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Abstract

From last decade, nonparametric statistical methods have been widely
used in econometrics, since they o�er versatility and exibility in estima-
tion and forecasting{one needs not to specify functional forms. Consider a
nonparametric regression model yi = m(xi)+ ei; i = 1; 2; � � �n, assume m(�)
unknown and to be estimated based on (x0

i
; yi) which are i.i.d. observations

of random variable (X0; Y ). Here assume that i.i.d. errors ei come from an
unknown density function f(e). This paper will give some extension asymp-
totic properties of a nonparametric estimator f̂n(e) of f(e). Application will
go to the estimation of income distribution of United Kingdom which has
recently been considerable popular. Personal income observations will come
from U.K. Family Expenditure Survey from 1968 to 1987. Sampling size for
each year is around 7000.
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1. Introduction

Consider a standard nonparametric regression model

yi = m(xi) + ei i = 1; 2; � � � ; n (1:1)

where m(x) = E(Y jX=x) is completely amorphous, to be estimated and
(x0i; yi); i = 1; 2; � � � ; n are i.i.d. observations of (X0; Y ), a p + 1 dimen-
sion random vector. The problem then is how to estimate m(�) based on
f(x0i; yi)g

n

i=1, it is de�ned simply as the expectation E(yjx). Typical assump-
tions onm are that it has an adequate number of derivatives. ei representing
errors are i.i.d. random variables satisfying

Ee1 = 0; 0 < Ee21 = �2 <1 (1:2)

with an unknown density function f(e). Since Stone's work in 1977, there
has been a rapid development in nonparametric estimation on m(x) and also
on the derivatives of m(x) both in theory and methodology. In company
with nonparametric estimation on m(�), at least two important problems
should be considered. The �rst concerns about how to do diagnostics of
the model, i.e. study the residuals, and the second concerns about how to
estimate the variance of these residuals. Both these problems depend on the
estimation of the unknown error distribution, an area where not much re-
search e�ort has been directed on. Ahmad (1992) proposed a nonparametric
method to estimate error density based on residuals, and established large
sample properties. Zhang, Chai and Si (1996) did some work on both �xed
design and random situation with regressors xi. This paper will focus on
further properties of f̂n(e), a nonparametric estimator of f(e), by using ideas
presented in Chai, Li and Tian (1991), Chai and Li (1993), Li (1995). And
through an asymptotic Taylor expression of f̂n(e), asymptotic bias of f̂n(e)
and f(e) will be discussed, and an \optimal" choice of smoothing parameter
in f̂n will be discussed in company with the choice of smoothing parameter
in regression estimation of m(�), which did not mentioned in the previous
work.

Let p = 1, a weighted nonparametric estimator of m(x) in (1.1) is

m̂n(x) =
nX
i=1

wni(x)yi; (1:3)

here wni(x) = wn(xi; x) represents the weight assigned to the i observation
yi. Using Nadaraya - Watson's (1964) kernel estimator, a choice of wni is

wni = �K(
xi � x

an
)=

nX
j=1

�K(
xj � x

an
): (1:4)
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�K(�) is a Kernel function and fang is a smoothing parameter tending to
zero as n tends to in�nity. About asymptotic properties of m̂n(x) with (1.4),
there are a lot of literature dealing with, such as Mack and Silverman (1982),
H�adle (1990), Ullah and Vinod (1993). Then, from (1.3), residuals of (1.1)
can be obtained as

êi = yi � m̂n(xi): (1:5)

Consider a general kernel estimator f̂n(e) of f(e)

f̂n(e) =
1

nbn

nX
i=1

K(
êi � e

bn
); e 2 R1 (1:6)

where K(�) is a kernel function may be di�erent from �K(�), smoothing param-
eter (or bandwidth) bn > 0 and when n!1; bn ! 0: To get asymptotic
unbiasedness of f̂n(e), it seems that the rate of bn convergence to 0 must
be faster than the rate of an convergence to 0. Section 3 will consider such
problems. Section 2 will give some assumptions which will be used in the
whole paper and list some results on the large properties of f̂n(e) for your
convenience. Finally, in Section 4, to see the performances of m̂n(x) and
f̂n(e) in practice, we will consider net-income data versus age in income dis-
tribution by using the data come from the Family Expenditure Survey(FES)
of the United Kingdom from 1968 to 1987.

2. Assumptions and Preliminaries

In model (1.1), let p(x; y) be a joint density function of (X; Y ), and

r(x) =
Z +1

�1
p(x; y)dy; g(x) =

Z +1

�1
yp(x; y)dy:

Then

m(x) = E(yjX = x) =
Z
yp(yjx)dy =

R
yp(x; y)dyR
p(x; y)dy

=
g(x)

r(x)
;

r(x) 6= 0. De�ne m(x) = 0 when r(x) = 0: Assume that

(i) EjY js <1; supx
R
jyjsp(x; y)dy <1; s > 2;

(ii) �K(�) and K(�) in (1.4), (1.6) may be in di�erent shape but both
are uniformly continuous in bounded intervals. They have bounded
variation and are Lebesgue absolutely integrable. They satisfy

�K(u) � 0; �K(u) = 0; if juj > �(> 0); �K(u) = �K(�u):
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K(u) � 0; K(u)=0 ; if juj > �(> 0); K(u) = K(�u);

and
lim
juj!1

juj �K(u) = 0; lim
juj!1

jujK(u) = 0;

(iii)
R
jxlogjxjj1=2jd �K(x)j <1;

(iv) both r(x) and g(x) are bounded twice di�erentiable functions;

(v) let �n = [(nan)
�1log(an)

�1]1=2, a2
n
= o(�n);

(vi) n2��1an !1, for some � < 1� s�1.

Lemma 2.1. In Model (1.1), if the above conditions hold, then

��1
n

sup
0�x�1

jm̂n(x)�m(x)j = Op(1); (2:1)

and if
P1

n=1 a
�

n
<1, for some � > 0, then

��1
n

sup
0�x�1

jm̂n(x)�m(x)j = O(1): a:s: (2:2)

Proof. See Mack and Silverman (1982).

For your convenience, we list some large sample properties of f̂n(e) in the
following. From Zhang, Chai amd Si (1996):

Proposition 2.1. Using lemma 2.1, if
P1

n=1 a
�

n
<1, for some � > 0,

and 0 < bn ! 0; �n=bn ! 0; nbn=logn ! 1; then

f̂n(e) ! f(e); a:s: e 2 C(f): (2:3)

When f(e) is uniformly continuous, there is

sup
e

jf̂n(e)� f(e)j ! 0; a:s: (2:4)

Proposition 2.2. Using lemma 2.1, if
P

n

i=1 a
�

n
<1, for some � > 0

and 0 < bn ! 0; �n=bn ! 0, then for any " > 0

Pfjjf̂n � f jjL1 > "g � C expf�Cn"2g; 8f 2 F: (2:5)

3. Main Results

From Chai and Li (1993) and conditions in the section 2,
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Lemma 3.1. let
lim
n!1

nbn = 0;

then

(
2nbn
f(e)

)1=2(fn(e)� f(e))
L
�! N(0; 1); n ! 1: (3:1)

Theorem 3.1. Asymptotic Normality of f̂n(e). In model (1.1),
if we take an = n�1=5, and let nb3

n
! 0 and bn=�n logn ! 1, where

�n = n�2=5 log1=2 n; f(e) satis�es a local Lipschitz condition at e, then

(
2nbn
f(e)

)1=2(f̂n(e)� f(e))
L
�! N(0; 1); n ! 1: (3:2)

Proof. For convenience, �rst consider K(�) in (1.6) as a uniformly kernel
function, i.e.

f̂n(e) = (2nbn)
�1

nX
i=1

I(e�bn; e+bn)(êi); x 2 R1: (3:3)

By lemma 3.1, in order to get (3.2), we only need to prove

(
2nbn
f(e)

)1=2(f̂(e)� fn(e)) = op(1): (3:4)

Denote Cni = m̂n(xi)�m(xi), obviously

(nbn)
1=2
jf̂n(e)� fn(e)j

� (2
q
nbn)

�1
j

nX
i=1

(I(e+bn�ei�e+bn+Cni) � I(e�bn�ei�e�bn+Cni))I(Cni>0)j

+ (2
q
nbn)

�1
j

nX
i=1

(I(e�bn+Cni�ei�e�bn) � I(e+bn+Cni�ei�e+bn))I(Cni�0)j

= Jn1 + Jn2: say (3.5)

By Lemma 2.1, with probability one for large n, there is

sup
0�x�1

jm̂n(x)�m(x)j � C�n:
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Therefore, for k = 1; � � � ; n; 0 � hk � C�n,

Jn1 � (2
q
nbn)

�1 sup
0�hk�C�n

j

nX
i=1

[I(e�bn;e�bn+hk)(ei)� �(e� bn; e� bn + hk)]j

+ (2
q
nbn)

�1 sup
o�hk�C�n

j

nX
i=1

[I(e+bn;e+bn+hk)(ei)� �(e+ bn; e+ bn + hk)]j

+ (2
q
nbn)

�1 sup
0�hk�C�n

j

nX
i=1

[�(e+ bn; e+ bn + hk)� �(e� bn; e� bn + hk)]j

= Jn11 + Jn12 + Jn13; say: (3.6)

� is a theoretical distribution of ei: Since f(e) is locally Lipschitz, that is
9 c = c(e); � = �(e) > 0 such that t 2 (e� �; e + �) =) jf(t)� f(e)j �
cjt� ej. Choosing su�cient large n, we have

Jn13

� (2
q
n=bn)

�1[
Z

C�n

0

jf(t+ e + bn)� f(e)jdt+
Z

C�n

0

jf(t+ e� bn)� f(e)jdt]

� C(2
q
n=bn)

�1�2
n

= Cn�3=10logn=b1=2
n

! 0; (3.7)

using the method which was used to prove the lemma 4 in Chai and Li (1993),
we can get

Jn11 = op(1); Jn12 = op(1): (3:8)

By (3.6) - (3.8), Jn1 = op(1) follows. Similarly Jn2 = op(1), hence (3.4)
and then (3.2).

For general kernel K(u) in (1.6), (3.2) will follows by using the method
in Li (1995).

Lemma 3.2. From H�adle (1990), there are

Bias(m̂n(x)) =
a2
n

2

�
m00(x) + 2

m0(x)r0(x)

r(x)

�
�2( �K) + o(a2

n
) (3:9)

and

Var(m̂n(x)) =
�2

nanr(x)
jj �Kjj2 + o(nan)

�1: (3:10)
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Here,

jj �Kjj2 =
Z

�K2(u)du; �2( �K) =
Z
u2 �K(u)dt: (3:11)

Assume ei are 'true' error terms coming from f(e), and satisfy (1.2).
From the Taylor expansion, there is

E(f̂n(e)) =
1

nbn

Z nX
i=1

K(
êi � e

bn
)f(e)de

=
1

nbn

Z nX
i=1

K(
ei � e

bn
+
êi � ei

bn
)f(e)de

=
1

nbn

Z nX
i=1

K(
ei � e

bn
+
m(xi)� m̂n(xi)

bn
)f(e)de

=
1

nbn

Z nX
i=1

K(
ei � e

bn
)f(e)de

+
1

nbn

Z nX
i=1

 
(K 0(

ei � e

bn
) + o(1))

m(xi)� m̂n(xi)

bn

!
f(e)de

=
1

bn

Z
K(

u� e

bn
)f(u)du+

1

nb2
n

Z
K 0(

u� e

bn
)f(u)du

nX
i=1

(m(xi)� Em̂n(xi))

+
1

nb2
n

Z 0
@ nX

i=1

K 0(
ei � e

bn
)[

nX
j=1

�K(
xi � xj

an
)ej]=(

nX
r=1

�K(
xi � xr

an
))

1
A f(e)de+ o(1)

= f(e) +
b2
n

2
f 00(e)�2(K) + I1 + I2 + o(b2

n
); say. (3.12)

use notations like those in (3.11),

�2(K) =
Z
u2K(u)du; jjKjj2 =

Z
K2(u)du: (3:13)

Since K(�) is asymmetric, we haveZ
u(r)K 0(u)du = 0 for r = 0; 2; � � � ; 2n+ 2: (3:14)

Then, we can get

I1 =
1

nb2
n

nX
i=1

(m(xi)� E(m̂n(xi))
Z
K 0(

u� e

bn
)f(u)du
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=
1

nb2
n

nX
i=1

Bias(m̂n(xi))f
Z
K 0(t)f(e+ bnt)dtg

=
1

nbn

nX
i=1

Bias(m̂n(xi))ff
0(e)�01(K) + o(b2

n
)g;

=
a2
n

bn
Cnf

0(e)�01(K)�2(K) + o(
a2
n

bn
); (3.15)

here �01(K) =
R
uK 0(u)du; and following (3.9) in lemma 3.2, and given xi,

there exists

max
1�i�n

jm00(xi) + 2
m0(xi)r

0(xi)

r(xi)
)j = Cn;

then 1

n

P
n

i=1 Bias(m̂n(xi)) tends to

1

n

nX
i=1

Bias(m̂n(xi)) = a2
n
Cn�2(K) + o(a2

n
): (3:16)

Next, consider I2. Rewrite

�i =
nX

r=1

�K(
xi � xr

an
);

and notice di�erent i; j should be considered, then

I2 =
1

nb3
n

[
nX
i=j

�K(0)

�i

Z
K 0(

e� u

bn
)uf(u)du+

nX
i6=j

��1
i
K(

xi � xj

an
)
Z
u;v

K 0(
e� u

bn
)f(u)vf(v)dudv]

=
�K(0)

nb2
n

nX
i=1

��1
i
[bn(f(e) + ef 0(e))�01(K) + o(b2

n
)] + 0:

From the de�nition ofm(x) in the beginning of section 2, the marginal density
function of x is r(x), then there exits

r̂n(x) =
1

nan

nX
r=1

�K(
x� xr

an
); x 2 fx1; x2; � � � ; xng:

From conditions on r(x), obviously

r̂n(xi) 6= 0;
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then we can get

r̂n(xi)
�1 = (nan)�

�1
i

= 1=f
1

nan

nX
r=1

�K(
xi � xr

an
)g:

Let

�̂rn(x)
�1 =

1

n

nX
i=1

r̂n(xi)
�1;

that is
nX
i=1

��1
i

=
1

an
�̂rn(x)

�1:

Thus,

I2 =
�K(0)

nanbn
�̂rn(x)

�1�01(K)Ce + o(
1

nanbn
):

Here, and also in the following, for the convenience, we agree additionally to
use the same notation Ce representing a constant which may dependent on
e when it appears, it may represent some di�erent values, even in a same
formula.

The above discussion can be summarized as :

Proposition 3.1. In model (1.1), if conditions (i) - (vi) in section 2
are satis�ed, and when n!1

0 < an ! 0; 0 < bn ! 0; an � o(
q
bn); nanbn !1;

then
lim
n!1

Ef̂n(e) = f(e); (3:17)

fxi; yig are observations on (X; Y ). And

Bias(f̂n(e))

=
b2
n

2
f 00(e)�2(K) +

a2
n

bn
CnCe�

0
1(K)�2(K) +

�K(0)

nanbn
�̂rn(x)

�1�01(K)Ce

+ o(b2
n
) + o(

a2
n

bn
) + o(

1

nanbn
): (3.18)

From (3.18), we have known that the bias of estimator f̂n(e) to unknown
error density function f(e) not only depends on the smoothing parameter bn,
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but also depends on the smoothing parameter an in the regression estimate
m̂n(x). Obviously, it is a polynomial of fan; bn; f(e); f

0(e); f 0(e); K(�); �K(�)g.
Observing I1; I2 in (3.12) and (3.18), we could know that we simply could
not list MISE(f̂n(e)) as that we do for a general unknown density function,
its classical formula could be in the form MISE � C1(nh)

�1+C2h
2r, where

n denotes sample size, h is the bandwidth of the kernel estimator, r is the
order of the kernel, C1 and C2 are constants depending on both the kernel
and the unknown density function.

From Proposition 3.1, one of the relationships between two smoothing
parameters in our discussion could be got

an � o(
q
bn); nanbn !1:

The above give us some useful information to choose two smoothing pa-
rameters in (1.4) and (1.6) when we estimate an unknown error density in
nonparametric regression model and issue asymptotic unbiasedness of f̂n(e)
to f(e), while we use (1.3) and (1.4) to estimate m(x) in the model (1.1).

Theorem 3.1 enables us to compute a con�dence interval for f(e). Asymp-
totic (1� �) con�dence interval for f(e) is given by

Proposition 3.2. Asymptotic con�dence interval for f(e) is

[ f̂n(e)� d�

q
f(e)=2nbn; f̂n(e) + d�

q
f(e)=2nbn ]; (3:19)

d� is the (1� �=2)-quantile of a standard normal distribution.

In practice, plug in estimator f̂n(e) replacing unknown f(e) in (3.19),
and take d� = 1:96 as quantile for an asymptotic 95% con�dence interval,
we could get an approximation con�dence interval of f(e)

[ f̂n(e)� 1:96
q
f̂n(e)=2nbn; f̂n(e) + 1:96

q
f̂n(e)=2nbn ]:

A consistent estimator of variance of residuals, �2 can be got by f̂n(e) as

�̂2
n
= Ee2 =

Z
e2f̂n(e)de =

1

n

nX
i=1

ê2
i
+ b2

n

Z
t2K(t)dt+ o(b2

n
): (3:20)

When given a kernel function K(�), a exact �̂2
n
can be obtained from

residuals by using (3.20).
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4. Application to Income Distribution in UK from 1979 - 1987.

Nonparametric statistical methods have been widely used in economet-
rics, since they o�er versatility and exibility in estimation and forecasting
{ one needs not to specify functional forms. To see the performance of our
results, in the following, we will use our method to give some discussion on
income distribution { that is an important application of smoothing estima-
tion in economics. The shape of income distribution (kurtosis, skewness,
number of modes) reveals some important economic information. The data
we use here come from United Kingdom (Great Britain and Northern Ire-
land) Family Expenditure Survey (FES) survey in 1968 - 1987. Details of the
survey are described in Kemsley, Redpath and Holmes (1980) and Hennig-
Schmidt (1989). The sample size is about 7000 households per year, age for
head of each household valid from 16 to 99. There has recently been con-
siderable popular and professional interest about what may have happened
to the UK income distribution during the 1980s. There is a little doubt
that the distribution of income in UK has been more unequal since 1979.
Figure 1 gives the empirical evidence concerning the recent trends in income
inequality between USA and UK by using Gini coe�cients in 1970 - 1991.
Up to 1977, income inequality in UK fell, 1979 saw a reversal, and between
that year and 1991, the Gini coe�cient rose by nearly 9 percentage points,
which is twice as many as the increase over two decades in USA (Atkison,
1996). What really happened for personal income distribution in UK in
1980s? What is the \shape" of curve in UK household income distribution
versus age in 1980s? Next, we will use nonparametrical smoothing methods
to exam the structure of income data vs. age from FES.

The de�nition of Net-Income of per Head Of Household(HOH) is from
Central Statistical O�ce of Great Britain(Kemsley et al, 1980)). Instead
of net-income data x, Hildenbrand and Kneip (1996) use standardized log
income data de�ned as

log(x)�mean(log(x))q
var(log(x))

: (4:1)

Then the density of this distribution of standardized log income data has
mean zero and variance one. They got their hypothesis: the standardized
log income density is time-invariant,especially if two time periods are close to
each other. Details about this study could be seen in Hildenbrand and Kneip
(1996). Figure 2 and Figure 3 show the nonparametric density estimation
of (4.1) in HOH of whole population, and estimation of (4.1) in HOH of sub-
population for employment status{ Full time employed, separately by using
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quartic kernel:

K(u) =

8<
:

15

16
(1� u2)2; if juj < 1,

0; otherwise,
(4:2)

From Figure 2 and Figure 3, the hypothesis of Hildenbrand and Kneip \ap-
proximately" be satis�ed. What will change in the income distribution
versus age? We investigate income changes through model (1.1) by (1.3).
Let xi �xed in model (1.1) be age from 20 to 85 in i year, and yij means each
j HOH's income in xi. (Although HOH age is valid in [ 16, 99 ], consider
enough observations for our analysis, we limit our discussion in [ 20, 85 ],
that will cover over 95% HOH in the whole population.) Without lose the
generation, we list our results in 1977, 1982 and 1987, from Figure 4 to Figure
6. Here we use the same kernel (4.2) in (1.4), choose smoothing parameter
an by the method in Silverman (1986) as

an = C( �K)f
Z
m00(x)2dxg�1=5n�1=5;

C( �K) = f�2( �K)g�2=5fjj �Kjj2dug1=5. Plug in m00(x) as a choice of Gaussian
density. We could see that there is a reduction in income distribution in
each year, associated with an increase in age beyond 50-60, called drooping.
These are almost the same as the one showed in Ullah and Vinod (1993) for
Canadian data.

Consider to estimate unknown error density function f(e) based on m̂n,
we use (1.6) with the same kernel, and choose smoothing parameter bn satis-
fying conditions in Proposition 3.1. The performances of (1.6) in list years
give in Figure 7 to Figure 9 with residuals scattered. They almost satisfy
the asymptotic normality we gave in the above. The shape of long right-tail
phenomenons may be interpreted as some `outliers' from residuals scattered.
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Trends in income inequality in UK compared with USA, 1970-91
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Data come from New Inequalities, Cambridge University Press, 1996.

Figure 2

70
75

80
85

Y
ea

r

-3 -2 -1  0 1 2 3
Income: Log-NIC (NIC > 1)

 0
0.

1
0.

2
0.

3
0.

4
Z

All Population: 20 < age < 85 (1968 - 1987)

Kernel Estimation for Std. Log(NIC) (Quartic kernel).

15



Figure 3
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