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Abstract

The volatility of asset prices as a function of past prices is estimated

by nonparametric regression. The estimates show that these functions

are concave and obtain a minimum at a value close to zero. We use

ideas of Principal Component Analysis to evaluate common functional

components of di�erent sets of volatility functions.
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1 Introduction

Assessing and explaining the volatility of �nancial assets was always at the centre

of �nancial research. Three points may su�ce to illustrate this claim:

1. Investors base their investment decisions on price forecasts. The accuracy

of these estimates crucially depends on the volatility of prices.

2. In the capital asset pricing model (CAPM) the risk premium of an as-

set arises from the equilibrium of �nancial markets and is equal to the

covariance between the return on an asset and the return on the market

portfolio.

3. Arbitrage-free prices of derivatives are functions of the volatility of the

underlying asset. The price of a put or a call option in the Black and

Scholes model, for instance, depends only on the price and the volatility

of the underlying asset as well as the exercise price, the time of maturity

and the interest rate.

It has long been recognized in previous research that the volatility of asset prices

does not stay constant: times of high volatility alternate with those of low volatil-

ity. Parametric models such as the ARCH model and the like which capture het-

eroscedasticity are now well established in applied �nancial research. More and

more models have been added to the abounding literature to incorparate other

relevant e�ects found in the data. A di�erent stance has recently been taken

by H�ardle and Tsybakov (1995) and Heid (1996) who proposed to estimate the
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volatility function in a more exible way by nonparametric regression.

In chapter 2 we will reproduce the main results of Heid (1996). In addition, we

will propose an alternative way to estimate the volatility for autoregressive pro-

cesses. Some further insight into the structure of volatility curves is presented

at the end of the chapter. A closer look at the estimates will prove that the

volatility curves are of fairly similar and simple shape which leads us to test the

hypothesis of them being polynomials of low degree (chapter 3). In chapter 4

we continue to model similarity in a more thorough way. This approach uses

results of Selfmodelling Regression introduced by Gasser and Kneip (1992) and

Kneip (1993) and goes back to ideas of Principal Component Analysis.

2 Nonparametric Estimation of the Volatility

of Financial Prices

In this paper we use two data sets of �nancial time series. The �rst one consists

of daily noon exchange rates of 19 currencies vis �a vis the Canadian Dollar in

a period from January 1993 to June 1996, equivalent to 858 trading days. The

data was made available by the Paci�c Exchange Rate Service of the University

of British Columbia, Vancouver, Canada. The second set of data reports daily

closing prices of 175 stocks listed at the New York Stock Exchange provided by

the MIT Experimental Stock Market Data Server. The recording time is from

September 1993 to May 1996, i.e. 623 trading days. The third seris consists of

daily dax values, a German stock market index, within a period from January

1988 to November 1996 (2214 trading days). For a detailed discussion of the

data sets we refer to Heid (1996). The return process of an asset (exchange rate

or stock) is de�ned by

rt = log xt � log xt�1;

where xt is the price of the considered asset. In the sequel we will assume that

the return processes are strictly stationary. Let �(r) be the mean of tomorrow's

return conditioned on that of today's, then we obtain for the conditional variance

�2(r) := var[rt+1jrt = r] := E[r2t+1jrt = r]� E2[rt+1jrt = r] (1)

= E[r2t+1jrt = r]� �2(r): (2)
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We call �(�) the conditional mean and �(�) the (conditional) volatility of the

process frrg. Consequently, it follows that

rt+1 = �(rt) + �(rt)�t+1 (3)

with some random variables �t. Where necessary we will assume that the �t are

i.i.d. in which case equation (3) would constitute an autoregression model. In

the next two chapters we will briey summarize the results of Heid (1996).

2.1 Nonparametric Regression of Time Series

Assume a stationary process frtgt=1;:::T+1 for which we want to estimate

G(r) = E[g(rt+1)jrt = r]:

Then a nonparametric estimator of G is given by

bGT (r) =
TX
t=1

g(rt+1) k

�
rt � r

hT

�, TX
t=1

k

�
rt � r

hT

�
;

with a function k, called kernel. Let

H(r) = E[g2(rt+1)jrt = r]

and

G = (G( 1); :::; G( n))bG = ( bG( 1); :::; bG( n))
then the following theorem holds

Theorem 1 Let frtg be strongly mixing and let assumption (N1) to (N9) of

Heid (1996) hold. Further de�ne

ST =
p
hTT ( bG�G):

Assume that as T converges to in�nity

h
2(r+1)

T T ! 0 ; hTT !1:
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Then ST converges to a vector of independent normal random variables with zero

mean the i'th element of the vector having varianceZ
k2(u)du (H( i)�G2( i)) = f( i); (4)

where f is the density function of rt. (4) is consistently estimated byZ
k2(u)du ( bH( i)� bG2( i)) = f̂( i); (5)

bH being the kernel estimator of H and f̂( ) equal to
PT+1

t=1
k( i�rt

hT
).

2.2 Direct Estimation of the Volatility Function

Applying theorem 1 of chapter 2.1, equation (2) will lead to straightforward

estimates of the volatility functions of the �nancial time series. However, to gain

comparability of the di�erent series, we chose �rst to standardize the returns by

their means and standard deviations, i.e.

~rit =
rit �mi

si
;

where mi and si denote the (unconditional) mean and the (unconditional) stan-

dard deviation of the �nancial series i (i = 1; :::; I).1 Some easy calculations

show that

�i(r) := si ~�

�
r �mi

si

�
+mi

�i(r) := si ~�

�
r �mi

si

�
with ~�i(r) := E[~ri;t+1j~rit = r] and ~�2i (r) := var[~ri;t+1j~rit = r]. Thus, we will make

all our calculations on the standardized returns, and, to simplify notation, we

will ommit the tilde on all variables. With mi2(r) := E[r2i;t+1jrt = r] an estimate

of �2i (r) is given by

�̂2i (r) = m̂i2 � �̂2i (r); (6)

where each term on the right hand side of the equation is calculated by the means

of the kernel estimator presented in the previous chapter. The bandwidth was

1We analyzed the di�erent sets of data seperately so that i refers to a series either in the

set of stocks or in the set of exchange rates.
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chosen according to the method of cross validation (cf Gy�or� Sarda and Vieu

1989). The plots of the volatility functions for the di�erent data sets are depicted

in �gure 1. It it eye-catching that the curves have such similar patterns as nearly

all of them are U-shaped with a minimumat a value close to zero. This especially

applies to the volatility curves of the exchange rates which seem to be running

on roughly parallel lines. We will investigate this similarity in more detail in

chapter 4.

2.3 Volatility Estimation for Autoregressive Processes

In this section we will present another estimator of �2(�) for the case that the �t

in (3) are independently distributed. Rearranging this equation yields

log((rt+1 � �(rt))
2)� E[log �2t+1] = log �2(rt) + (log �2t+1 � E[log �2t+1]):

(7)

If we additionally assume that �t+1 is N(0,1), then E[log �2t+1] � �1:272 and an

estimate of �2(r) is obtained by carrying out the following steps:

1. Estimate �(r) as in the previous section.

2. Estimate log �2(r) by regression of log(rt+1 � �̂(rt))2 + 1:272 on rt.

3. Determine an estimate of �2 by exp\log �2.

Figure 2 provides the plots of these estimates for the di�erent sets of data

and it can be seen that their shape roughly corresponds to those of �gure 1.

Nevertheless, they also display some signi�cant deviations. Generally speak-

ing, they do not possess the same degree of uniformity as the latter. Although

most of the curves are still U-shaped, there are some curves which have di�erent

pattern. Additionally, the stock plots are more scattered than the plots of the

exchange rates, though it is not quite clear whether this is due to vertical shifts

only.

Theorem 1 can be used to test the hypothesis that steps 1) to 3) indeed

estimate the volatility function �2. More generally, suppose that we want to

test the hypothesis that �2(r) is equal to some function ~�2(r) (hypothesis H0).

Recall that �̂2 is the estimator of �2 obtained by (6). From theorem 1 we know
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that �̂( 1); :::; �̂( n) are assymptotically independently normal with, under H0,

�̂( i) having zero mean and variance v2i given by (4). Hence,

d =

nX
i=1

�
�̂2( i)� ~�2( i)

vi

�
2

is �2(n) distributed and, therefore, H0 will be rejected if d is larger than a critical

value.

The test applied to our setting rejects H0 for all exchange rates as well for

the dax and 95% of the stock returns. Two reasons may be responsible for

this: a) the random variables �t in (3) are not independent or b) the �t are not

normal. We now want to test the autoregression model without assuming the

innovations to be normal. For this reason we choose a value for c := E[log �2t+1]

that minimizes the distance between Ê[log(rt+1� �̂(rt))2�cjrt] and log �̂2, where

Ê denotes the nonparametric estimator for the corresponding conditional mean.2

Then we proceed as in steps 1. to 3. but replace 1.272 with -c. Afterwards this

estimator, which we denote by ~�2, is submitted to the test described above. As

regards the exchange rates, Figure 3 validates that the graphs of ~�2 and �̂2 are

quite close. Indeed, the test whether ~�2 is equal to �̂2 is rejected in only 7 out

of 19 exchange rates. Looked upon the exchange rates as being independent,

in which case rejection of 5% would be expected, this would still be a high

fraction. Whereas the hypothesis is also con�rmed for the dax series the number

of rejections is very high for the stocks (113 out of 175). All in all, model (7)

seems to be more appropriate for exchange rates than for stock returns.

2c is given by 1

n

P
n

i=1
(log �̂2( i)� E[log(rt+1 � �̂( i))

2
jrt =  i]).
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Figure 3: Estimated volatility functions of exchange rates with 95% con�dence

bounds (solid lines) and volatility functions in the autoregression case (dotted

line)
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Figure 3 continued
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Figure 3 continued
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2.4 Test on Symmetry

There are two things to be learned from the plots of �gure 1: 1. Large absolute

returns bring about large future volatility. 2. As a function of returns, the

volatility is not always symmetrical. On the other hand there is no clear trend

indicating that the left wing of the volatility curves are predominantly atter

than their right wings or vice versa. The hypothesis of the symmetry of the

curves can be put to a formal test with the help of theorem 1. Fix 2n points

 �n; :::;  �1;  1; :::;  n such that  �i =  i for i = 1; :::; n. We know that the

�̂2( ) are assymptotically independent N(0; vi) with variance v2i calculated from

(4). Hence, the test-statistic

d =

nX
i=1

 
�̂2( i)� �̂2( �i)p

v2i + v2
�i

!
2

is assymptotically �2(n) distributed and, consequently, the test rejects the hy-

pothesis of symmetry of the volatility function if d is larger than a critical value.
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The test applied to our data shows that the volatility function of the dax returns

is symmetrical whereas the returns of the Belgian Francs (BEF), the Japanese

Yen (JPY), the Norwegian Kroner (NOK) and the New Zealand Dollar (NZD)

have asymmetrical volatility. For the stock data the test rejects symmetry for 48

out of 175 series. Overall it can be said that signi�cant assymmetry does exist,

albeit slight.

3 Polynomial Fit of the Volatility Function

In the remainder of this paper we will focus on the similarity of the volatility

functions already mentioned in the previous section. For this reason we will

begin by modelling the volatility as a speci�c function which depend on returns

and some further parameters. The number of included parameters can be viewed

as a yardstick measuring the diversity of the respective curves. A simple as well

as exible way to model volatilities is given by polynomial regression, so let us

assume that

�2i (r) =

LiX
l=0

�ilr
l; (8)

and we impose the important restriction that the degree of the polynomial (as

well as �l) is unknown.(The index i indicates the name of the series in the

considered data set.) A brief glance at the plots in �gure 1 suggests that the Li

are small, perhaps being 2 or 3.

More generally, assume that the volatilities are the weighted sums of some

known functions g1; g2; :::, i.e.,

�2i (r) =

LiX
l=1

�ilgl(r)

where Li and �l, l = 1; :::; Li are unknown.3 Let  1; ::::;  n be some pre-

determined points at which we are to evaluate the �2i (�). It is tempting to

estimate the unknown dimension Li by solving the following problem:

min
L

min
�1;:::;�L

nX
j=1

 
�̂2i ( j)�

lX
l=1

�lgl( j)

!2

(9)

3In the case of polynomial regression gl(r) = rl�1.
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where �̂2i is the nonparametric estimate of �2 given in equation (6). This problem,

however, has in general no solution since it leads one to add as many functions

gl as possible. This can be avoided by adding to (9) a second term which is

increasing in L, thereby introducing a penalty for adding additional functions

gl. Along this lines an estimator was proposed by Mallows (1973) (Appendix

A). From theorem 1 we know that

�̂2i ( j) = �2i ( j) + �ij

=

LX
l=1

�ilgl( j) + �ij
(10)

with �ij; j = 1; :::; n being assymptotically independent N(0; vij)-distributed and

variances v2ij given by (4). To be able to apply the method described in Appendix

A we have to divide both sides of (10) by vij, i.e.

�̂2i ( j)

vij
=

LX
l=1

�il
gl( ij)

vij
+ ~�ij

with ~�ij being i.i.d. N(0,1). The dimension L is then estimated by solving the

problem

minCL

i(L) = min
L

0@ min
�1;:::;�l

nX
j=1

 
�̂2i ( j)

vij
�

LX
l=1

�l
gl( j)

vij

!2

+ 2L

1A :

(11)

Setting gl = xl�1 we have a case of polynomial regression.

In determining the number of points  j two opposing goals need to be bal-

anced. On the one hand n should be large enough in order to give su�cient

structure to the points �̂2i ( j) to be approximated. Noting that it is always

possible to interpolate L points perfectly by a polynomial of degree L � 1 the

number of points should at least exceed L� + 1 if L� is a preliminary guess of

the polynomial degree. On the other hand we cannot expect the points �̂2i ( j)

to be approximately independent by means of theorem 1 if n is too large. For

our purpose we chose 6 points equally spaced in the interval [�2; 2].

Table 1 states the estimates of the polynomial degree for the di�erent exchange

rates, most of which clearly equal 2. If, in fact, we think that the degree of the

polynomial is always 2 (no contradiction to table 1 since the entrants are real-

isations of random numbers) we can improve on the estimation above. Instead
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ATS AUD BEF CHF DEM

2 2 2 0 2

DKK ESP FIM FRF GBP

2 0 2 2 0

HKD IEP ITL JPY NLG

2 2 2 2 2

NOK NZD SEK USD

2 0 0 2

Table 1: Estimated degree of the polynomial �t of �2.

of minimizing all CL

i-functions seperatly, it would be better to choose L as to

minimize

CL(L) := CL

1(L) + :::+ CL

N (L):

As expected, the estimated degree for the exchange rates is 2. We also applied

this estimator to the stocks and the dax series obtaining the same result.

To evaluate the �t of �2i by quadratic polynomials we propose a simple �2-

test based on least squares regression. In a general setting this works as follows:

assume that

�̂2( j) = �2( j) + �j =

LX
l=1

�lgl( j) + �j; j = 1; :::n

where �j are i.i.d. N(0; vj). Denote by

~�2 = (�̂2( 1)=v1; :::; �̂
2( n)=vn)

T

gl = (gl( 1)=v1; :::; gl( n)=vn)
T

~� = (�1=v1; :::; �n=vn)
T

and

G = (~g1; :::; ~gL):

Let m̂ be the least squares projection of ~�2 on ~g1; :::~gL, then the residual sum of

squares is equal to

RSS = k~�2 � m̂k2
2
= ky �G(GTG)�1GT~�2k2

2

= ~�T(I �G(GTG)�1GT)~� = ~�TM~�

14



ATS AUD BEF CHF DEM

0.26 1.68 0.87 0.70 0.26

DKK ESP FIM FRF GBP

1.68 0.86 1.87 0.31 0.58

HKD IEP ITL JPY NLG

0.12 1.33 4.04 0.92 0.11

NOK NZD SEK USD

0.42 3.39 0.29 0.14

Table 2: Residual sum of squares of polynomial �t of �2. Critical value: 6.0

M is idempotent of rank T � L, hence, under the correct choice of L, RSS is

�2(n � L)-distributed. Thus, the hypothesis of L being equal to some L� is

rejected if RSS is larger than a critical value. The residual sums of squares for

the exchange rates are listed in table 2. It clearly con�rms the hypothesis that

�2i is always a quadratic polynomial.

So far we have calculated the polynomial �t for each series seperately. If

we assume that the series are independent, we can test the hypothesis that all

volatility functions are of degree 2.4 Then, under the correct choice of the polyno-

mial degree, the overall sum of the individual RSSi, i = 1; :::; N , is �2(N(n�L))

distributed. As it turnes out this test also accepts the hypothesis of �2i being

quadratic.

Polynomial �t of transformed volatility

Since returns are random and �2 cannot be negative, equation (8) is only sensible

if the �l are chosen in such a way that the term on the right side is always positive.

Thus, it is sometimes more appropriate to model suitable transformations of �2

instead. In the following paragraph we will therefore assume that log �2 is a

4Independence seems to be no realistic assumption for exchange rates, but note that we are

investigating returns on exchange rates and not exchange rates themselves. While exchange

rates may be dependent, independence can nevertheless hold true for the returns.
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polynomial of some degree L, i.e.,

log �2(r) =

LX
l=0

�lr
l: (12)

Unfortunately, devising a test similar to that of the previous section is rather

intricate since it necessitates calculating the joint distribution of the log �̂( i),

i = 1; :::n. If we however assume that the innovations �t in equation (3) are

identically independently distributed, which seems to be a reasonable assumption

for many exchange rates, a suitable test is much easier constructed since

E[log(rt+1 � �(rt))
2jrt] = log �2(rt) + E[log �2t ]: (13)

Hence, log �2 and E[log(rt+1 � �(rt))2jrt] are polynomials of the same degree

and we are free to choose either of the functions for estimating the dimension.

Denoting by bE[yjx] the nonparametric estimate of E[yjx], we know from theorem

1 that

bE[log(rt+1 � �̂( j))
2jrt =  j] = E[log(rt+1 � �( j))

2jrt =  j] + �j

(14)

where the �j are asymptotically independently normal. The results of Mallows'

estimator are listed in table 3. Most of the values are equal to 2, which is also

the result of the overall estimator. The results of the �2-test can be seen in table

4. They show that the hypothesis of log �2(r) being a polynomial of degree is

accepted.

4 Linear Selfmodelling Regression

In the previous chapter we saw that the volatility functions are of rather similar

shape. In fact, one might get the impression that simple linear transformations

su�ce to make any two di�erent volatility functions congruent. If this holds

true, all volatility functions could be written in the form

�2i (r) = aig(r) + c

with some function g(�). In this particular case the volatility functions would

span a linear space of dimension 1. However, since we do not want to �x the
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ATS AUD BEF CHF DEM

2 0 2 2 2

DKK ESP FIM FRF GBP

2 2 0 0 2

HKD IEP ITL JPY NLG

3 2 0 2 2

NOK NZD SEK USD

4 3 0 2

Table 3: Estimated degree of the polynomial �t of log �2.

ATS AUD BEF CHF DEM

1.2 2.6 2.7 4.6 3.8

DKK ESP FIM FRF GBP

3.1 1.9 4.7 4.0 4.2

HKD IEP ITL JPY NLG

3.4 0.9 4.4 1.6 2.9

NOK NZD SEK USD

7.2 4.7 0.1 0.5

Table 4: Residual sum of squares of polynomial �t of log �2. Critical value: 7.8
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dimension beforehand we generally ask whether the functional space given by

S = fs : R! Rjs(x) =

NX
i=1

ai�
2

i (x)g:

is of low dimension. It is clear that the dimension of S is at most N , but what

we would like to know is, whether it could also be less, say L0. In order to

determine L0 we need to �nd a suitable set of basis functions g1; :::; gL0. These

will then completely characterize S since

�2i (x) =

L0X
l=1

ailgl(x) (15)

for some parameters ail. It should be emphasized that we do not want to pre-

specify the basis functions to be of a speci�c parametric form as in chapter 3 (eg

polynomials), but rather intend to model them as exible as possible. Following

the more general approach of Kneip and Gasser (1992), we call our method

Linear Selfmodelling Regression.

4.1 Selecting Basis Functions

Let us now �x some points  1; :::;  n in an interval [a; b] at which the volatility

functions as well as the basis functions g1; :::; gL0 are to be calculated. De�ne

�2i = (�2i ( 1); :::; �
2

i ( n))
T

g
l
= (gl( 1); :::; gl( n))

T:

Then

�2i =
L0X
l=1

ailg
l
:

Clearly, the basis vectors g
l
are not uniquely determined, therefore we impose

some normalization conditions:

a) gT
r
g
s
= �rs;

b)
PN

i=1 airais = 0 r 6= s;

c)
PN

i=1 a
2

i1 �
PN

i=1 a
2

i2 � ::: �
PN

i=1 a
2

iL0
> 0:

18



Of course, the normalization conditions depend on the particular choice of  1; :::;  n.

If these points are equidistantly chosen in the interval [a; b], then 1

n
gT
r
g
s
con-

verges to 1

b�a

R
gr(x)gs(x) dx, the standard product form of continuous functions

on [a; b]. Given a) to c) the following equations hold:

W :=
NX
i=1

�2i�
2

i

T

=
NX
i=1

 
L0X
l=1

ailg
l

! 
L0X
l=1

ailgl

!T

=

L0X
l=1

NX
i=1

a2ilglg
T

l
:

Hence,
PN

i=1
a2i1; :::;

PN

i=1
a2iL0 are the eigenvalues of W in descending order. We

shall now prove that it is always possible to identify a basis satisfying a) to c).

Let g1; :::gN be the eigenvectors of W corresponding to eigenvalues in descending

order. De�ne the matrix G as

G = (g
1
; :::; g

N
)

and the vector ai by

�2i = Gai:

Since the image space of W is span(g1; :::; g
L0
) the parameters ai;L0+1; :::; ai;N are

equal to zero. BecauseW is positive semide�nite, there exists a diagonal matrix

� such that

W = G�GT:

Let A := (a1; :::; aN), then

G�GT = W = GA

yielding

A = �GT

AAT = �GTG�T = ��T:

Condition c) is thus established by noting that ��T is diagonal.

Well-known results of Linear Algebra teach us with respect to c) that if the

strict instead of the weak inequality holds parameters and basis functions are

uniquely determined up to sign changes. Clearly, one may replace air by �air

and g
r
by �g

r
without invalidating conditions a) to c). This indeterminacy

might be removed by an appropriate additional normalizing condition such as

ai1 > 0.
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4.2 Estimation of Basis Function

Having shown how we can identify a suitable basis, we move on to estimate the

basis function. From theorem 1 we know that nonparametric estimates of the

volatility functions satisfy

�̂2i ( j) = �2i ( j) + �ij (16)

with �ij being assymptotically N(0; vij) distributed. Hence, it is straightforward

to estimate W by

cW =
NX
i=1

�̂2i �̂
2

i

T

where �̂2i = (�̂2i ( 1); :::; �̂
2

i ( n))
T is the vector of nonparametric estimates of the

volatilities. For reasons which will become clear later in this chapter it is more

appropriate to consider another matrix fW which is de�ned by

fW =
NX
i=1

~�2i ~�
2

i

T

where ~�2i = (�̂2i ( 1)=vi1; :::; �̂
2

i ( n)=vin)
T. The di�culty of this approach, how-

ever, is that a model for (�2i ( 1)=vi1; :::; �
2

i ( n)=vin) does not necessarily lead to

a model of �2i . This problem can be solved if v2ij can be decomposed: there exists

a function w such that

v2ij = �v2i � w
2( j):

Without restriction we recquire that

1

N

nX
j=1

w2( j) = 1:

Consequently

�v2i =
1

n

nX
j=1

v2ij

and

w2( j) =
1

N

NX
i=1

v2ij=�v
2

i :
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The original model

�2i ( j) =
L0X
l�1

ailgl( j)

implies for the transformed model

�̂i( j)

vij
=

L0X
l=1

ail

�vi
�
gl( j)

w( j)
:

Hence, the transformed model has the same dimension as the original one and

basis function of the latter are easily calculated from the other. However, sincefW has rank N , it is di�cult to determine which of the eigenvectors may function

as estimates of the basis functions of the transformed model.

Apart from this problem the eigenvectors (fW ) still have an important geo-

metrical meaning since they are optimal in a least squares sense (Appendix B):

For all L

min
p1;:::pL2R

n

LX
j=1

min
ai1;:::;aiL2R

�̂2i �
LX
l=1

ailpl


2

2

=
NX
i=1

min
ai1;:::;aiL2R

�̂2i �
LX
l=1

aill(fW )


2

2

=

NX
l=L+1

�l(fW ) (17)

where �1(fW ); :::; �n(fW ) are the eigenvalues of fW in descending order. Equation

(17) justi�es considering the eigenvectors of fW independently of the modelling

motivation outlined in the previous section. This approach incorporates idea of

the Principal Component Analysis which simpli�es the analysis of a large number

of observed variables by replacing these with a smaller set of linear combinations.

References can be found in Rao (1958).

We calculated nonparametric estimates of the volatility functions at 50 points

equidistantly spaced in the interval [-2,2] which, on average, covered 90% of the

returns of a series. From table 5, which lists the 10 largest eigenvalues of the

matrix fW for the two data sets it is evident that the �rst eigenvector plays

a predominant role in explaining the variability of the volatility curves. The

eigenvectors shown in �gure 4 correspond to the �rst four eigenvalues. Eigenvec-

tors corresponding to eigenvalue 5 and more are nearly insigni�cant. Our initial

impression regarding the nonparametric estimates of the volatility functions as

positive functions with unique minimums at values close to zero is con�rmed.
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Figure 4: First four functional components: exchange rates (left column), stocks

(right column)
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number exchange stocks

rates

1 1013 8757

2 12.5 236

3 6.3 77

4 1.5 17.6

5 0.68 4.4

6 0.21 0.8

7 0.032 0.43

8 0.019 0.31

9 0.0074 0.27

10 0.006 0.078

Table 5: 10 largest eigenvalues of fW
(Note, that 1(fW ) is just a multiple of the average of the vectors ~�2

1
; :::; ~�2N .)

However, the eigenvector 1(fW ) does not explain all asymmetries found in the

volatility functions. This is where other eigenvectors come into play. Figure (5)

elucidates the e�ect of adding and subtracting additional components to 1(fW ).

Let us only consider the components of the exchange rates. Clearly, the second

component is mainly responsible for upward or downward shifts of the �rst com-

ponent where some asymmetry e�ect is due to the upward slope of 2(fW ) at

the far right of the domain. The decisive factor in producing asymmetry is the

third component, which is also able to shift the value at which the minimum is

obtained to the left or the right of the x-axis.

4.3 Estimation of Dimension

In chapter 3 we discussed two methods determining the degree of the polynomial

�t of the volatility functions. These methods can also be applied to estimate the

dimension of the space S. Similar to the stance taken there, Mallows' estimator

can be used to determine the optimal number of included components in least
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Figure 5: First functional component and e�ect of adding and subtracting multi-

ples of additional components: (a) component 2, (b) component 3, (c) component

4
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ATS AUD BEF CHF DEM

1 4 3 1 1

DKK ESP FIM FRF GBP

1 1 1 2 2

HKD IEP ITL JPY NLG

1 1 4 1 1

NOK NZD SEK USD

1 3 3 1

Table 6: Estimated degree of the functional component �t of �2.

square regression by solving for each series i:

min
L
C i
L(L) = min

L

0@ min
�1;:::;�L

~�2i �
LX
l=1

�ll(fW )


2

2

+ 2L

1A :

As already mentioned in chapter 3, the number of design points has to be small

enough to guarantee some degree of independence of the entries in �̂2i . For this

purpose we have chosen 6 equidistantly spaced points in the interval [-2,2]. We

want to emphasize, however, that the results below are quite insensitive to the

number actually chosen. Table 6 summarizes the results of this analysis for

the exchange rates. As can be seen, for the majority of the series it is optimal

to include only one component. A similar outcome was obtained for the stocks

where Mallows' estimator selected only one single component in 57% of the series.

We cannot, however, infer from these estimates the dimension of S since each C i
L

is itself apt to noise. A suitable estimator which we applied here is determined

by minimizing the sum of all C i
L. The estimated dimension was surprisingly low:

it was 3 for the exchange rates and 2 for the stocks. The �2�test described in

chapter 3 con�rmed this result: The hypothesis of the dimension being 3 for the

exchange rates and 2 for the stocks was accepted whereas the hypothesis of it

being 2 and 1 resp. was rejected. Nonetheless, one could argue that the estimated

dimension of S depends on the chosen reference interval [a; b]. We would expect

the dimension to rise if we increase the interval, yet further analysis showed that

the dimension is quite insensitive to the length of the reference interval. Figure

6 demonstrates how well the three components approximate the nonparamtric
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estimates of the volatility functions. Obviously, the two curves are nearly always

extremely close, the least squares approximation being nearly always completely

in the 95% con�dence bounds of the nonparametric estimate.5

5It is important to note that this constitues no formal test of the curves being equal. In

that case it would be necessary to consider joint con�dence bounds.
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Figure 6: Volatility functions of exchange rates (solid line) with 95% con�dence

bounds and least squares approximation by 3 functional components
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Figure 6 continued
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Figure 6 continued
NZD
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4.4 Functional Components of Transformed Volatility

By modelling volatility functions as in (15) one has to take into account that

the linear combination of the basis functions has to be positive. To avoid this

drawback one sometimes prefers to model log �2 instead which gives rise to the

hypothesis that

log �2i (x) =
LX
l=1

ailhl(x) (18)

with some basis function h1(x); :::; hL(x).

Of course, the logarithm is not a linear transformation so that if (15) holds true

for L0 < N , then spanflog �2
1
; :::; log�2Ng generally has dimension N rather than

dimension less than N . Nevertheless, from a statistical point of view it makes

sense to investigate model (15) as well as model (18) as statistical tests may not

be able to decide between the two alternatives. If we assume that in (3) the

random variables �t are independent normally distributed then

log �2i (x) = E[log(ri;t+1 � �(rit))
2 + 1:272jrit = x] := �i(x): (19)
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ATS AUD BEF CHF DEM

1 2 2 1 2

DKK ESP FIM FRF GBP

2 3 2 1 1

HKD IEP ITL JPY NLG

2 1 1 2 2

NOK NZD SEK USD

3 1 1 1

Table 7: Estimated degree of the functional component �t of log �2(x) + 1:272.

The functions �i(x) can be estimated by nonparamtric regression as described

in chapter 2.1, and by replacing �2i with �i in chapter 4.1 and 4.2 we are equally

able to select functional components of �i(�). Of course, as we have shown before,

equation (19) holds not true for many series. Nevertheless, it still makes sense

to model �i as a proxy for the volatility of an process since however we chose

E[log �2it] (here: -1.272) a model for the functions �i has the same dimension as

the model for the functions log �2i . In �gure 7 we plotted the �rst 4 components

for the exchange rate data and for the stock data respectively. In table 7 we

are presenting the results of Mallows' estimator applied to each exchange rate

seperately. In 9 out of 19 series one component su�ces for a satisfactory ap-

proximation of the volatility function, for the rest one or more components have

to be added. With respect to the stocks, about 43% were optimally �tted by

1 component, 36% by 2, and 21% by 3 and more. The overall estimate of the

dimension was 3 for both data sets.
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Figure 7: First four functional components of log �2(x) + 1:272: exchange rates

(left column), stocks (right column)
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Appendix A

Assume that the relationship between response values yt and predictors xt is

given by

yt = f(xt) + �t; t = 1; :::; T; (20)

where the �t are assumed to be independent random variables with zero mean

and variance equal to 1. Putting equation (20) into vector form we have

y = w + �: (21)

The goal is then to �nd the best approximation of w in a pre-speci�ed set of

admissable estimates W , i.e. to solve the problem

min
ŵ2W

MSE(ŵ)

MSE := E
1

T
kw � ŵk2

2
:

Frequently, estimators of ŵ are linear functions of y:

ŵ = Shy; (22)

where the \smoother matrix" depends on a parameter h. For example estimation

may be based on least squares approximation on functions g1; :::; gh of xt. In this

case an estimate of w is obtained by

ŵ = Shy := Vh(V
T

h Vh)
�1V T

h y;

where

Vh = [gr(xt)]t;r:

Here the parameter h denotes the number of included functions in Vh.

If, in fact, the estimator is linear as in (22) then the optimal parameter h

may be chosen such as to minimize Mallows' CL:

CL(h) =
1

T
ky � Shyk

2

2
+

2

T
tr(Sh):

This is motivated by the fact that

E[CL(h)� 1] = MSE(h): (23)
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In other words for �xed h CL provides an unbiased estimator of the risk regarding

quadratic loss.

Proof of (23):

E[CL(h)� 1] = E
1

T
kw + �� Shyk

2

2
+

2

T
tr(Sh)� 1

= MSE(h) +
2

T
E[�T(w � Shy)] +

2

T
tr(Sh)

= MSE(h) �
2

T
E[�TSh�] + 2tr(Sh)

= MSE(h)

Note: If Sh is a projection matrix of rank h then tr(Sh) = h

Appendix B

Let X1; :::;XN be vectors in Rm. Suppose we want to solve the problem

min
p1;:::;pL2R

m

NX
i=1

min
ai1;:::;aiL2R

Xi �

LX
l=1

ailpl


2

2

: (24)

for L � N . We shall write (24) more conveniently in matrix notation which is

min
p1;:::;pL2R

m
min

a1;:::;aL2R
N

X �

LX
l=1

pla
T

l


2

2

; (25)

where X is the matrix (X1; :::;XN) and kMk2
2
means the sum of the squared

entries of the matrixM . As a solution of the problem is obviously not uniquely

given, we may assume without loss of generality that the set of vectors pl is

orthonormal. Before giving a solution of (25), we prove the following lemma.

Lemma 1 Let fp1; :::; pLg be a set of orthonormal vectors in Rm and X be a

symmetrical m � m matrix with eigenvalues �1 � ::: � �m and corresponding

orthonormal eigenvectors v1; :::; vm. Then

sup
p1;:::;pL

LX
l=1

pTl Xpl =
LX
l=1

vTl Xvl =
LX
l=1

�l:
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Proof: We can set pl =
Pm

j=1
cljvj. Then

LX
l=1

pTl Xpl = �1(c
2

11
+ :::+ c2L1) + :::+ �m(c

2

1m + :::+ c2Lm): (26)

The coe�cients of the �i are all smaller than 1: their sum is L. To maximize the

right hand side of (26) we choose the coe�cients of �1; :::; �L to be 1 the others

to be 0, i.e. we choose pl = vl, l = 1; :::; L.

�

We return again to problem (25). Note that the sum of squares of all elements

aij of a m � m matrix A can be written as the trace of AAT so that solving

problem (25) is equivalent to minimizing

tr(X �

LX
l=1

pla
T

l )
T(X �

LX
l=1

plal
T) =

tr(XTX) �
LX
l=1

tr(alp
T

l X) �
LX
l=1

tr(XTpla
T

l ) +
LX
k=1

LX
l=1

tr(alp
T

l pka
T

k ): (27)

Now

tr(XTpla
T

l ) = tr(alp
T

l X) = tr(pTl Xal) = pTl Xal;

where the second equality follows from

tr(ABC) = tr(BCA) = tr(CAB)

whenever the products of the matrices A;B;C are de�ned. By the same argu-

ment and the orthonormality conditions on the pl one can show

tr(akp
T

k pla
T

l ) = tr(pTl pka
T

l ak) = pTl pka
T

l ak = �lka
T

l ak:

Hence, the right hand side of (27) becomes

tr(XTX)� 2
LX
l=1

pTl Xal +
LX
l=1

aTl al: (28)

We equate the derivative of (28) with respect to al with 0, which yields

al = XTpl:
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When this is inserted into (28), one gets

tr(XTX)�
LX
l=1

pTl XX
Tpl = tr(XXT)�

LX
l=1

pTl XX
Tpl:

By means of lemma (1) the second term is minimized by setting pl equal to the

l'th eigenvector of XXT. Thus we get

min
p1;:::;pL2R

m

NX
i=1

min
ai1;:::;aiL

Xi �

LX
l=1

ailpl


2

2

=
NX
i=1

min
ai1;:::;aiL

Xi �

LX
l=1

aill(XX
T)


2

2

=
NX

l=L+1

�l(XX
T);

where �1(XXT) � ::: � �N (XXT) are the N largest eigenvalues of XXT (the

others being 0) and l(XXT) the corresponding eigenvectors.
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Appendix C

List of exchange rates:

ATS Austrian Schillings

AUD Australian Dollars

BEF Belgian Francs

CHF Swiss Francs

DEM German Marks

DKK Danish Kroner

ESP Spanish Pesetas

FIM Finnish Markka

FRF French Francs

GBP British Pounds

HKD Hong Kong Dollars

IEP Irish Punt

ITL Italian Lira

JPY Japanese Yen

NLG Dutch Guilders

NOK Norwegian Kroner

NZD New Zealand Dollars

SEK Swedish Krona

USD American Dollars
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