theoretic articles comes to

the conclusion that the answer to the latter question is negative. Basu (1990) and

B�orgers (1994) show that rational behavior cannot be de�ned in extensive-form

games. Samuelson (1992) and Samuelson and B�orgers (1992) prove the impos-

sibility of de�ning what they call cautious rationality in normal-form games. In

this paper the above-cited impossibility results are retraced to a common sour-

ce; it is argued that the presence of undecidable statements in game theory is

responsible for the unde�nability of rationality notions, both for normal and for

extensive-form games.

The phenomenon of undecidability was discovered by Kurt G�odel when working

on the foundation of mathematical theories in the 1930s. Its existence is due to

a subtle distinction that is made by logicians between the mathematical notions

of truth and provability. Of course, any theorem that can be proved is true, and

consequently, most theoretical work is una�ected by this di�erence. However,

the converse does not always hold, in which case undecidable statements exist,

and it will be one of the principle objectives of this paper to argue that this fact

is relevant for the de�nition of rational behavior in games.

Truth and provability may di�er in the following sense. There may be candidate

theorems that cannot be proved, but which are nevertheless true2. The underly-

ing theory is then said to be incomplete. Using this term, the objective of this

2The unability to prove a statement could be due to a limited ability to �nd a proof. In

this paper, however, we understand the unability to prove a statement as the non-existence of

a proof.
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paper is it to give evidence for the proposition that standard game theory is in

fact incomplete.

The paper is organized as follows. In section II, we review the logical frame-

work necessary to prove our undecidability results. Everything in this section is

well-known. In Section III we give the key de�nitions of impossible, possible, pro-

vably impossible, and provably impossible strategies. We also introduce what we

call response correspondences. Then we prove the existence of assumptions that

represent commonly assumed rationality. In section IV, we prove the existence

of an e�ective procedure to determine the set of strategies which are (provab-

ly) (im-)possible under commonly assumed rationality. Two examples are given,

each of which involves a strategy for which it is formally undecidable whether it

is possible or not under commonly assumed rationality. Section V concludes by

proposing an alternative approach to epistemic logic which allows players to have

private epistemic models of their opponents.

II Logical Prerequisites

It will be necessary to introduce a logical framework to formally show the undeci-

dability of certain statements3. The framework developed in the sequel is known

as Peano Arithmetic which is an axiomatization of the integers. We choose this

framework since it is standard in matematical logic. Initially, our exposition will

closely follow Boolos (1993, chapter 2).

3The e�ort that must be taken to give precise proofs is considerable. However, a previous,

much simpler version of this paper that argued on a more intuitive level was not found to be

satisfactory.
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Symbols Peano Arithmetic uses logical and non-logical symbols.

� Logical symbols

{ v0; v1; ::: in�nitely many distinct variables,

{ ? logical falsity,

{ ! conditional sign (\implies"),

{ 8 universal quanti�er (\for all"),

{ = sign of identity,

� Non-logical symbols

{ 0 individual constant,

{ s 1-place function symbol (\successor"),

{ + 2-place function symbol (\addition"),

{ � 2-place function symbol (\multiplication").

Ordered pairs It will be necessary to be very precise about the way in which

symbols are concatenated. We assume that for any \objects" a and b there is

an object < a; b >, the ordered pair of a and b. The law of ordered pairs is: if

< a; b >=< c; d >, then a = c and b = d. The ordered triple < a; b; c > of a, b,

and c is the ordered pair < a;< b; c >>.

Terms The terms of Peano Arithmetic are de�ned as follows.

� Every variable is a term,

� 0 is a term,

� if t is a term, then st is a term,
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� if t and t0 are terms, then (t+t0) and (t�t0) are terms,

� no other string is a term.

We suppose that st is the ordered pair of s and t, and that (t+t0) and (t�t0)

are the ordered triples of +, t, and t0 and of �, t, and t0, respectively. Terms of

the form 0, s0, ss0, etc. will be referred to as numerals and written as 0, 1, 2,

etc. respectively.

Formulas F is an atomic formula if either F is the symbol ?, or for some terms

t and t0, F is t = t0, where t = t0 is understood to be the ordered triple of =, t,

and t0. Here is a de�nition of a formula.

� Every atomic formula is a formula,

� if F and F 0 are formulas, then (F ! F 0) is a formula,

� if v is a variable and F is a formula, then (8vF ) is a formula,

� no other strings are formulae.

Again, (F ! F 0) is the ordered triple of !, F , and F 0. Similarly, (8vF ) is the

ordered triple of 8, v, and F .

Free variables and sentences The variable v is said to be free in formula

F if there is a �nite sequence h0; :::hr such that h0 is an atomic formula t = t0

and v occurs in either t or t0, hr is equal to F , and for all i < r, either for some

formula F 0, hi+1 = (hi ! F 0) or (F 0 ! hi), or for some variable u di�erent from

v, hi+1 = 8uhi. A formula with no free variables is said to be a sentence.
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Notational conventions The negation of F is de�ned as (F !?) and written

as :F . The inequality t 6= t0 abbreviates :t = t0. We suppose that the other

familiar logical symbols ^, _, $, and 9 are de�ned in any one of the usual ways,

and we omit parentheses when it is reasonable to do so. Finally, we shall use the

symbols
V
and

W
for �nite conjunctions and disjunctions, respectively.

Axioms There are logical and non-logical axioms. The logical axioms are the

tautologies and any formula of the following list (cf. Monk (1976)):

(L1) 8v(e! f)! (8ve! 8vf),

(L2) e! 8ve, if v does not occur in e,

(L3) 9v(v = t), if v does not occur in t,

(L4) t = t0 ! (e ! f) if e and f are atomic formulas and f is obtained from e

by replacing an occurrence of t in e by t0.

Here, e and f denote formulas, v a variable, and t as well as t0 terms. The

non-logical axioms of Peano Arithmetic are the following six formulas

(N1) 0 6= sx,

(N2) sx = sy ! x = y,

(N3) x+0 = x,

(N4) x+sy = s(x+y),

(N5) x�0 = 0, and

(N6) x�sy = x�y+x,

and the induction axioms, which are the (in�nitely many) formulas
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(I) (8x(x = 0! F ) ^ 8y[8x(x = y ! F )! 8x(x = sy ! F )])! F;

where F is any formula, x is any variable, and y is any variable not occuring in

F and di�erent from x.

Deduction rules G is said to be a consequence by modes ponens of (F ! G)

and F and 8vF is said to be a consequence by generalization of F . A proof of a

formula F is a �nite sequence of formulas, each entry of which is either an axiom

or a consequence of modus ponens or generalization of earlier formulae in the

sequence, and whose last entry is F . The formula F is a theorem or provable if

there is a proof of F . If F is a theorem, we write PA ` F .

Semantics A sentence of Peano Arithmetic is called true if it is true when its

variables range over the natural numbers 0; 1; 2; :::: and 0, and s, + and � denote

zero and the successor, addition, and multiplication functions. Every theorem of

PA is true.

G�odel numbers We associate with each symbol, term, and formula of PA a

natural number, called its G�odel number. To the symbols ?, !, 8, =, 0, s, +,

�, we assign the numbers 1; 3; 5; 7; 9; 11; 13, and 15. To the variable vi, we assign

the number 2i+ 17. To de�ne G�odel numbers for terms and formulas, it su�ces

to stipulate a rule for ordered pairs: if the objects x and y (whether symbols or

ordered pairs) have G�odel numbers i and j, then the ordered pair < x; y > shall

have the G�odel number

�(i; j) = 2((i+ j)2 + i+ 1): (1)

It can be shown that this G�odel numbering does not assign the same number to

di�erent objects (cf. Boolos (1993, p. 36)). If F is a formula, then dF e denotes
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the G�odel number of F .

Formal provability Let Bew(x) denote the standard \provability" predicate

of Peano Arithmetic (for the lengthy construction of the formula Bew(x), and

for the proofs of its properties stated below, we refer the reader to Boolos (1993,

Chapter 2)). If S is a sentence, then Bew(dSe) is a sentence asserting that S is

a theorem of Peano Arithmetic. If S; T are sentences, then:

(P0) The sentence Bew(dSe) is true i� PA ` S,

(P1) if PA ` S then PA ` Bew(dSe),

(P2) PA ` Bew(dS ! T e)! Bew(dSe)! Bew(dT e),

(P3) PA ` Bew(dSe)! Bew(dBew(dSe)e),

(P4) if PA is consistent4, then PA 6` :Bew(d?e).

Property 4 is G�odel's Second Incompleteness Theorem.

Constant sentences We call a sentence constant if it is an element of the

smallest set of sentences containing ? and containing (S ! T ) and Bew(dSe)

whenever it contains S and T .

The diagonal lemma We shall make use of the following theorem, taken

from Boolos (1993, p. 53). Suppose that y1; :::; yn; z1; :::; zm are distinct variables

and that P1(y1; :::; yn; z); :::; Pn(y1; :::; yn; z) are formulas of the language of PA in

which all free variables are among y1; :::; yn; z. (z abbreviates z1; :::zm.) Then the-

re exist formulas �1(z); :::; �n(z) of the language of PA in which all free variables

4In mathematical logic, it is common practice to treat the consistency of formal number

theory as an unproved assumption. Cf. Mendelson (1964, p. 107).
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are among z, such that

PA ` �1(z)$ P1(d�1(z)e; :::; d�n(z)e; z)

�

�

PA ` �n(z) $ Pn(d�1(z)e; :::; d�1(z)e; z):

(2)

III Strategies and Logic

III.1 Impossible strategies

Consider a game for N players with �nite strategy set Si for player i, where

the preferences shall remain unspeci�ed for the moment. We assume that the

elements of Si are numerals si. To formalize the players' strategic choices, �x

once and for all pairwise distinct variables s1; :::; sN . We shall say that a formula

A is an assumption if the free variables in A are among the variables s1; :::; sN .

For an assumption Ai on player i and for a strategy si 2 Si, let impi(si; Ai) be

the sentence

8s1 :::8sN (Ai ! si 6= si): (3)

In words this says that player i's assumption Ai implies that strategy si is not

chosen by player i. We shall say that the strategy si is impossible under assump-

tion Ai if impi(si; Ai) is true; we shall call si possible otherwise. A strategy si will

be called provably impossible if impi(si; Ai) is provable. Similarly, the strategy si

is said to be provably possible if :impi(si; Ai) is a theorem.

Proposition 1 Fix some assumption Ai. Then the following holds:

1. Every strategy provably impossible under Ai is impossible under Ai;

2. Every strategy provably possible under Ai is possible under Ai.
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3. No strategy can be both provably possible and provably impossible under the

same Ai.

Proof: Assertions 1 and 2 follow from the fact that every theorem of PA is true.

Assertion 3 is an immediate consequence of 1 and 2. q.e.d.

We shall call an assumption inconsistent if it is refutable, i.e. if PA ` :Ai.

Proposition 2 Under the empty assumption >, all strategies are provably possi-

ble. Under any inconsistent assumption Ai, all strategies are provably impossible.

Proof: If Ai = > then

PA ` impi(si; Ai)$? : (4)

Similarly, if ` :Ai then

PA ` impi(si; Ai)$ >: (5)

q.e.d.

We extend the de�nitions given above to strategy pro�les. Fix a player i and an

assumption A�i. Still, A�i is a formula, but here the interpretation is that it is

an assumption on the opponents of player i, while Ai denotes an assumption on

player i. Write imp�i(s�i; A�i) for the sentence

^
j 6=i

impj(sj; A�i) (6)

As above, we say that a strategy pro�le s�i is impossible, possible, provably

impossible, provably possible if imp�i(s�i; A�i) is true, false, provable, and dis-

provable, respectively.
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III.2 Response Correspondences

Fix a player i. Let Bi(�) be a correspondence that speci�es, for any R�i � S�i,

a nonempty set Bi(R�i) � Si. We shall refer to such a Bi(�) as a response

correspondence for player i. We give three examples. Assume now that the

utilities of the players are given.

Bayesian normal-form rationality Let Bb
i (R�i) denote the set of strategies

of player i which maximize expected utility for some probability distribution on

R�i if R�i 6= ;, and on S�i if R�i = ;.

Cautious normal-form rationality Let Bc
i (R�i) be the set of player i's best

replies to Bayesian beliefs with support equal to R�i if R�i 6= ;, and equal to S�i

if R�i = ;. Thus, given any set of pro�les R�i 6= ;, the strategies in Bc
i (R�i) are

utility maximizing with respect to some subjective probability distribution on

S�i that gives strictly positive probability to all pro�les in R�i and probability

zero to all other pro�les.

Rationality in the extensive form For a given set R�i of pro�les, letB
e
i (R�i)

be the set of best replies to some non-archimedian full support probability dis-

tribution p where p(~s�i)=p(s�i) is in�nitesimal for all s�i 2 R�i and ~s�i 62 R�i.

This is the set of best replies to a non-standard probability distribution which

gives in�nitely more weight to any pro�le in R�i than to any strategy not in R�i.

In words, a strategy is rational if it is a best reply given that a rational strategy

of the other player is given in�nitely more weight than any non-rational strategy.
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III.3 Rationality

For R�i � S�i and for an assumption A�i, de�ne Prmi(R�i; A�i) as

^
s�i2R�i

:Bew(dimp�i(s�i; A�i)e) ^
^

s�i2S�inR�i

Bew(dimp�i(s�i; A�i)e): (7)

This sentence is true if R�i is the set of pro�les which are not provably impossible.

Let B(�) be some response correspondence. De�ne Rat
R�i
i (A�i; B) as the formula

Prmi(R�i; A�i) �!
_

si2Bi(R�i)

si = si:

The formula has the following interpretation: if R�i is the set of strategy pro�les

that are not provably impossible under assumption A�i, then player i chooses

a strategy from Bi(R�i). We shall write RatSii (A�i; B) (\player i is rational

w.r.t. his assumption A�i") for the formula

^
R�i

Rat
R�i
i (A�i; B):

To simplify notation, this formula will from now on be written as Rati(A�i).

Note that Rati(A�i) is itself an assumption. It is the assumption that player i is

rational and bases his decisions on the assumption A�i.

III.4 Commonly Assumed Rationality

Theorem 1 There exist assumptions car1,..., carN such that for i = 1; :::; N ,

PA ` cari $ Rati(
^
j 6=i

carj): (8)

The formula cari expresses that player i is rational and bases his decisions on

the assumption
V
j 6=i carj. Although there are di�erences in interpretation, the

de�ned formula should be seen as an analogue to \common knowledge of ratio-

nality".
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Proof: We shall apply the diagonal lemma (cf. Section II). It will su�ce to

de�ne appropriate formulas Pi(y; s), for i = 1,...N , where y and s abbreviate

y1,...yN and s1,...,sN , respectively. Fix some i. The key step of the proof is the

construction of terms tj;sj(x), for j 6= i with the property

tj;sj(dA�ie) = dimpj(sj; A�i)e; (9)

for all assumptions A�i, where on the left-hand-side, 0 and s, + and � denote

zero, and the successor, addition and multiplication function. Fix some strategy

sj. Then the term tj;sj transforms the G�odel number dA�ie of an assumption A�i

into the G�odel number tj;sj(dA�ie) of a sentence to the e�ect that the strategy sj

is impossible under A�i. To �nd such a term, recall that impj(sj; A�i) is de�ned

as

8s1:::8sN (A�i ! sj 6= sj); (10)

and that this is a more readable variant of the more explicit representation

< 8; s1; :::; < 8; sN ; <!; A�i; sj 6= sj >> ::: > : (11)

Hence, the number of this formula may be calculated, via the � function de�ned

in Section II, from the G�odel numbers of the symbols 8, s1,..., sN , !, from the

number of the formula sj 6= sj, and from dA�ie. As the � function is expressible

as a term of Peano Arithmetic and since the substitution of a variable by a term

maps terms to terms, the function tj;sj(x) may in fact be represented by a term

of PA. In a similar fashion, construct a term �ti(y) with the property

�ti(dA1e; :::; dANe) = d
^
j 6=i

Aje: (12)

De�ne t0�i;s�i(x) as
�ti(t1;s1(x); :::; tN;sN(x)). The next step in the construction of

the formulas Pi is a rede�nition of the formula Rati(A�i), where A�i is replaced
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by a variable x. For any R�i, write ~Rat
R�i

i (x) to abbreviate

0
@ ^

s�i2R�i

:Bew(t0�i;s�i)(x) ^
^

s�i2S�inR�i

Bew(t0�i;s�i(x))

1
A!

_
si2Bi(R�i)

si = si:

(13)

Finally, let ~Rati(x) denote the formula

^
R�i

~Rat
R�i

i (x): (14)

It is clear from the construction that

PA ` Rati(A�i)$ ~Rati(dA�ie) (15)

for all assumptions A�i. Using again the term �ti(y), the formula Pi(y; s) can be

chosen as ~Rati(�ti(y)). (Note that Pi does not possess free variables apart from

y; s.) The theorem now follows from the diagonal lemma. q.e.d.

IV The Possibility of Strategies

IV.1 A reformulation

Fix once and for all a vector of assumptions car1,...,carN . To simplify notation,

write impi(si) for impi(si; cari). Thus, impi(si) is the sentence

8s1 :::8sN (cari ! si 6= si): (16)

If impi(si) is true, false, provable, or refutable then si will be said to be impossible,

possible, provably impossible, and provably possible under commonly assumed

rationality, respectively. Write Prmi(R�i) for

Prmi(R�i;
^
j 6=i

carj): (17)
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Theorem 2 For every player i, and for every strategy si 2 Si,

PA ` impi(si)$
_

R�i�S�i
si 62Bi(R�i)

Prmi(R�i): (18)

Thus, it is a theorem of PA that a strategy si is impossible under commonly

assumed rationality i� si is not a best reply given the set of provably impossible

pro�les for the opponents.

Proof: By Theorem 1, cari is equivalent to the formula

^
R�i�S�i

(Prmi(R�i)!
_

si2Bi(R�i)

si = si): (19)

Fix some si 2 Si. Let F (si; R�i) be the formula

Prmi(R�i) ^
^

s0
i
2Bi(R�i)

s0
i
6=si

si 6= s0i: (20)

Then cari is equivalent to

^
R�i�S�i
si2Bi(R�i)

(F (si; R�i)! si = si) ^
^

R�i�S�i
si 62Bi(R�i)

:F (si; R�i): (21)

Hence, the formula

cari ! si 6= si (22)

is equivalent to

si 6= si _
_

R�i�S�i
si 62Bi(R�i)

F (si; R�i): (23)

Using the fact that Prmi(R�i) does not contain free variables, it follows from the

de�nition of impi(si) that

PA ` impi(si)$
_

R�i�S�i
si 62Bi(R�i)

Prmi(R�i) (24)

proving Theorem 2. q.e.d.
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Corollary 1 There is always a strategy that is possible under commonly assumed

rationality. In particular, cari is a consistent assumption.

Proof: By Theorem 2,

PA ` impi(si)$
_

R�i�S�i
si 62Bi(R�i)

Prmi(R�i): (25)

Hence,

PA `
^

si2Si

impi(si)$
^

si2Si

_
R�i�S�i
si 62Bi(R�i)

Prmi(R�i): (26)

Since

PA ` :(Prmi(R�i) ^ Prmi(R
0
�i)) (27)

for R�i 6= R0
�i and since Bi(R�i) 6= ;,

PA `
^

si2Si

impi(si)$? : (28)

Since every theorem of PA is true, there is at least one si 2 Si such that impi(si)

is false. This proves the �rst assertion. The second then follows from Proposition

2. q.e.d.

IV.2 Resolving self-reference

Theorem 3 There exists a collection (Ci;si) of constant sentences such that

PA ` impi(si)$ Ci;si (29)

for all si 2 Si and all i. The collection can be determined by a �nite procedure.
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Proof: The construction is based on an iterated application of the �xed point

theorem of de Jongh and Sambin. We start from the characterization of the

sentences impi(si) given in Theorem 2:

PA ` impi(si)$
_

R�i�S�i
si 62Bi(R�i)

Prmi(R�i) (30)

Call this system of equivalences �. Note that � consists of as many equivalences

as there are pairs (i; si). Let P denote the set of pairs p = (i; si). Let K be the

cardinality of P . We are going to de�ne inductively systems �k and sets Pk, for

0 � k � K, with the following properties:

1. the system �k consists of K equivalences each of which characterizes some

sentence impi(si);

2. each equivalence in �k is non-recursive in the sense that impi(si) does not

appear on the right-hand-side of the equivalence;

3. the set Pk contains k pairs;

4. a sentence impi(si) that corresponds to some pair in Pk does not appear on

the right-hand-side of any equivalence in �k that corresponds to a pair not

in Pk.

Let P0 = ; and �0 = �. Note that conditions 1-4 are trivially satis�ed for k = 0.

To construct Pk and �k from Pk�1 and �k�1 for some 1 � k � K, proceed as

follows. Choose �rst some element pk = (i; si) of PnPk�1. Let

Pk = Pk�1 [ fpkg:

The equivalences corresponding to pairs in Pk are transferred unchanged from

�k�1 to �k. The remaining equivalences are replaced as follows. Consider a
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pair p 2 PnPk. Substitute all occurences of impi(si) on the right-hand-side

of the equivalence corresponding to p by the right-hand-side of the equivalence

corresponding to pk. Call the resulting right-hand-side c. The equivalence now

reads

PA ` impi0(si0)$ c: (31)

Lift the sentence c of PA to a sentence C in the modal logic GL as follows:

Replace any appearance of a sentence impj(sj) by a sentence letter qj;sj , and any

appearance of Bew(�) by the box operator 2(�). Then C is modalized in qi;si . By

the �xed point theorem of de Jongh and Sambin (cf. Boolos (1993, Ch. 8)), there

exists a sentence H of GL, containing only sentence letters contained in C, not

containing the sentence letter qi;si such that

GL ` �2(qi;si $ C)$ �2(qi;si $ H); (32)

where �2S is the sentence 2S ^ S. Now let � be a realization such that

impj(sj) = q�j;sj (33)

for all pairs (j; sj). Then

PA ` (qj;sj $ C)�; (34)

therefore

PA ` ( �2qj;sj $ C)�: (35)

By Theorem 2 of Chapter 3 in Boolos (1993),

PA ` ( �2(qj;sj $ C)$ �2(qj;sj $ H))�; (36)

and therefore

PA ` �2(qj;sj $ H)�; (37)

17



whence

PA ` (qj;sj $ H)�: (38)

Thus, there is a sentence h = H� such that

PA ` impj(sj)$ h; (39)

and such that the sentences impi0(si0) corresponding to pairs in Pk do not appear

in h. The equivalence in �k�1 corresponding to p is replaced by h. This de�nes

inductively systems �k. The �nal system �K has the property that it is recursi-

vely solvable in the sense that the right-hand-side of an equivalence corresponding

to some pair in Pk contains solely sentences impi0(si0) corresponding to pairs in

PnPk. This proves the theorem. q.e.d.

Corollary 2 There exist e�ective methods for deciding whether a given strategy

is possible, provably possible, impossible, and provably impossible under commonly

assumed rationality, respectively.

Proof: By Theorem 3, the problem to decide whether a strategy is possible

reduces to the problem to decide the truth of a given constant sentence. But this

can be done e�ectively (cf. Boolos (1993), p. 94). To decide whether a given

strategy is provably (im-)possible note that a sentence S is a theorem if and only

if Bew(dSe) is true. Thus, the problem reduces to the one just solved. q.e.d.

IV.3 Consistent pairs

Consider the following game taken from B�orgers and Samuelson (1992).

18



0 1

0 1,1 1,0

1 1,0 0,1

Figure 1

The response scheme for cautious rationality is given by

Bc
1
(;) = Bc

1
(f1g) = Bc

1
(f0; 1g) = f0g (40)

Bc
1
(f0g) = f0; 1g (41)

for player 1 and by

Bc
2
(f0g) = f0g (42)

Bc
2
(f1g) = f1g (43)

Bc
2
(;) = Bc

2
(f0; 1g) = f0; 1g (44)

for player 2.

Proposition 3 For the game in Figure 1, commonly assumed cautious rationali-

ty implies the following: For player 1, strategy 0 is provably possible, and strategy

1 is provably impossible. For player 2, strategy 0 is provably possible, and strategy

1 is impossible, but not provably impossible.

Proof: Theorem 2 characterizes the formulas imp1(0), imp1(1), imp2(0), and

imp2(0) as the solution of the following system of equivalences:

PA ` imp1(0) $ ? (45)

PA ` imp1(1) $ Bew(dimp2(0)e) _ :Bew(dimp2(1)e) (46)

PA ` imp2(0) $ Bew(dimp1(0)e) ^ :Bew(dimp1(1)e) (47)

PA ` imp2(1) $ :Bew(dimp1(0)e) ^ Bew(dimp1(1)e) (48)
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We follow the lines of the proof of theorem 3 and look instead for a solution

of a system of equivalences in GL. Formally, we replace the formula impi(si)

by the sentence letter qi;si and the predicate Bew(d�e) by the box operator 2,

respectively.

GL ` q1;0 $ ? (49)

GL ` q1;1 $ 2q2;0 _ :2q2;1 (50)

GL ` q2;0 $ 2q1;0 ^ :2q1;1 (51)

GL ` q2;1 $ :2q1;0 ^ 2q1;1 (52)

Now use (49) to eliminate q1;0 in (51) and (52) and the resulting expressions to

eliminate q2;0 and q2;1 in (50). This yields

GL ` q1;1 $ 2(2 ? ^:2q1;1) _ :2(:2 ? ^2q1;1); (53)

which is a recursive equivalence for the sentence letter q1;1. A solution is q1;1 = >.

Thus, from (51), q2;0 =?, and similarly from (52), q2;1 = :2 ?. This induces

the following solution of the above system in PA:

PA ` imp1(0) $ ? (54)

PA ` imp1(1) $ > (55)

PA ` imp2(0) $ ? (56)

PA ` imp2(1) $ :Bew(d?e) (57)

This proves the proposition. q.e.d.

Corollary 3 For the game in Figure 1, it is formally undecidable whether stra-

tegy 1 is possible for player 2 under commonly assumed cautious rationality.
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IV.4 Centipede

Consider the following version of a centipede game.

0 1

0 2;�1 2;�1

1 0; 1 3; 0

2 0; 1 1; 2

?e

e

e

e

@
@
@

@
@
@

@
@
@

�
�
�

�
�
�

�
�
�

e

e

e

1

2

1

(2;�1)

(0; 1)

(3; 0) (1; 2)

0

0 1

1 2

Figure 2

The response scheme for extensive-form games assumes the following form for

player 1:

Be
1
(f0g) = f0g (58)

Be
1
(f1g) = f1g (59)

Be
1
(;) = Be

1
(f0; 1g) = f0; 1g (60)

Similarly for player 2:

Be
2
(f1g) = Be

2
(f0; 1g) = f0g (61)

Be
2
(f2g) = Be

2
(f0; 2g) = f1g (62)

Be
2
(;) = Be

2
(f0g) = Be

2
(f1; 2g) = Be

2
(f0; 1; 2g) = f0; 1g (63)

Proposition 4 For the game in Figure 2, commonly assumed extensive-form

rationality implies the following: For player 1, strategies 0 and 1 are provab-

ly possible, while strategy 2 is provably impossible. For player 2, strategy 0 is

provably possible, and strategy 1 is impossible, but not provably impossible.
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Proof: By Theorem 2, we have to determine the solutions to the following

system of equivalences in PA:

PA ` imp1(0) $ Bew(dimp2(0)e) ^ :Bew(dimp2(1)e) (64)

PA ` imp1(1) $ :Bew(dimp2(0)e) ^ Bew(dimp2(1)e) (65)

PA ` imp1(2) $ > (66)

PA ` imp2(0) $ Bew(dimp1(1)e) ^ :Bew(dimp1(2)e) (67)

PA ` imp2(1) $ :Bew(dimp1(1)e) ^ Bew(dimp1(2)e) (68)

As above, substitute the formula impi(si) by the sentence letter qi;si and the

predicate Bew(d�e) by the box operator 2, respectively.

GL ` q1;0 $ 2q2;0 ^ :2q2;1 (69)

GL ` q1;1 $ :2q2;0 ^ 2q2;1 (70)

GL ` q1;2 $ > (71)

GL ` q2;0 $ 2q1;1 ^ :2q1;2 (72)

GL ` q2;1 $ :2q1;1 ^ 2q1;2 (73)

Replacing the right-hand-side of (71) for q1;2 in the equivalences (72) and (73)

and using the resulting expression for q2;0 and q2;1 in (69) and (70) yields

GL ` q1;0 $ 2 ? ^:2:2q1;1 (74)

GL ` q1;1 $ :2 ? ^2:2q1;1 (75)

GL ` q1;2 $ > (76)

GL ` q2;0 $ ? (77)

GL ` q2;1 $ :2q1;1 (78)

Equivalence (75) is a recursive characterization of q1;1, solved e.g. by q1;1 =?.

This implies q1;0 =? and q2;1 = :2q1;1. For the original system, the following
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solution results:

PA ` imp1(0) $ ? (79)

PA ` imp1(1) $ ? (80)

PA ` imp1(2) $ > (81)

PA ` imp2(0) $ ? (82)

PA ` imp2(1) $ :Bew(d?e) (83)

This proves the proposition. q.e.d.

Corollary 4 For the game in Figure 2, it is formally undecidable whether strat-

egy 1 is possible for player 2 under commonly assumed extensive-form rationality.

V Conclusion

The paper discussed the existence of undecidable statements in non-cooperative

game theory. Using tools from mathematical logic, we developed a model of

rational behavior that distinguishes between formal truth and provability. A

simple version of the centipede game was used to illustrate the fact that for some

strategies it may be undecidable whether they can result from perfectly rational

behavior or not.

The result is provocative for the following reason: The standard epistemic model

of knowledge (Aumann (1976)) implicitly presupposes the decidability of state-

ments. We believe that the critical feature of Aumann's model is the common

epistemic model, which is shared among the players. To avoid the undecidability
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issue, we propose that each player should be given a private epistemic model.

By a private epistemic model we mean a model that describes what a player

assumes, how he comes to conclusions and how his actions are in
uenced by his

conclusions. Our point of view implies that the description of a player contains

in particular his assumptions on the other player. If a player assumes that his

rival is rational, then his assumptions should also specify the assumptions that

he envisages the other player to have. The undecidability issue is mitigated for

private epistemic models as a player's assumptions do not necessarily coincide

with the assumptions that the other player expects him to have.
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