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Abstract. This paper presents the one{ and the multifactor versions of a term structure
model in which the factor dynamics are given by Cox/Ingersoll/Ross (CIR) type \square
root" di�usions with piecewise constant parameters. The model is �tted to initial term
structures given by a �nite number of data points, interpolating endogenously. Closed
form and near{closed form solutions for a large class of �xed income contingent claims are
derived in terms of a noncentral chi-square distribution whose noncentrality parameter is
in turn noncentral chi-square distributed. Implementation details on this distribution are
given in the appendix.

1. Introduction

Three often cited requirements for term structure models applied in practice are

(i) �t to the initial term structure observed in the market

(ii) analytical tractability for fast solutions for derivative pricing and hedging

(iii) non-negative interest rates.

Requirement (i) is often extended to �tting an initial term structure of interest rate volatil-

ity.

The most tractable class, the Gauss{Markov models, are precluded by requirement (iii).

Taking this as given, we are faced with a tradeo� between requirements (i) and (ii). Of the

factor models satisfying (iii), the Cox, Ingersoll and Ross (1985) (CIR) model is arguably

the most tractable. Unfortunately, if one extends the original CIR model as in Hull and

White (1990) and allows for a time dependent drift in order to calibrate to an observed

initial term structure, the closed form solutions do not carry over from the constant pa-

rameter case, so we are faced with a tradeo� between requirements (i) and (ii). However,

looking at a market for �xed income instruments, we observe interest rates or bond prices

for only a �nite number of maturities. If one considers the money market and/or swap

market, this number is quite small. This presents a possibility to avoid the tradeo� between

�tting initial term structure data and fast analytical solutions: The observed data points

divide the time line into segments. On these segments we inductively construct short rate

processes of the CIR type with constant parameters, chosen so as to give an exact �t of

the observed term structure. The processes are pieced together to yield a continuous short

rate process.

In taking this approach, we need to consider the CIR stochastic di�erential equation with

nondeterministic initial conditions and show that the solution does not explode under the
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same restrictions on the parameters as in the deterministic case; thus interest rates are

almost surely strictly positive. This result is derived in appendix A.

The inductive construction of the short rate process allows us to �t the model to an

initial term structure consisting of a �nite number of data points. By taking the relevant

expectations, the model yields a complete initial term structure for the continuum of matu-

rities, endogenously interpolating between the observed data. Thus it is more parsimonious

in its assumptions in the sense that there is no need for an exogenous interpolation rule

and the interpolation is consistent with the assumed short rate dynamics.

Herein also lies the di�erence to another possible resolution of the aforementioned trade-

o�. In what he calls a \simple class of square root models", Jamshidian (1995) restricts

the CIR model with time{varying coe�cients to a class satisfying the condition that the

ratio of the mean reversion level �(t) and the square of the volatility parameter �2(t) is

identical for all t. The time{dependence of the parameters allows initial term structures of

interest rates and of interest rate volatilities to be �tted. However, the way initial forward

rates are interpolated determines how volatilities evolve over time. Our approach could

thus be seen as an alternative to the \simple class", the choice between the two depending

on what should be endogenous to the model.

Scott (1995) also addresses the tradeo� between analytical tractability and calibration

to market data in CIR type models. He shifts the short rate realizations of a constant

parameter model by a deterministic component in order to �t the initial term structure,

thus avoiding the need to perform calculations with a time dependent drift parameter. The

yield curve interpolation is exogenous to this model and the short rate volatility parameter

is constant across time, precluding calibration to market volatilities.

In the next section we introduce the model and show how to �t it to initial zero coupon

bond prices, as well as discussing how volatility structures can be input into the model, this

being an additional requirement often put forth by practitioners in addition to the three

already mentioned. The formulae for contingent claims pricing and hedging are derived in

section 3, interpolated zero coupon bond prices being given as a special case. Section 4

shows how the results in the one-factor case can be extended to a multifactor model.

2. The Model

2.1. The Short Rate Process. We wish to specify the model so that the dynamics of

the short rate process are given by a generalized CIR equation with piecewise constant

coe�cients. We call this the segmented square root model. To formalize, let points in time

0 = T0 < T1 < : : : < TN and constants �1; : : : ; �N , a1; : : : ; aN , �1; : : : ; �N 2 IR++ be given.

We de�ne a step function � : IR+ ! IR++ in the following manner:

�(t) := �1 1f0g(t) +

NX
i=1

�i 1]Ti�1;Ti](t) + �N 1]TN ;+1[(t)

Step functions �; a : IR+ ! IR++ are de�ned analogously. Now let (
;F ; IF; Q) be a stochas-
tic basis satisfying the usual hypotheses on which a standard one-dimensional Brownian

motion W is de�ned. Note that since we are interested in arbitrage pricing of derivative

securities, we are constructing the model immediately under the risk neutral measure Q.1

The short rate r is a continuous IF-adapted stochastic process de�ned on 
. We specify

1I.e. the equivalent measure under which all asset prices discounted by the savings account
expf

R
r(s)dsg are martingales.
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the dynamics of r by demanding that r is a solution of the following stochastic di�erential

equation:

dr(t) = (�(t)� a(t)r(t))dt+ �(t)
p
r(t)dW (t)(1)

We shorten notation by de�ning two functions �; � : IR+ � ]0; +1[! IR as follows:

�(t; x) := �1
p
x 1f0g(t) +

NX
i=1

�i
p
x 1]Ti�1;Ti](t) + �N

p
x 1]TN ;+1[(t)

�(t; x) := (�1 � a1x)1f0g(t) +

NX
i=1

(�i � aix)1]Ti�1;Ti](t) + (�N � aNx)1]TN ;+1[(t)

The dynamic equation now takes the form:

dr(t) = �(t; r(t))dt+ �(t; r(t))dW (t)(2)

We stress the fact that a solution of this equation by de�nition only assumes values in

]0; +1[ , so that the short rate is automatically strictly positive at all times. We will show

that solving equation (2) is equivalent to iteratively solving classical Cox/Ingersoll/Ross

equations, i.e. equations of the type:

dr(t) = (� � ar(t))dt+ �
p
r(t)dW (t):(3)

Here �; a; � are strictly positive constants. If these ful�ll the inequality 2� � �2, then

using Feller's test for explosions (cf. Karatzas and Shreve (1988), Proposition 5.5.22 and

Theorem 5.5.29) one can prove that solutions of (3) with nonrandom initial conditions

cannot explode. Using the result shown in appendix A, it follows that solutions of (3) with

random initial conditions do not explode either.

2.1.1. Theorem. For each i 2 f1; : : : ; Ng let the constants �i; �i 2]0; +1[ ful�ll the
inequality 2�i � �2

i . Let (
;F ; IF; Q) be a stochastic basis ful�lling the usual hypotheses,
carrying a standard, one{dimensional Brownian motion W . Let f : 
 ! ]0; +1[ be an
F0{measurable random variable. Then there exists a continuous, IF{adapted process r with

values in ]0; +1[, so that for each t 2 IR+, we have

r(t) = f +

Z t

0

�(s; r(s))dW (s) +

Z t

0

�(s; r(s))ds Q{a.s.

Proof: See appendix B.

2.1.2. Remark. The coe�cients of the classical CIR equation are locally Lipschitz, there-

fore pathwise uniqueness holds for the equation (3). By an iteration procedure analogous

to the one used in the proof of the theorem above, it follows that pathwise uniqueness

also holds for the equation (2). Therefore, in our model the short rate is uniquely deter-

mined up to indistinguishability by the coe�cients in the dynamic equation and the initial

interest rate.

2.2. Fitting the Model to Zero Coupon Bond Prices. In the segmented model, as

in the original constant parameter CIR model, zero coupon bond prices can be expressed

in closed form as functions of the state variable and the model parameters. Since we are

constructing the model in such a manner as to have one segment for each zero coupon

bond maturity, the drift parameters �j can be chosen in such a manner as to �t the bond

prices.
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On each constant parameter segment, the bond price formula is as in the classical CIR

case. To get the price of a bond whose time to maturity covers two segments 0 = T0 <

T1 < T2, we apply the CIR formula at the segment boundary T1 and take the expectation

under the T1 forward measure2. Iterating this procedure yields

2.2.1. Proposition. In the segmented square root model with time segments [Tj�1;Tj],

j 2 f1; : : : ;Ng, the time Tj�1 prices of zero coupon bonds with maturity Tk, j � k � N ,
are exponential a�ne functions of the short rate realization r(Tj�1):

B(r(Tj�1); Tj�1; Tk) = Cj�1;k expf�Dj�1;k r(Tj�1)g(4)

with Cj�1;k and Dj�1;k recursively de�ned as

Cj�1;k := Cj;k � Aj(Tj�1; Tj) �
�

bj

bj + 2Dj;k

� 1
2
�j

Dj�1;k := Bj(Tj�1; Tj) + �j
Dj;k

bj + 2Dj;k

; where Ck;k := 1 and Dk;k := 0,

and

Aj(Tj�1; Tj) :=

�
2cjwj(Tj�1; Tj) exp

�
1

2
(cj + aj)(Tj � Tj�1)

�� 1
2
�j

Bj(Tj�1; Tj) := 2wj(Tj�1; Tj) (exp fcj(Tj � Tj�1)g � 1)

wj(Tj�1; Tj) := ((cj + aj) exp fcj(Tj � Tj�1)g+ cj � aj)
�1

cj :=

q
a2j + 2�2

j

�j :=
16wj(Tj�1; Tj)

2c2j expfcj(Tj � Tj�1)g
�2
jBj(Tj�1; Tj)

bj :=
4

�2
j

Bj(Tj�1; Tj)
�1

�j :=
4�j

�2
j

Proof: Let k � j = 0. Then (4) becomes

B(r(Tj�1); Tj�1; Tj) = Aj(Tj�1; Tj) expf�Bj(Tj�1; Tj)r(Tj�1)g
which is the original CIR formula for the price of a zero coupon bond, valid since we have

a constant parameter CIR process on [Tj�1; Tj]. Now consider some k > j. If (4) is valid

over (n� 1) segments then (4) determines all zero coupon bond prices

B(r(Tj); Tj; Tk) 8 k � j < n:

If there are n segments there remains one bond price not determined by (4). Since under the

time T1 forward measure all assets valued with respect to the zero coupon bond maturing

in T1 are martingales, we can write this remaining bond price as

B(r(T0); T0; Tn) = B(r(T0); T0; T1)E
T1

�
B(r(T1); T1; Tn)

B(r(T1); T1; T1)

�
;(5)

2I.e. the equivalent measure under which all asset prices discounted by the zero coupon bond maturing
in T1 are martingales.
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where the bond price in T1 is given by (4) with a suitable shift of indices. Setting ~r(T1) :=

b1r(T1) we can then employ the result in Jamshidian (1987) that ~r(T1) conditioned on

r(T0) is noncentral chi{square distributed under the T1 forward measure, with �1 degrees

of freedom and non{centrality parameter �1r(T0). Thus (5) becomes

B(r(T0); T0; Tn) = B(r(T0); T0; T1) �Z 1

0

C1;n expf�D1;n r(T1)gq�2((b1r(T1); �1; �1r(T0))d(b1r(T1)):(6)

Applying lemma C.1 in appendix C to (6) we get

B(r(T0); T0; Tn) = B(r(T0); T0; T1)C1;n exp
�
� D1;n

b1 + 2D1;n

�1r(T0)

��
b1

b1 + 2D1;n

� 1
2
�1

�
Z 1

0

q�2

�
(b1 + 2D1;n)r(T1); �1;

b1

b1 + 2D1;n

�1r(T0)

�
d((b1 + 2D1;n)r(T1))| {z }

=1

= A1(T0; T1)C1;n
�

b1

b1 + 2D1;n

� 1
2
�1

exp

�
�
�
B(T0; T1) +

D1;n

b1 + 2D1;n

�1

�
r(T0)

�
= C0;n expf�D0;n r(T0)g:

2

Starting with j = 1 and solving (4) for �j, we can thus successively calculate all �j for j 2
f1; : : : ;Ng. Note, however, that strongly downward sloping initial forward rate curves can
lead to negative �j, and thus this model shares the disadvantage all CIR type models with

a time dependent drift coe�cient in that it cannot �t all possible initial term structures.

2.3. Initial Volatility Term Structures. The problem of calibrating a model to ob-

served volatility structures has two dimensions, of which the term structure of volatilities

for forward rates or zero coupon bonds of di�erent maturities is most often cited. Be-

sides this maturity dimension, however, there is the temporal dimension of how volatilities

evolve. Historical estimates of deterministic volatility coe�cients usually assume that these

coe�cients do not change over time. When calibrating a model to implied volatilities, the

�rst dimension is given by for example prices of options on zero coupon bonds of di�erent

maturities, and the temporal dimension of the volatility structure is determined by prices

of options on zero coupon bonds with the same time to maturity, but di�erent option

expiries.

In the \simple class of square root models" of Jamshidian (1995), the maturity dimension

is covered by choosing the (time{dependent) speed of mean reversion to match input

volatilities for forward rates. Instantaneous forward rates are given by

f(r(t); t; T ) = � @

@T
lnB(r(t); t; T )

By Itô's Lemma, initial forward rate volatilities in our model are therefore �1
p
r(T0)

@
@Tk

D0;k

and we can state
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2.3.1. Proposition. Initial forward rate volatilities in the segmented square root model

are �1
p
r(T0)

@

@Tk
D0;k, with

@

@Tk
D0;k =

 
k�1Y
i=1

�ibi(bi + 2Di;k)
�2

!
@

@Tk
Bk(Tk�1; Tk)(7)

and D, �, b and B de�ned as in proposition 2.2.1.

Note that forward rate curves in our model are continuous (see proposition 3.2.1).

Proof: By induction, we show the validity of the more general version of (7)

@

@Tk
Dj;k =

 
k�1Y
i=j+1

�ibi(bi + 2Di;k)
�2

!
@

@Tk
Bk(Tk�1; Tk)(8)

For k � j = 1, (8) becomes

@

@Tk
Dj;k =

@

@Tk
Bk(Tk�1; Tk)

which is obviously true since Dj;j+1 = Bj+1(Tj; Tj+1). Now let (8) be valid for some

k � j � 1. Then for k + 1 (or by a simple change of notation j � 1) we have

@

@Tk+1

Dj;k+1 =
@

@Tk+1

(Bj+1(Tj; Tj+1) + �j+1(bj+1D�1
j+1;k+1 + 2)

�1
)

= �j+1(bj+1D�1
j+1;k+1 + 2)

�2bj+1D�2
j+1;k+1

@

@Tk+1

Dj+1;k+1

= �j+1bj+1(bj+1 + 2Dj+1;k+1)
�2

 
kY

i=j+2

�ibi(bi + 2Di;k+1)
�2

!
@

@Tk+1

Bk+1(Tk; Tk+1)

=

 
kY

i=j+1

�ibi(bi + 2Di;k+1)
�2

!
@

@Tk+1

Bk+1(Tk; Tk+1)

2

For given �k, we can thus use (7) to inductively calculate the speed of mean reversion

parameters ak to match initial forward rate volatilities for the maturities T1 to Tn. Alter-

natively, one could calculate the �k for given parameters ak.

Calibrating the models to an initial volatility structure along the maturity dimension, we

therefore still retain a degree of freedom that is already taken in the \simple class". Thus

our model di�ers from the simple class in how the temporal dimension of the volatility

structure is speci�ed: In the simple class, the way initial forward rates are interpolated

determines how volatilities evolve over time, while in the segmented model the factor

volatility, be it the short rate or some yield of forward rate3, determines the endogenous

interpolation.

3Note that a�ne models can be reparameterized in any yield or forward rate instead of the short rate
(see Du�e and Kan (1992, 1996)).
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3. Pricing and Hedging

3.1. Contingent Claim Valuation. Having calibrated the model, we can now proceed to

price other assets relative to the initial term structure, given the assumptions of the model.

We will consider contingent claims whose payo�s can be expressed as linear combinations of

European (exchange) options on securities whose terminal function is a simple exponential

in r, thus allowing us to apply lemma C.1. As will be discussed below, this covers a wide

range of �xed income derivatives.

We begin by deriving the exchange option formula in the classical CIR case. Consider

the value Vj(t) of a security at time t given by

Vj(t; r(t)) = hj(t) expf�gj(t)r(t)g;(9)

where hj and gj are deterministic functions of t. The payo� C(tm) at expiry tm of a

European exchange option on two such securities is de�ned as

C (tm; r(tm)) := [V1 (tm; r(tm))� V2 (tm; r(tm))]
+
:(10)

Note that for h2(tm) = K and g2(tm) = 0 we have a European call option on V1. Alterna-

tively, setting h1(tm) = K and g1(tm) = 0 yields a European put option on V2. Let

k := maxfn 2 f0; : : : ;Ng j Tn < tmg :(11)

On [Tk;Tk+1] we have a constant parameter CIR process, and following Jamshidian (1987)

we know that ~r(tm) := ~b � r(tm) conditioned on r(Tk) is noncentral chi{square distributed

under the tm forward measure, with �k+1 degrees of freedom and noncentrality parameter

~� � r(Tk), where

~b :=
4

�2
k+1

Bk+1(Tk; tm)
�1

~� :=
16wk+1(Tk; tm)

2 c2k+1 expfck+1(tm � Tk)g
�2
k+1Bk+1(Tk; tm)

with B, c and w de�ned as in proposition 2.2.1. Therefore

C(Tk; r(Tk)) =B(r(Tk); Tk; tm)E
tm
�
[V1(tm; r(tm))� V2(tm; r(tm))]

+ jFTk

�

=B(r(Tk); Tk; tm)

�Z
Z

h1(tm) expf�g1(tm)r(tm)gq�2
�
~br(tm); �k+1; ~�r(Tk)

�
d(~br(tm))

(12)

�
Z
Z

h2(tm) expf�g2(tm)r(tm)gq�2
�
~br(tm); �k+1; ~�r(Tk)

�
d(~br(tm))

�

with

Z :=fr(tm) > 0 j V1(tm; r(tm)) > V2(tm; r(tm))g:

Given the functional form of V1 and V2, we have either Z=]0; r�[ or Z=]r�;1[ for some

deterministic r� > 0. We consider Z=]0; r�[ ; the calculations for Z=]r�;1[ are analogous.

Applying lemma C.1, (12) becomes
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C(Tk; r(Tk))

=B(r(Tk); Tk; tm)

0
@h1(tm) exp

�
� g1(tm)

~b + 2g1(tm)
~� r(Tk)

� 
~b

~b+ 2g1(tm)

! 1
2
�k+1

Z (~b+2g1(tm))r�

0

q�2

 
(~b+ 2g1(tm))r(tm); �k+1;

~b

~b+ 2g1(tm)
~� r(Tk)

!
d
�
(~b+ 2g1(tm))r(tm)

�

� h2(tm) exp

�
� g2(tm)

~b + 2g2(tm)
~� r(Tk)

� 
~b

~b + 2g2(tm)

! 1
2
�k+1

Z (~b+2g2(tm))r�

0

q�2

 
(~b+ 2g2(tm))r(tm); �k+1;

~b

~b+ 2g2(tm)
~� r(Tk)

!
d
�
(~b+ 2g2(tm))r(tm)

�!

which we can write as

C(Tk; r(Tk)) = ĥ1 expf�ĝ1r(Tk)g
Z b̂1r

�

0

q�2
�
b̂1r(tm); �k+1; �̂1r(Tk)

�
d(b̂1r(tm))(13)

� ĥ2 expf�ĝ2r(Tk)g
Z b̂2r

�

0

q�2
�
b̂2r(tm); �k+1; �̂2r(Tk)

�
d(b̂2r(tm))

with

ĥj := Ak+1(Tk; tm)hj(tm)

 
~b

~b + 2gj(tm)

! 1
2
�k+1

ĝj := Bk+1(Tk; tm) +
gj(tm)~�

~b+ 2gj(tm)

b̂j := ~b + 2gj(tm)

�̂j :=
~b

~b+ 2gj(tm)
~�

and

Z b̂jr
�

0

q�2
�
b̂jr(tm); �k+1; �̂jr(Tk)

�
d
�
b̂jr(tm)

�
= �2

�k+1;�̂jr(Tk)
(b̂jr

�
)

the value of the noncentral chi{square distribution function.

(13) is the formula for pricing the exchange option de�ned by (10) and (9) in a constant

parameter CIR model. Given this price at Tk, the next lower segment boundary to option

expiry tm, in analogy to proposition 2.2.1 we now state the pricing formula for the earlier

segment boundaries Tn, n < k:

3.1.1. Proposition. In the segmented square root model with time segments [Tn�1;Tn],

n 2 f1; : : : ;Ng, consider an exchange option de�ned by (10) and (9), k de�ned by (11).
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For n � k, the time Tn price of the option is given by

C(Tn; r(Tn)) = C(1)n;k exp

n
�D(1)

n;kr(Tn)
o
P
�
b
(1)

n;k+1r(tm) � z�m

�
(14)

�C(2)n;k exp

n
�D(2)

n;kr(Tn)
o
P
�
b
(2)

n;k+1r(tm) � z�m

�
if V1 (tm; r(tm)) > V2 (tm; r(tm)) for r(tm) 2]0; r�[ and

C(Tn; r(Tn)) = C(1)n;k exp

n
�D(1)

n;kr(Tn)
o�

1� P
�
b
(1)
n;k+1r(tm) � z�m

��
(15)

�C(2)n;k exp

n
�D(2)

n;kr(Tn)
o�

1� P
�
b
(2)

n;k+1r(tm) � z�m

��
if V1 (tm; r(tm)) > V2 (tm; r(tm)) for r(tm) 2]r�;1[;

with C(j)n;k and D(j)

n;k recursively de�ned as in proposition 2.2.1, however with C(j)k;k and D(j)

k;k

given by (13):

C(j)k;k := ĥj D(j)

k;k := ĝj:

P
�
b
(j)
n;k+1r(tm) � z�m

�
=

Z z�m

0

p
�
b
(j)
n;k+1r(tm) = zm

�
dzm is the distribution function of a (k �

n+1){times multiple compound4noncentral �2 distributed random variable with degrees of
freedom �n+s, s 2 f1; : : : ; k � n+ 1g, noncentrality parameters

�(j)
s :=

(
�̂jr(Tk) s = k � n+ 1

�n+s bn+s

bn+s+2D
(j)

n+s;k

r(Tn+s�1) s 2 f1; : : : ; k � ng

and transformation coe�cients

b
(j)
n;n+s :=

(
b̂j s = k � n + 1

bn+s + 2D(j)

n+s;k s 2 f1; : : : ; k � ng
and z�m is given by

z�m = b
(j)

n;k+1(g1 � g2)
�1

ln
h1

h2
:

Proof: Again, we carry out the proof by induction, showing the �rst of the two analogous

cases (14) and (15): For n = k, (14) is identical to (13). Let (14) be valid for some

0 < n � k. Then we have for n� 1:

C (Tn�1; r(Tn�1))

= B (r(Tn�1); Tn�1; Tn)

Z 1

0

C (Tn; r(Tn)) q�2 (bnr(Tn); �n; �nr(Tn�1)) d(bnr(Tn))

= An(Tn�1; Tn) exp f�Bn(Tn�1; Tn)r(Tn�1)g

�
�
C(1)n;k

Z 1

0

expf�D(1)

n;kr(Tn)g
Z z�m

0

p
�
b
(1)

n;k+1r(tm) = zm

�
dzmq�2 (bnr(Tn); �n; �nr(Tn�1)) d (bnr(Tn))

�C(2)n;k

Z 1

0

expf�D(2)

n;kr(Tn)g
Z z�m

0

p
�
b
(2)

n;k+1r(tm) = zm

�
dzmq�2 (bnr(Tn); �n; �nr(Tn�1)) d (bnr(Tn))

�
:

4see appendix D
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By interchanging the order of integration and applying lemma C.1, we get

An(Tn�1; Tn) exp f�Bn(Tn�1; Tn)r(Tn�1)g

� C(j)n;k

Z 1

0

expf�D(j)
n;kr(Tn)g

Z z�m

0

p
�
b
(j)
n;k+1r(tm) = zm

�
dzmq�2(bnr(Tn); �n; �nr(Tn�1))d(bnr(Tn))

= An(Tn�1; Tn) exp f�Bn(Tn�1; Tn)r(Tn�1)g

� C(j)n;k

Z z�m

0

Z 1

0

p
�
b
(j)

n;k+1r(tm) = zm

�
exp

(
� D(j)

n;k

bn + 2D(j)

n;k

�nr(Tn�1)

) 
bn

bn + 2D(j)

n;k

! 1
2
�n

� q�2
 
(bn + 2D(j)

n;k)r(Tn); �n;
�nbn

bn + 2D(j)

n;k

r(Tn�1)

!
d
�
(bn + 2D(j)

n;k) � r(Tn)
�
dzm

= C(j)n�1;k exp

n
�D(j)

n�1;k r(Tn�1)

oZ z�m

0

p
�
b
(j)

n�1;k+1 � r(tm) = zm

�
dzm:

2

3.1.2. Remark. Note that the C(j)n;k expf�D(j)

n;kr(Tn)g are simply the time Tn values of the
underlying assets, so (14) can also be written as

C(Tn; r(Tn)) = V1(Tn; r(Tn))P
�
b
(1)

n;k+1r(tm) � z�m

�
� V2(Tn; r(Tn))P

�
b
(2)

n;k+1r(tm) � z�m

�
3.1.3. Remark. We can use proposition 3.1.1 to calculate the option price at any time t

as a function of r(t) by �rst setting

n := maxfi 2 f0; : : : ;Ngjt > Tig
and then Tn := t.

Proposition 3.1.1 allows us to price a wide class of contingent claims. For one, all claims

which can be represented as portfolios of (European) options on zero coupon bonds are

covered. This includes caps and oors, and also swaptions and options on coupon bonds,

since in the one{factor model considered here bond prices are monotonic in the short rate,

thus the argument of Jamshidian (1989) is applicable.

Spread options on forward LIBOR can also be priced. More generally, consider a spread

option on two forward rates with actuarial compounding. Such a time T forward rate with

compounding period � is given at time t by

fn(t; T; T + �) =
1

�

�
B(r(t); t; T )

B(r(t); t; T + �)
� 1

�
and thus the payo� on an option on the spread between two such rates is

C(tm; r(tm)) :=
1

�

�
B(r(tm); tm; T1)

B(r(tm); tm; T1 + �)
� B(r(tm); tm; T2)

B(r(tm); tm; T2 + �)

�+
Since the quotients of zero coupon bond prices are simple exponentials of r(tm), proposition

3.1.1 applies. Similarly, futures on simple exponentials of r remain simple exponentials in

the segmented square root model, as they do in the original CIR, so proposition 3.1.1 can

also be used to price options on futures on zero coupon bonds. Finally, proposition 3.1.1

can easily be extended to options on linear combinations of simple exponentials of r, in

order to valuate options on nominal yield spreads, for example.
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Figure 1. Interpolated term structures

The pricing formulae (14) and (15) call for the evaluation of multiple compound noncen-

tral �2 distribution functions, which at �rst glance appears to be a task of high numerical

complexity. However, as discussed in appendix D, the number of operations needed to

calculate the value of an n{times multiple compound noncentral �2 distribution function

only grows linearly in n. Furthermore, note that this n is determined by the number of

time segments up to the expiry of the option only, since the value of the underlyings at

option expiry is known explicitly as a function of r.

3.2. Term Structure Interpolation. Proposition 3.1.1 also provides interpolated zero

coupon bond prices: If one sets h1(tm) = 1 and g1(tm) = g2(tm) = h2(tm) = 0, then

C(Tn; r(Tn)) = C(1)n;k expf�D(1)

n;kr(Tn)g is the time Tn price of a zero coupon bond maturing

in tm.

3.2.1. Proposition. Interpolated forward rate curves in the segmented square root model

are continuous.

Proof: At any future point in time t, we can without loss of generality set Tj := t, where

Tj+1 is the earliest segment boundary greater than t in the original segmentation. We have

f(r(Tj); Tj; tm) = � @

@tm
ln C(1)j;k expf�D(1)

j;kr(Tj)g(16)

Since C(1)j;k and D(1)

j;k are smooth functions of tm for tm 2]Tk;Tk+1[, we only need to show

continuity of (16) on the segment boundaries, i.e. for

f(r(Tj); Tj; Tk) = � @

@Tk
ln Cj;k + r(Tj)

@

@Tk
Dj;k(17)

with Cj;k and Dj;k de�ned as in proposition 2.2.1. It is su�cient to show the continuity of

the two terms in (17) separately. @
@Tk

Dj;k is already given in (8). Consider

@

@Tk
Bk(Tk�1; Tk) = �2wk(Tk�1; Tk)

2
(ck + ak)ck expfck(Tk � Tk�1)g(expfck(Tk � Tk�1)g � 1)

+2wk(Tk�1; Tk)ck expfck(Tk � Tk�1)g
= 2wk(Tk�1; Tk)

2
((ck + ak)ck expfck(Tk � Tk�1)g(1� expfck(Tk � Tk�1)g)

+ck expfck(Tk � Tk�1)g((ck + ak) expfck(Tk � Tk�1)g+ ck � ak))

= 4c2kwk(Tk�1; Tk)
2
expfck(Tk � Tk�1)g = �kb

�1
k
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Inserting this into (8), we get

@

@Tk
Dj;k

����
Tk=Tk�1

=

k�1Y
i=j+1

�ibi(bi + 2Di;k)
�2

=

 
k�2Y
i=j+1

�ibi(bi + 2Di;k)
�2

!
�k�1b

�1
k�1

=
@

@Tk�1

Dj;k�1

thus showing the continuity of the second term on the segment boundary. The �rst term

is

� @

@Tk
ln Cj;k = � @

@Tk
lnAk(Tk�1:Tk) +

k�1X
i=j+1

�i(bi + 2Di;k)
�1 @

@Tk
Di;k(18)

where

� @

@Tk
lnAk(Tk�1:Tk) = �1

2
�k

�
2ckwk(Tk�1; Tk) exp

�
1

2
(ck + ak)(Tk � Tk�1)

���1

�
�
2ck

1

2
(ck + ak)wk(Tk�1; Tk) exp

�
1

2
(ck + ak)(Tk � Tk�1)

�
�2ckwk(Tk�1; Tk)

2
(ck + ak)ck expfck(Tk � Tk�1)g

exp

�
1

2
(ck + ak)(Tk � Tk�1)

��

= �1

2
�k

�
1

2
(ck + ak)� ckwk(Tk�1; Tk)(ck + ak) expfck(Tk � Tk�1)g

�

=
1

4
�kwk(Tk�1; Tk)(ck + ak)(ck � ak)(expfck(Tk � Tk�1)g � 1)

=
1

4
�k�

2
kBk(Tk�1; Tk) = �kb

�1
k

Inserting this into (18), by the continuity of the @
@Tk

Di;k we get

� @

@Tk
ln Cj;k

����
Tk=Tk�1

=

k�1X
i=j+1

�i(bi + 2Di;k)
�1 @

@Tk
Di;k

=

 
k�2X
i=j+1

�i(bi + 2Di;k�1)
�1 @

@Tk�1

Di;k�1

!
+ �k�1b

�1
k�1

=
@

@Tk�1

ln Cj;k�1

2

Figure 1 shows examples of how the segmented square root model interpolates initial term

structures, as compared to loglinear interpolation of zero coupon bond prices and the

\maximum smoothness" approach of Adams and van Deventer (1994).
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3.3. Hedging. Although in the literature on CIR type models hedging strategies are

generally not discussed at length, we do so here. For one because the existence of a

self-�nancing duplicating strategy is the justi�cation for pricing derivative instruments by

arbitrage, and secondly because the hedge ratios in the underlying securities are not as

readily apparent from the pricing formulae as in the Black and Scholes (1973) model.

Since (14) and (15) were determined using the no-arbitrage condition, there remain two

conditions which a self-�nancing portfolio strategy duplicating the option must satisfy: The

value of the portfolio must equal the value of the option at all times and the martingale

part of the portfolio process must match the martingale part of the option process. For

(14), the former yields5

�1 = P
�
b
(1)

n;k+1r(tm) � z�m

�
�
C(2)n;k exp

n
�D(2)

n;kr(Tn)
o

C(1)n;k exp

n
�D(1)

n;kr(Tn)
o �P �b(2)n;k+1r(tm) � z�m

�
+ �2

�
(19)

Let (X)M denote the (uniquely determined) martingale part of a continuous semimartin-

gale X. By Itô's Lemma

d(C(Tn; r(Tn)))
M
=

@

@r(Tn)
C(Tn; r(Tn))d(r(Tn))

M

with

@

@r(Tn)
C(Tn; r(Tn)) =

2X
j=1

(�1)j
�
D(j)

n;kC(j)n;k exp

n
�D(j)

n;kr(Tn)
o
P
�
b
(j)

n;k+1r(tm) � z�m

�
(20)

� C(j)n;k exp

n
�D(j)

n;kr(Tn)
o @

@r(Tn)
P
�
b
(j)

n;k+1r(tm) � z�m

��

Similarly, the martingale parts of the processes of the underlyings are

d
�
C(j)n;k exp

n
�D(j)

n;kr(Tn)
o�M

= �D(j)

n;kC(j)n;k exp

n
�D(j)

n;kr(Tn)
o
d(r(Tn))

M
(21)

In contrast to the case of options on lognormal assets (such as in the Black/Scholes case),

the derivatives of the distribution function do not cancel out.

By (20) and (21), in order to match the martingale parts of the portfolio and the option

processes, we must have

�D(1)

n;kC(1)n;k exp

n
�D(1)

n;kr(Tn)
o
P
�
b
(1)

n;k+1r(tm) � z�m

�
+ C(1)n;k exp

n
�D(1)

n;kr(Tn)
o @

@r(Tn)
P
�
b
(1)
n;k+1r(tm) � z�m

�
+D(2)

n;kC(2)n;k exp

n
�D(2)

n;kr(Tn)
o
P
�
b
(2)

n;k+1r(tm) � z�m

�
� C(2)n;k exp

n
�D(2)

n;kr(Tn)
o @

@r(Tn)
P
�
b
(2)
n;k+1r(tm) � z�m

�
=� �1D(1)

n;kC(1)n;k exp

n
�D(1)

n;kr(Tn)
o
� �2D(2)

n;kC(2)n;k exp

n
�D(2)

n;kr(Tn)
o

5In order not to complicate the notation further, we apply remark 3.1.3 in what follows in this section.
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and inserting (19)

C(1)n;k exp

n
�D(1)

n;kr(Tn)
o @

@r(Tn)
P
�
b
(1)
n;k+1r(tm) � z�m

�
+D(2)

n;kC(2)n;k exp

n
�D(2)

n;kr(Tn)
o
P
�
b
(2)

n;k+1r(tm) � z�m

�
� C(2)n;k exp

n
�D(2)

n;kr(Tn)
o @

@r(Tn)
P
�
b
(2)
n;k+1r(tm) � z�m

�
=D(1)

n;kC(2)n;k exp

n
�D(2)

n;kr(Tn)
o
P
�
b
(2)
n;k+1r(tm) � z�m

�
+ �2(D(1)

n;k �D(2)
n;k)C(2)n;k exp

n
�D(2)

n;kr(Tn)
o

Solving for �2,

�2 =(D(1)

n;k �D(2)

n;k)
�1

0
@C(1)n;k exp

n
�D(1)

n;kr(Tn)
o

C(2)n;k exp

n
�D(2)

n;kr(Tn)
o @

@r(Tn)
P
�
b
(1)

n;k+1r(tm) � z�m

�

� @

@r(Tn)
P
�
b
(2)

n;k+1r(tm) � z�m

��
� P

�
b
(2)

n;k+1r(tm) � z�m

�
and similarly

�1 =P
�
b
(1)

n;k+1r(tm) � z�m

�
� (D(1)

n;k �D(2)

n;k)
�1

�
@

@r(Tn)
P
�
b
(1)

n;k+1r(tm) � z�m

�

�
C(2)n;k exp

n
�D(2)

n;kr(Tn)
o

C(1)n;k exp

n
�D(1)

n;kr(Tn)
o @

@r(Tn)
P
�
b
(2)

n;k+1r(tm) � z�m

�1A
The derivative of the multiple compound noncentral �2 distribution function with respect

to r(Tn) is given in lemma D.4.

Of course, the duplicating portfolio can also be constructed using two instruments dif-

ferent from the underlying securities, either directly as above or by �rst duplicating the

underlyings: To duplicate the option using some zero coupon bond B(r(Tn); Tn; Tx) and

the savings account, we use the equations (j = 1; 2):

C(j)n;k exp

n
�D(j)

n;kr(Tn)
o

= �
(j)
0 + �(j)

x B(r(Tn); Tn; Tx)

�D(j)

n;kC(j)n;k exp

n
�D(j)

n;kr(Tn)
o

= ��(j)
x Dn;xB(r(Tn); Tn; Tx)

and thus

�(j)
x =

D(j)

n;kC(j)n;k exp

n
�D(j)

n;kr(Tn)
o

Dn;xB(r(Tn); Tn; Tx)

�
(j)
0 = C(j)n;k exp

n
�D(j)

n;kr(Tn)
o 

1� D(j)

n;k

Dn;x

!

Therefore

�(1)
x �1 + �(2)

x �2 of B(r(Tn); Tn; Tx)

and �
(1)
0 �1 + �

(2)
0 �2 in the savings account

duplicate the option.
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4. Multifactor Extensions

For many applications, most prominently derivatives whose value depends on the shape

of the yield curve, one-factor models are inadequate. This leads us to consider how the

above techniques may be extended to the multifactor case.

4.1. Model Construction. As in Chen and Scott (1995), let the short rate be given by

the sum of independent state variables

r(t) =

JX
j=1

zj(t)

where the state variable dynamics are of the CIR type

dzj(t) =
�
�(j) � a(j)zj(t)

�
dt+ �(j)

q
zj(t)dW

(j)
t :(22)

In our segmented version of the multifactor model, we replace (22) with the dynamics given

in equation (2). For each segment [Tn�1;Tn] we now have parameter vectors �
(�)
n ; a

(�)
n ; �

(�)
n ,

and the vector valued functions A(�)
n (Tn�1;Tn);B(�)

n (Tn�1;Tn); �
(�)
n ; b

(�)
n and �

(�)
n are de�ned

element{wise as in the one{factor case. On a constant parameter segment, zero coupon

bond prices are6

B(Z(Tn�1); Tn�1; Tn) =

 
JY
j=1

A(j)
n (Tn�1; Tn)

!
exp

(
�

JX
j=1

B(j)
n (Tn�1; Tn)zj(Tn�1)

)
:

The transformed factors b
(j)
n zj(Tn) are noncentral �

2 distributed (conditioned on zj(Tn�1))

under the Tn forward measure, with �
(j)
n degrees of freedom and noncentrality parameter

�
(j)
n zj(Tn�1). Since the factors are independently distributed, we can apply lemma C.1 for

each factor separately and carry out the same induction as in the proof of proposition 2.2.1

to yield

4.1.1. Proposition. In the multifactor segmented square root model with time segments

[Tn�1;Tn], n 2 f1; : : : ;Ng, the prices of zero coupon bonds at time Tn�1 with maturity Tk,
n � k � N are given by

B(Z(Tn�1); Tn�1; Tk) =

 
JY
j=1

C(j)n�1;k

!
exp

(
�

JX
j=1

D(j)

n�1;kzj(Tn�1)

)

with C(j)n�1;k and D(j)

n�1;k recursively de�ned as

C(j)n�1;k :=C(j)n;kA(j)
n (Tn�1; Tn)

 
b
(j)
n

b
(j)
n + 2D(j)

n;k

! 1
2
�
(j)
n

D(j)

n�1;k :=B(j)
n (Tn�1; Tn) + �(j)n

D(j)

n;k

b
(j)
n + 2D(j)

n;k

where

C(j)k;k := 1 and D(j)
k;k := 0:

6See Chen and Scott (1995).
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Note that when �tting the model to an initial term structure in the multifactor case,

there are more parameters which can be adjusted. Thus in a two{factor model one could

choose to �t two initial zero coupon bond prices on each segment, reducing the number of

segments.

4.2. Option Pricing. As in section 3, consider a European exchange option on two secu-

rities whose terminal values are exponential a�ne functions of the factors. Since the factors

are independent, we can write the time Tk price of the option analogously to equation (12)

as7

C(Tk; Z(Tk)) = B(Z(Tk); Tk; tm)

(23)

�
 Z

Z

h1(tm)

JY
j=1

exp

n
�g(j)1 (tm)zj(tm)

o
q�2
�
~b(j)zj(tm); �

(j)
k+1; ~�

(j)zj(Tk)
�
d
�
~b(j)zj(tm)

�

�
Z
Z

h2(tm)

JY
j=1

exp

n
�g(j)2 (tm)zj(tm)

o
q�2
�
~b(j)zj(tm); �

(j)

k+1; ~�
(j)zj(Tk)

�
d
�
~b(j)zj(tm)

�!

with

Z :=

(
Z(tm) 2 IR

J
++

�����h1(tm) exp
(
�

JX
j=1

g
(j)
1 (tm)zj(tm)

)
> h2(tm) exp

(
�

JX
j=1

g
(j)
2 (tm)zj(tm)

))

=

(
Z(tm) 2 IR

J
++

�����
JX
j=1

�
g
(j)
2 (tm)� g

(j)
1 (tm)

�
zj(tm) > ln

h2(tm)

h1(tm)

)
:

Again we can apply lemma C.1 and write (23) as

C(Tk; Z(Tk)) = B(Z(Tk); Tk; tm)

�
0
@h1(tm)

0
@ JY

j=1

exp

(
� g

(j)
1 (tm)

~b(j) + 2g
(j)
1 (tm)

~�(j)zj(Tk)

) 
~b(j)

~b(j) + 2g
(j)
1 (tm)

! 1
2
�
(j)

k+1

1
A

�
Z
Z

 
JY
j=1

q�2

 �
~b(j) + g

(j)
1 (tm)

�
zj(tm); �

(j)
k+1;

~b(j)

~b(j) + 2g
(j)
1 (tm)

~�(j)zj(Tk)

!
d
��

~b(j) + 2g
(j)
1 (tm)

�
zj(tm)

�!

� h2(tm)

0
@ JY

j=1

exp

(
� g

(j)
2 (tm)

~b(j) + 2g
(j)
2 (tm)

~�(j)zj(Tk)

) 
~b(j)

~b(j) + 2g
(j)
2 (tm)

! 1
2
�
(j)

k+1

1
A

�
Z
Z

 
JY
j=1

q�2

 �
~b(j) + g

(j)
2 (tm)

�
zj(tm); �

(j)
k+1;

~b(j)

~b(j) + 2g
(j)
2 (tm)

~�(j)zj(Tk)

!
d
��

~b(j) + 2g
(j)
2 (tm)

�
zj(tm)

�!!
:

This is the exchange option formula for a multifactor CIR model with independent factors

and constant parameters. In order to calculate the option price for some arbitrary time Tn
in the segmented model and derive the multifactor version of proposition 3.1.1, we carry

out the same induction steps as in the proof of 3.1.1. Given the option price C(Tn; Z(Tn))

at the segment boundary Tn as a function of the factor realizations Z(Tn), the time Tn�1

7Unless otherwise stated, the notation in this section is de�ned as in section 3.
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price of the option can be calculated as the discounted expectation under the time Tn
forward measure QTn :

C(Tn�1; Z(Tn�1)) = B(Z(Tn�1); Tn�1; Tn)

Z
IR

J

++

C(Tn; Z(Tn))Q
Tn(dZ(Tn)):

The joint density of the factors Z(Tn) is given by the product of the factor densities

because of independence. Noting the multiplicative structure of (23), which is retained in

each induction step, we see that we can carry out the induction for each factor separately,

yielding

4.2.1. Proposition. In the multifactor segmented square root model with time segments

[Tn�1;Tn], n 2 f1; : : : ;Ng and J factors zj, consider an exchange option on two assets
whose values at option expiry tm are exponential a�ne functions of the factors:

V1;2(tm; Z(tm)) = h1;2(tm) exp

(
�

JX
j=1

g
(j)
1;2(tm)zj(tm)

)
:

De�ne k as

k := max fn 2 f0; : : : ;NgjTn < tmg :
For n � k, the time Tn price of the option is given by

C(Tn; Z(Tn)) =

 
JY
j=1

C(1;j)n;k exp

n
�D(1;j)

n;k zj(Tn)
o!

P1

 
JX
j=1

�
g
(j)
1 (tm)� g

(j)
2 (tm)

�
zj(tm) < ln

h1(tm)

h2(tm)

!

�
 

JY
j=1

C(2;j)n;k exp

n
�D(2;j)

n;k zj(Tn)
o!

P2

 
JX
j=1

�
g
(j)
1 (tm)� g

(j)
2 (tm)

�
zj(tm) < ln

h1(tm)

h2(tm)

!

with C(i;j)n;k and D(i;j)

n;k recursively de�ned as in proposition (4.1.1), however with

C(i;j)k;k :=A(j)

k+1(Tk; tm)hi(tm)

 
~b(j)

~b(j) + 2g
(j)
i (tm)

! 1
2
�
(j)

k+1

D(i;j)

k;k :=B(j)

k+1(Tk; tm) +
g
(j)
i (tm)~�

(j)

~b(j) + 2g
(j)
i (tm)

:

Pi

�PJ

j=1

�
g
(j)
1 (tm)� g

(j)
2 (tm)

�
zj(tm) < ln

h1(tm)

h2(tm)

�
is the distribution function of a weighted

sum of independent (k�n+1){times multiple compound noncentral �2 distributed factors

with degrees of freedom �
(j)
n+s, s 2 f1; : : : ; k � n+ 1g, noncentrality parameters

�(i;j)
s :=

8><
>:

~b(j)

~b(j)+2g
(j)

i (tm)
~�(j)zj(Tk) s = k � n+ 1

�
(j)

n+sb
(j)

n+s

b
(j)
n+s+2D

(i;j)

n+s;k

zj(Tn+s�1) s 2 f1; : : : ; k � ng

and transformation coe�cients

b
(i;j)
n;n+s :=

(
~b(j) + 2g

(j)
i (tm) s = k � n+ 1

b
(j)
n+s + 2D(i;j)

n+s;k s 2 f1; : : : ; k � ng
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The distribution function can be evaluated using the technique described by Chen and

Scott (1995); the characteristic function of the multiple compound noncentral �2 distri-

bution is given by proposition D.5 in the appendix. Note that by representing the value

of the distribution function as an integral of a product of the characteristic functions of

independent factors, this technique reduces the dimension of the numerical integration to

one for any number of factors and any number of segments. Thus for a large number of

segments before option expiry it may be e�cient to employ this technique even in the

one{factor case.

5. Closing Remarks

We have constructed the one{ and the multifactor versions of a term structure model

with non-negative interest rates which �ts an initial yield curve while retaining analytical

tractability for fast solutions for derivative pricing and hedging. The factor stochastic

di�erential equations are Cox/Ingersoll/Ross (CIR) type \square root" di�usions with

piecewise constant parameters, where the constant parameter segments are determined by

the initial term structure data, i.e. by the maturities for which zero coupon bond prices are

given. Prices of European options on linear combinations of securities whose value at option

expiry is an exponential a�ne function of the model factors can be expressed in terms of

a \multiple compound" noncentral chi-square distribution function, i.e. a noncentral chi-

square distribution whose noncentrality parameter is again (multiple compound) chi-square

distributed.

In the one-factor case the number of segments n up to option expiry determines the

numerical complexity of the problem of calculating this distribution function; the number of

operations necessary grows only linearly in n. In the multifactor case and for a large number

of segments in the one-factor case, the (explicitly derived) characteristic function can be

used to calculate the value of the multiple compound noncentral chi-square distribution

function by a one-dimensional numerical integration.

Thus we have arguably closed form solutions for a large class of �xed income derivatives,

including caps, oors, yield spreads, options on interest rate futures and, in the one-factor

case, swaptions.

Our approach to �tting an initial term structure does not require that we exogenously

specify zero coupon bond prices for the continuum of maturities. Instead, the model

interpolates endogenously in a manner consistent with the short rate dynamics. However,

exogenous interpolation schemes such as splines can be approximated by a su�ciently large

number of segments should one choose to do so.

Appendix A. On the Non-Explosion of Solutions of an SDE

Let U � IR
d
be open. We denote by bU := U [ f�g the Alexandrov{Compacti�cation of

U . Then bU is compact and its topology has a countable basis, therefore bU is Polish. Let

(
;F ; IF; P ) be a stochastic basis and X = (Xt)t2IR+
be a continuous IF{adapted process

with values in bU . We de�ne the explosion time eX of X as follows:

eX := infft 2 IR+ jXt = �g:
Then eX is an IF{stopping time. If X0 only assumes values in U , then we have eX > 0 and

furthermore, eX is predictable.

We denote by Md;n(IR) the set of all d� n matrices with real entries. Let � : IR+ � U !
Md;n(IR) and � : IR+ � U ! IR

d
be two continuous functions; these will be the coe�cients



A TRACTABLE TERM STRUCTURE MODEL 19

of the SDE we wish to consider. All stochastic bases (
;F ; IF; P ) will ful�ll the usual

hypotheses.

A.1. Definition. (Solution): Let (
;F ; IF; P ) be a stochastic basis on which an n{

dimensional, standard Brownian motion B = (Bt)t2IR+
is de�ned. A continuous, IF{

adapted process X taking values in bU is a solution of

dZt = �(t; Zt)dBt + �(t; Zt)dt(A.1)

i� the following conditions are met:

1. X0 only assumes values in U .
2. For P{almost all ! 2 feX < +1g we have

8t � eX(!) : Xt(!) = �:

(This condition is obviously ful�lled i� the two processes X and XeX are indistin-

guishable.)

3. If � is an IF{stopping time with [[0; � ]] � [[0; eX [[, then for every i 2 f1; : : : ; dg and

every t 2 IR+ we have the following:

X
(i)
t

�

= X
(i)
0 +

nX
j=1

Z t

0

�ij (s;X
�
s ) dB

(j)�

s +

Z t^�

0

�i (s;X
�
s ) ds P{a.s.

The solution X does not explode i� P [eX = +1] = 1.

A.2. Lemma. Let (
;F ; IF; P ) be a stochastic basis carrying a normal n{dimensional

Brownian motion W and let X be a continuous, IF{adapted process in bU so that X0 only
assumes values in U and the two processes X and XeX are indistinguishable. Let (�k)k2IIN
be an announcing sequence for eX . Then the following two statements are equivalent:

1. The process X is a solution of

dZt = �(t; Zt)dWt + �(t; Zt)dt:

2. For each i 2 f1; : : : ; dg, k 2 IIN and t 2 IR+ we have

X
(i)�k

t = X
(i)
0 +

nX
j=1

Z t

0

�ij (s;X
�k
s ) dW (j)�k

s +

Z t^�k

0

�i (s;X
�k
s ) ds P{a.s.

Proof: Obviously, we only need to show that 2. implies 1. Let � be any stopping time

with [[0; � ]] � [[0; eX [[. Fixing i 2 f1; : : : ; dg and t 2 IR+ we must show:

X
(i)
t

�

= X
(i)
0 +

nX
j=1

Z t

0

�ij (s;X
�
s ) dW

(j)�

s +

Z t^�

0

�i (s;X
�
s ) ds P{a.s.

By the stopping rules for stochastic integrals and the assumption, we have for every k 2 IIN,

X
(i)
t

�k^�
= X

(i)
0 +

nX
j=1

Z t^�

0

�ij (s;X
�k
s ) dW (j)�k

s +

Z t^�k^�

0

�i (s;X
�k
s ) ds

= X
(i)
0 +

nX
j=1

Z t^�^�k

0

�ij (s;X
�
s ) dW

(j)�

s +

Z t^�^�k

0

�i (s;X
�
s ) ds P{a.s.
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We can therefore �nd a null set N in (
;F ; P ), so that for ! 2 N c the following holds:

8k 2 IIN : X
(i)
t

�k^�
(!) = X

(i)
0 (!) +

 
nX

j=1

Z t^�^�k

0

�ij (s;X
�
s ) dW

(j)�

s

!
(!)

+

Z t^�(!)^�k(!)

0

�i (s;X
�
s (!)) ds:

Now �x an arbitrary ! 2 N c. Since t ^ �(!) < eX(!), there is a k0 2 IIN ful�lling

t ^ �(!) � �k0(!). We have

X(i)�

t (!) = X
(i)
t

�k0^�
(!)

= X
(i)
0 (!) +

 
nX

j=1

Z t^�^�k0

0

�ij (s;X
�
s ) dW

(j)�

s

!
(!) +

Z t^�(!)^�k0 (!)

0

�i (s;X
�
s (!))ds

= X
(i)
0 (!) +

 
nX

j=1

Z t

0

�ij (s;X
�
s ) dW

(j)�

s

!
(!) +

Z t^�(!)

0

�i (s;X
�
s (!)) ds: 2

The result we use in the main body of the paper is the following

A.3. Theorem. Suppose that any solution of the SDE determined by � and � satisfy-

ing a deterministic initial condition does not explode. Then non{explosion also holds for
solutions with random initial conditions.

For the convenience of the reader, we will provide a complete proof of this intuitive

result. Our approach follows that of Yeh (1995), x 18. In particular, we make use of

regular conditional probabilities. To be assured of their existence, we must �rst transport

our solution onto a suitably nice probability space. This is done in the next section.

A.1. Function Space Representation of Solutions. We �rst introduce a suitable anal-

ogy of Wiener space. As already mentioned, bU is a Polish space, therefore the space

C(IR+; bU) of all continuous functions from IR+ to bU endowed with the topology of uniform

convergence on compacts is Polish (cf. Bauer (1990), Theorem 31.6). We set

~C(IR+; bU) := nw 2 C(IR+; bU)���w(0) 2 Uo :
Now ~C(IR+; bU) is an open subset of C(IR+; bU) and therefore also Polish. Finally, we de�ne

cW = ~C(IR+; bU)� C(IR+; IR
n
)

and endow cW with the product topology, making cW into a Polish space also.

For every t 2 IR+ we have the canonical projection mappings

pt : cW! bU ; (w; w0) 7! w(t)

qt : cW! IR
n; (w; w0) 7! w

0
(t):

If we denote the Borel{�{Algebra of cW by W, we have

W = � (ps; qs; s 2 IR+) :

The canonical �ltration W = fWtgt2IR+
on (cW;W) is given by Wt = �(ps; qs; s 2 [0; t])

for every t 2 IR+. We also have two canonical stochastic processes Y = fYtgt2IR+
and
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W = fWtgt2IR+
on (cW;W ) given by

Yt(w;w
0
) := pt(w; w

0
) = w(t)

Wt(w;w
0
) := qt(w; w

0
) = w

0
(t)

for every t 2 IR+. The processes Y and W are obviously continuous and W {adapted, the

explosion time eY of Y is a W {stopping time with eY > 0.

Now let (
;F ; IF; P ) be a stochastic basis on which we have a normal n{dimensional

Brownian motion B and let X be a solution of the SDE

dZt = �(t; Zt)dBt + �(t; Zt)dt:(A.2)

This solution induces a canonical map (X;B) : 
! cW de�ned by

(X;B)(!) := (X�(!); B�(!)) :

The mapping (X;B) is F{W{measurable and also Ft{Wt{measurable for every t 2 IR+.

Let P(X;B) denote the image of P under (X;B). We denote by (cW;W;W � := fW�
tgt2IR+

; P(X;B))

the usual augmentation of the stochastic basis (cW;W;W ; P(X;B)). Observe that, as (
;F ; IF; P )
ful�lls the usual hypotheses by assumption, the mapping (X;B) is in fact F{W{measurable

and Ft{W
�
t {measurable for every t 2 IR+. It is trivial but useful to note that for every

t 2 IR+ we have

Yt � (X;B) = Xt; Wt � (X;B) = Bt:

In particular, eY � (X;B) = eX , and therefore:

P(X;B) [eY = +1] = P
�
(X;B)�1

(feY = +1g)� = P [eX = +1] :

A.1. Theorem. The processW is a standard, n{dimensional (P(X;B);W
�){Brownian mo-

tion and the process Y is a solution of

dZt = �(t; Zt)dWt + �(t; Zt)dt:(A.3)

Proof: 1. The paths of W are obviously continuous, W is W �{adapted. Let s; t 2 IR+

with s < t. Then we have

(Wt �Ws) � (X;B) = Bt � Bs:

Therefore the distribution ofWt�Ws under P(X;B) is just the distribution of Bt�Bs under

P . For the same reason we have

P(X;B) [W0 = 0] = P [B0 = 0] = 1:

To prove thatW is a Brownian motion, it only remains to show thatWt�Ws is independent

of W�
s. We denote the Borel �{algebra of IRn

by Bn. Suppose that C 2 Bn and A 2W�
s.

Since (X;B)�1(A) 2 Fs, we have

P(X;B)

�
A \ (Wt �Ws)

�1
(C)
�

= P
�
(X;B)�1

(A) \ (Bt � Bs)
�1

(C)
�

= P
�
(X;B)�1

(A)
�
P
�
(Bt � Bs)

�1
(C)
�

= P(X;B)[A] � P(X;B)

�
(Wt �Ws)

�1
(C)
�
:

2. We must now show that the process Y is indeed a solution of (A.3). By de�nition of cW,

Y0 assumes only values in U . The processes Y and Y eY are continuous and W {adapted,

so that fY = Y eY g 2W. Furthermore, the following holds:

8t 2 IR+ : Y
eY
t � (X;B) = X

eX
t :
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Therefore

P(X;B) [Y = Y eY ] = P
�
(X;B)�1

(fY = Y eY g)� = P [X = XeX ] = 1:

Let � be a W �{stopping time with [[0; � ]] � [[0; eY [[, �x i 2 f1; : : : ; dg and t 2 IR+. We

must show:

Y
(i)
t

�

= Y
(i)
0 +

nX
j=1

Z t

0

�ij (s; Y
�
s ) dW

(j)�

s +

Z t^�

0

�i (s; Y
�
s ) ds P(X;B){a.s.

We de�ne ~� : 
! IR+ by ~� := � � (X;B). One immediately sees that ~� is an IF{stopping

time with [[0; ~� ]] � [[0; eX [[. Since X is a solution of (A.2), we know that

X
(i)
t

~�
= X

(i)
0 +

nX
j=1

Z t

0

�ij
�
s;X ~�

s

�
dB(j)

s

~�
+

Z t^~�

0

�i
�
s;X ~�

s

�
ds P{a.s.(A.4)

For �xed i and t 2 IR+ we de�ne two real random variables 	 and � as follows:

	 :=

nX
j=1

Z t

0

�ij (s; Y
�
s ) dW

(j)�

s +

Z t^�

0

�i (s; Y
�
s ) ds+ Y

(i)
0 � Y

(i)
t

�

� :=

nX
j=1

Z t

0

�ij
�
s;X ~�

s

�
dB(j)

s

~�
+

Z t^~�

0

�i
�
s;X ~�

s

�
ds+X

(i)
0 �X

(i)
t

~�

Now (A.4) is equivalent to the fact that the distribution of � is �0, the Dirac measure at

the origin. It is clearly su�cient to prove that � and 	 are identically distributed.

To this end, we choose a sequence (Zm)m2IIN of partitions Zm : 0 = tm0 < : : : < tmkm = t of

[0; t], so that jZmj ! 0. Fix w 2 cW. For every m 2 IIN we de�ne �
(m)
i : [0; t]! IR by

�
(m)
i := �i (0; Y0(w))�f0g +

kmX
�=1

�i

�
tm��1; Y

�
tm��1

(w)

�
�]tm��1;t

m
� ]:

The continuous function mapping [0; t] to IR by s 7! �i(s; Y
�
s (w)) is the pointwise limit of the

sequence (�
(m)
i )m2IIN. The sequence (�

(m)
i )m2IIN is uniformly bounded by sups2[0;t] j�i(s; Y �

s (w))j
< +1 on [0; t]. Therefore, by the dominated convergence theorem we haveZ t^�(w)

0

�i (s; Y
�
s (w)) ds

= lim
m!1

Z t^�(w)

0

�
(m)
i (s)ds

= lim
m!1

kmX
�=1

�i

�
tm��1; Y

�
tm��1

(w)

� �
tm� ^ �(w)� tm��1 ^ �(w)

�
:

As w 2 cW was �xed arbitrarily, the following equation holds in the sense of pointwise

convergence on cW:Z t^�

0

�i (s; Y
�
s ) ds = lim

m!1

kmX
�=1

�i

�
tm��1; Y

�
tm��1

� �
tm� ^ � � tm��1 ^ �

�
:
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By exactly the same reasoning, we obtainZ t^~�

0

�i
�
s;X ~�

s

�
ds = lim

m!1

kmX
�=1

�i

�
tm��1; X

~�
tm��1

� �
tm� ^ ~� � tm��1 ^ ~�

�
:

In this case convergence is pointwise on 
.

We now also �x j 2 f1; : : : ; ng. Since the process (s; w) 7! �ij(s; Y
�
s (w)) is in particular

left continuous, we can approximate the stochastic integral by Stieltjes sums. Denoting

stochastic convergence on (cW;W; P(X;B)) by P(X;B){lim, we have:Z t

0

�ij(s; Y
�
s )dW

(j)�

s = P(X;B){ lim
m!1

kmX
�=1

�ij

�
tm��1; Y

�
tm��1

��
W

(j)�

tm�
�W

(j)�

tm��1

�
:

Analogously, we obtain:Z t

0

�ij(s;X
~�
s )dB

(j)~�

s = P{ lim
m!1

kmX
�=1

�ij

�
tm��1; X

~�
tm��1

� �
B

(j)~�

tm�
�B

(j)~�

tm��1

�
:

For every m 2 IIN, we now de�ne random variables 	(m) and �(m) as follows:

	
(m)

:=

nX
j=1

kmX
�=1

�ij

�
tm��1; Y

�
tm��1

��
W

(j)�

tm�
�W

(j)�

tm��1

�
+

kmX
�=1

�i

�
tm��1; Y

�
tm��1

� �
tm� ^ � � tm��1 ^ �

�
+Y

(i)
0 � Y

(i)�

t

�
(m)

:=

nX
j=1

kmX
�=1

�ij

�
tm��1; X

~�
tm��1

��
B

(j)~�

tm�
� B

(j)~�

tm��1

�
+

kmX
�=1

�i

�
tm��1; X

~�
tm��1

� �
tm� ^ ~� � tm��1 ^ ~�

�
+X

(i)
0 �X

(i)~�

t :

From the arguments o�ered above, it follows that

	 = P(X;B){ lim
m!1

	
(m)

� = P{ lim
m!1

�
(m):

For m 2 IIN, we let �m denote the distribution of 	(m) under P(X;B) and denote the

distribution of 	 under P(X;B) by �. The stochastic convergence of (	
(m))m2IIN to 	 implies

the weak convergence of (�m)m2IIN to �. From the de�nition of Y , W and ~� it follows that

8m 2 IIN : 	
(m) � (X;B) = �

(m):

Therefore, for every m 2 IIN the distribution of �(m) under P is just �m. This shows that

the sequence (�m)m2IIN converges to �0 , the distribution of � under P . As the limit of a

weakly convergent sequence of probability measures is uniquely determined, we conclude

that � = �0. 2

A.2. Constructing Solutions with Deterministic Initial Conditions from (Y;W ).

A.1. Definition. (Regular factorized conditional probability): Let (
;F ; P ) be a
probability space and Z be a random variable with values in a measure space (S;�). A

regular factorized conditional probability for P given Z is a Markov kernel K from (S;�)

to (
;F) so that for every A 2 F we have:

P [AjZ] = K(�; A) � Z P{a.s.
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The following theorem ensures the existence of regular factorized conditional probabili-

ties (cf. Bauer (1991)).

A.2. Theorem. Let (
;F ; P ) be a probability space, so that 
 is a Polish space and F
is the Borel �{algebra of 
. Let Z be a random variable with values in a measure space
(S;�). Then there exists a regular factorized conditional probability for P given Z.

A.3. Remark. 1. Let (
;F ; P ) be a probability space and Z a random variable with

values in a measure space (S;�). Suppose a regular factorized conditional probability for

P given Z exists, then we denote it by fP xgx2S, so that fP xgx2S is a family of probability

measures on (
;F) and the Markov kernel is in fact given by the mapping (x;A) 7! P x[A].

Let � denote the distribution of Z under P . For every A 2 F we have

P [A] =

Z



P [AjZ]dP =

Z



PZ(!)
[A] P (d!) =

Z
S

P x
[A]�(dx):

In particular, if P [A] = 0, there is a null set � in (S;�; �), so that the following is true:

8x 2 �
c
: P x

[A] = 0:

2. If the �{algebra � is countably generated, one can show the existence of a null set � in

(S;�; �), so that for every x 2 �c the following holds:

8C 2 � : P x
[Z 2 C] = �C(x):

In particular, if x 2 �c and fxg 2 � we have

Z = x P x
{a.s.

We now return to the space cW and our solution (Y;W ) of the SDE determined by � and �.

Since (cW;W) is a Polish space, we can �nd a regular factorized conditional probability for

P(X;B) on (cW;W) given Y0, which we denote by fP x
(X;B)gx2 U . For each x 2 U , we denote

by (cW;Wx;W �;x := fW�;x
t gt2IR+

; P x
(X;B)) the usual augmentation of (cW;W;W ; P x

(X;B)).

We let � denote the distribution of Y0 on (U ;B(U)) under P(X;B).

The remainder of this section is devoted to proving the following result:

A.4. Theorem. There is a null set � in (U ;B(U); �) so that for every x 2 �c the pro-
cess W is a normal, n{dimensional (P x

(X;B);W
�;x){Brownian motion and furthermore the

process Y is a solution of

dZt = �(t; Zt)dWt + �(t; Zt)dt

on the stochastic basis (cW;W
x
;W �;x ; P x

(X;B)) ful�lling the initial condition

Y0 = x P x
(X;B){a.s.

We �rst obtain several partial results.

A.5. Lemma. There is a null set �1 in (U ;B(U); �), so that for every x 2 �c
1 the process

W is a normal, n{dimensional (P x
(X;B);W

�;x){Brownian motion.

Proof: It su�ces to �nd a null set �1 in (U ;B(U); �), so that for every x 2 �c
1 W is

a (P x
(X;B);W ){Brownian motion. Since W is a (P(X;B);W ){Brownian motion, we have for

every y 2 IR
n
and all s; t 2 IR+ with s < t:

E
�
eihy;Wt�Wsi

��Ws

�
= e�

1
2
kyk2(t�s) P(X;B){a.s.
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This implies that for every A 2Ws and every C 2 B(U) we have:Z
A\fY02Cg

eihy;Wt�WsidP(X;B) = e�
1
2
kyk2(t�s)P(X;B)

�
A \ Y �1

0 (C)
�
:

Using the regular factorized conditional probability fP x
(X;B)gx2 U we can rewrite this equa-

tion as follows:Z
C

Z
cW

�A eihy;Wt�WsidP x
(X;B)�(dx) = e�

1
2
kyk2(t�s)

Z
C

P x
(X;B)(A)�(dx):

Since C was an arbitrary set in B(U), there is a null set �y;s;t;A in (U ;B(U); �), so that for
x 2 �c

y;s;t;A we have: Z
cW

�Ae
ihy;Wt�WsidP x

(X;B) = e�
1
2
kyk2(t�s)P x

(X;B)(A):

The �{algebraWs possesses a countable generator Es, by replacing Es with the algebra it

generates, we can assume that cW 2 Es and that Es is stable under intersections. We de�ne

�y;s;t :=
[
E2Es

�y;s;t;E:

Obviously �(�y;s;t) = 0. Now �x x 2 �c
y;s;t . The system

D :=

�
A 2Ws

����
Z
cW

�Ae
ihy;Wt�WsidP x

(X;B) = e�
1
2
kyk2(t�s)P x

(X;B)(A)

�
is a Dynkin{system containing Es, therefore D =Ws. To recapitulate, we have shown:

8x 2 �
c
y;s;t 8A 2Ws :

Z
cW

�Ae
ihy;Wt�WsidP x

(X;B) = e�
1
2
kyk2(t�s)P x

(X;B)(A):

We set

~�1 :=
[

u;v2Q+;u<v

p2Qn

�p;u;v:

Suppose that s; t 2 IR+, s < t, y 2 IR
n
are given. We choose sequences (uk), (vk) in Q+

and (pk) in Q
n
, so that (uk) # s, (vk) " t, (pk)! y and for every k 2 IIN we have uk < vk.

Let x 2 ~�c
1 and A 2 Ws be arbitrary. By the construction of ~�1, the following equation

holds for every k 2 IIN:Z
cW

�Ae
ihpk;Wvk

�Wuk
idP x

(X;B) = e�
1
2
kpkk

2(vk�uk)P x
(X;B)(A):

By the dominated convergence theorem it follows thatZ
cW

�Ae
ihy;Wt�WsidP x

(X;B) = lim
k!1

e�
1
2
kpkk

2(vk�uk)P x
(X;B)(A) = e�

1
2
kyk2(t�s)P x

(X;B)(A):

Since A was arbitrary we have shown:

8x 2 ~�
c
1 8s; t 2 IR+; s < t; y 2 IR

n
: E

�
eihy;Wt�Wsi

��Ws

�
= e�

1
2
kyk2(t�s) P x

(X;B){a.s.

This proves that for every x 2 ~�c
1, the process W is a (P x

(X;B);W ){Brownian motion. Using

remark A.3, it is now trivial to enlarge ~�1 slightly so as to ensure that W0 = 0 P x
(X;B){a.s.

2
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To prove theorem A.4, we will use lemma A.2. To this end we need to �x an announcing

sequence for the explosion time eY of Y . A natural choice is the following one. We can

�nd a sequence (Uk) of open subsets of U with (Uk) " U , and so that for every k 2 IIN, Uk
is relatively compact with Uk � Uk+1. We de�ne for every k 2 IIN:

�k := inf

n
t 2 IR+

���Yt 2 bUnUko :
Since Y is continuous and W {adapted, and bUnUk is a closed subset of the metric spacebU , �k is a W {stopping time for each k 2 IIN. One easily checks that (�k)k2IIN is indeed

an announcing sequence for eY . Since �k is a W {stopping time, it is automatically a

W
�;x{stopping time for every x 2 U .

A.6. Lemma. Fix i 2 f1; : : : ; dg, j 2 f1; : : : ; ng and k 2 IIN. Let I = (It)t2IR+
be a �xed

version of the stochastic integral (
R t
0
�ij(s; Y

�k
s )dW

(j)�k
s )t2IR+

, where the stochastic integral

refers to the stochastic basis (cW;W;W � ; P(X;B)). For each x 2 �c
1 let Ix = (Ixt )t2IR+

be a �xed version of the same integral, now taken with respect to the stochastic basis

(cW;W
x
;W �;x ; P x

(X;B)). Then there exists a null set �2 in (U ;B(U); �), so that for every

x 2 (�1 [ �2)
c the two processes I and Ix are P x

(X;B){indistinguishable.

Proof: Since we are dealing with continuous processes, it su�ces to show that for every

t 2 IR+ there exists a null set �2;t in (U ;B(U); �), so that the following holds:
8x 2 (�1 [ �2;t)

c
: It = Ixt P x

(X;B){a.s.

We �x t 2 IR+ and choose a sequence (Zm)m2IIN of partitions Zm : 0 = tm0 < : : : < tmlm = t

of [0; t] with jZmj ! 0. For each m 2 IIN we de�ne

�m :=

lmX
�=1

�ij

�
tm��1; Y

�k
tm��1

��
W

(j)�k

tm�
�W

(j)�k

tm��1

�
:

The sequence (�m)m2IIN converges P(X;B){stochastically to It, this is just the approximation

of the stochastic integral by Stieltjes sums. Choosing a subsequence if necessary, we can

assume that the sequence (�m)m2IIN converges P(X;B){a.s. to It . In particular, there is a

set N 2W with P(X;B)[N ] = 0, so that

8! 2 N c
: It(!) = lim

m!1
�m(!):

Again by remark A.3, there is a null set �2;t in (U ;B(U); �), so that
8x 2 �

c
2;t : P x

(X;B)[N ] = 0:

This shows that for x 2 �c
2;t the sequence (�m) converges P

x
(X;B){almost surely to It, but

for x 2 �c
1 we already know that it converges P x

(X;B){stochastically to Ixt . Therefore we

have

8x 2 (�1 [ �2;t)
c
: It = Ixt P x

(X;B){a.s.

2

Proof of Theorem A.4: By remark A.3, there is a �{null set �0, so that for x 2
�c
0 the two processes Y and Y eY are P x

(X;B){indistinguishable and Y0 = x P x
(X;B){a.s.

For i 2 f1; : : : ; dg, j 2 f1; : : : ; ng and k 2 IIN, let I(i;j;k) = (I
(i;j;k)
t )t2IR+

be a �xed

version of the stochastic integral (
R t
0
�ij(s; Y

�k)dW
(j)�K
s )t2IR+

computed with respect to
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(cW;W;W � ; P(X;B)). For each x 2 �c
1, let I

(i;j;k;x) be a �xed version of the same integral

computed with respect to (cW;W
x
;W �;x ; P x

(X;B)). As Y is a solution of

dZt = �(t; Yt)dWt

on (cW;W;W � ; P(X;B)), there is a P(X;B){null set N 2W, so that for every i 2 f1; : : : ; dg,
k 2 IIN and t 2 IR+ we have:

8! 2 N c
: Y

(i)�k

t (!) = Y
(i)
0 (!) +

nX
j=1

I
(i;j;k)
t (!) +

Z t^�k(!)

0

�i (s; Y
�k
s (!)) ds:

There is a �{null set �3, so that

8x 2 �
c
3 : P x

(X;B)[N ] = 0:

We therefore have

8x 2 �c
3 8i 2 f1; : : : ; dg; k 2 IIN; t 2 IR+ :

Y
(i)�k

t = Y
(i)
0 +

nX
j=1

I
(i;j;k)
t +

Z t^�k

0

�i (s; Y
�k
s ) ds P x

(X;B){a.s.

By Lemma A.6, there is a �{null set b�2, so that for x 2 (�1 [ b�2)
c and any choice of

i 2 f1; : : : ; dg, j 2 f1; : : : ; ng, k 2 IIN the two processes I(i;j;k) and I(i;j;k;x) are indistin-

guishable. This implies

8x 2
�
�1 [ b�2 [ �3

�c
8i 2 f1; : : : ; dg; k 2 IIN; t 2 IR+ :

Y
(i)�k

t = Y
(i)
0 +

nX
j=1

I
(i;j;k;x)
t +

Z t^�k

0

�i (s; Y
�k
s ) ds P x

(X;B){a.s

Setting � := �0[�1[ b�2[�3 and using Lemma A.2, we see that for x 2 �c the process Y

is a solution of dZt = �(t; Zt)dWt+�(t; Zt)dt on the stochastic basis (cW;W
x
;W �;x ; P x

(X;B))

with the deterministic initial condition Y0 = x P x
(X;B){a.s.

2

A.3. Concluding Proof of Theorem A.3: We return to our original solution (X;B)

on the stochastic basis (
;F ; IF; P ). As we have already shown

P [eX < +1] = P(X;B) [eY < +1] :

Therefore we need only show that P(X;B)[eY < +1] = 0. By theorem A.4 there exists

a �{null set �, so that for x 2 �c the process W is a standard n{dimensional Brownian

motion on (cW;W
x
;W �;x ; P x

(X;B)) and Y is a solution of our SDE with Y0 = x P(X;B){a.s.

By assumption, solutions with a deterministic initial condition do not explode, therefore

8x 2 �
c
: P x

(X;B) [eY < +1] = 0:

Now we have

P(X;B) [eY < +1] =

Z
U

P x
(X;B) [eY < +1]�(dx) = 0:

With this, the desired result is �nally proved. 2
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Appendix B. Proof of theorem 2.1.1

We proceed inductively. We de�ne r(0) : f0g�
! ]0; +1[ by setting r(0)(0; !) := f(!).

Now let i 2 f1; : : : ; ng be given. Suppose that we have already constructed a continuous,

IF{adapted process r(i�1) : [0;Ti�1] � 
 ! ]0; +1[, so that for every t 2 [0;Ti�1] the

following holds:

r(i�1)
(t) = f +

Z t

0

�
�
s; r(i�1)

(s)
�
dW (s) +

Z t

0

�
�
s; r(i�1)

(s)
�
ds Q{a.s.

In the case of i = 1 this equation is trivial. We now introduce a deterministic time change

h�i = f�tgt2IR+
by setting �t := t + Ti�1 for every t 2 IR+. We de�ne a new �ltration

G = fGtgt2IR+
by setting Gt = F�t = Ft+Ti�1 and de�ne a process ~W =

�
~W (t)

�
t2IR+

via

~W (t) := W (t + Ti�1) �W (Ti�1) . The stochastic basis (
;F ;G; Q) also ful�lls the usual

hypotheses and it is easy to see that ~W is a standard (Q;G){Brownian motion. The random

variable r(i�1)(Ti�1) is G0{measurable. From our above remarks it follows that there is a

continuous, G{adapted process y with values in ]0; +1[ so that r(0) = r(i�1)(Ti�1) and

dr(t) = (�i � air(t))dt+ �i
p
r(t)d ~W (t):

We de�ne the process r(i) : [0;Ti]� 
! ]0; +1[ as follows:

r(i)(t; !) :=

(
r(i�1)(t; !) if t 2 [0;Ti�1];

r(t� Ti�1; !) if t 2]Ti�1;Ti]:
(B.1)

The process r(i) is IF{adapted and possesses continuous paths. Obviously for t 2 [0;Ti�1]

we have

r(i)(t) = f +

Z t

0

�
�
s; r(i)(s)

�
dW (s) +

Z t

0

�
�
s; r(i)(s)

�
ds Q{a.s.(B.2)

Now assume t 2]Ti�1;Ti]. Then:

f +

Z t

0

�
�
s; r(i)(s)

�
ds+

Z t

0

�
�
s; r(i)(s)

�
dW (s)

= r(i)(Ti�1) +

Z t

Ti�1

�
�
s; r(i)(s)

�
ds+

Z t

Ti�1

�
�
s; r(i)(s)

�
dW (s) Q{a.s.

We will now write the right hand side of this equation somewhat di�erently. First of all:Z t

Ti�1

�
�
s; r(i)(s)

�
ds =

Z t

Ti�1

�
�i � air

(i)
(s)
�
ds

=

Z t�Ti�1

0

�
�i � air

(i)
(s+ Ti�1)

�
ds

=

Z t�Ti�1

0

(�i � air(s)) ds:

Furthermore: Z t

Ti�1

�
�
s; r(i)(s)

�
dW (s) =

Z t

Ti�1

�i

q
r(i)(s)dW (s) Q{a.s.
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Denoting stochastic integration by a �, the transformation property of the stochastic in-

tegral under time change implies the following identity up to indistinguishability

�
�i
p
r(i) �W

�
h�i
�
�
�i
p
r(i) �W

�
�0

= �i

q
r
(i)

h�i
�Wh�i:

The stochastic integral on the right hand side of this equation is taken with respect to the

stochastic basis (
;F ;G; Q). Explicitly, we have for t 2]Ti�1;Ti]:

Z t

Ti�1

�i

q
r(i)(s)dW (s)

=

Z t�Ti�1

0

�i

q
r(i)(s+ Ti�1)d ~W (s)

=

Z t�Ti�1

0

�i
p
r(s)d ~W (s) Q{a.s.

Therefore

f +

Z t

0

�
�
s; r(i)(s)

�
ds+

Z t

0

�
�
s; r(i)(s)

�
dW (s)

= r(i)(Ti�1) +

Z t

Ti�1

�
�
s; r(i)(s)

�
ds+

Z t

Ti�1

�
�
s; r(i)(s)

�
dW (s)

= r(i)(Ti�1) +

Z t�Ti�1

0

(�i � air(s)) ds+

Z t�Ti�1

0

�i
p
r(s)d ~W (s)

= r(t� Ti�1) = r(i)(t) Q{a.s.

We have now shown that the process r(i) satis�es (B.2) for all t 2 [0;Ti]. After N such

induction steps we obtain a solution of the equation (2) on [0;TN ]. One more induction

step (with a trivial change of notation) allows us to extend the solution to all of IR+. 2

Appendix C. Lemma for Calculations Involving the Noncentral �2

Distribution

C.1. Lemma. Denote the density function of a noncentral chi{square distribution with �

degrees of freedom and noncentrality parameter � by q�2(�; �; �). Then for b; r > 0 and an
arbitrary constant L the following holds:

e�rLq�2(b r; �; �) = exp

�
� L

b + 2L
�

��
b

b+ 2L

� 1
2
��1

q�2

�
(b+ 2L)r; �;

�b

b + 2L

�
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Proof: Substituting for q�2 its in�nite sum expression (see Johnson and Kotz (1970b),

Chapter 28, eq. 3), we get

e�rLq�2(b r; �; �)

= e�rL2�
1
2
�
exp

�
�1

2
(b r + �)

� 1X
j=0

(b r)
1
2
�+j�1�j

�(1
2
� + j)22jj!

= 2
� 1

2
�
exp

�
�1

2

�
r(b + 2L) +

�b

b+ 2L

��
exp

�
1

2

�
�b

b + 2L
� �

���
b

b + 2L

� 1
2
��1

�
1X
j=0

((b+ 2L)r)
1
2
�+j�1

�
�b

b+2L

�j
�(

1
2
� + j)22jj!

= exp

�
1

2

�
�b

b + 2L
� �

���
b

b + 2L

� 1
2
��1

q�2

�
(b + 2L)r; �;

�b

b+ 2L

�
2

C.2. Remark. If one interprets q�2 not as a density, but as a function with complex

arguments, then it is easy to see that lemma C.1 is also valid for complex L.

Appendix D. Multiple Compound �2
Distribution

Let br, bx, �r, and � be strictly positive constants and �r � 1, �x � 1. Let r and x be

strictly positive random variables such that bxx has a �2{distribution with �x degrees of

freedom and noncentrality parameter �. Furthermore let brr| given that bxx = zx | have

a �2{distribution with �r degrees of freedom and noncentrality parameter �rx = �rb
�1
x zx.

The joint distribution of brr and bxx is given by the probability density function

p(brr = zr; bxx = zx) = p(brr = zr j bxx = zx) � p(bxx = zx):

We are interested in the marginal distribution of brr, which is given by integrating over zx:

p(brr = zr) =

Z 1

0

p(brr = zrjbxx = zx)p(bxx = zx)dzx:

Both p(brr = zrjbxx = zx) and p(bxx = zx) are noncentral �
2 density functions. Writing

these as a mixture of central �2 probability density functions, we have8

p(brr = zr) =

Z 1

0

 
1X
j=0

�
1
2
�rb

�1
x zx

�j
j!

exp

�
�1

2
�rb

�1
x zx

�
p�2�r+2j

(zr)

!

�
 

1X
j=0

�
1
2
�
�j

j!
exp

�
�1

2
�

�
p�2�x+2j

(zx)

!
dzx

=

Z 1

0

1X
j=0

1X
k=0

�
1
2
�rb

�1
x

�j
j!

�
1
2
�
�k

k!
exp

�
�1

2
�

�
p�2�r+2j

(zr)(D.1)

zjx exp

�
�1

2
�rb

�1
x zx

�
p�2

�x+2k
(zx)dzx :

8See Johnson and Kotz (1970b), chapter 28, eq. (3).
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where p�2m denotes the probability density function of a central �2{distribution with m

degrees of freedom.

Applying lemma C.1 to (D.1) and interchanging integration and addition, we get

p(brr = zr) =

1X
j=0

1X
k=0

�
1
2
�rb

�1
x

�j
j!

�
1
2
�
�k

k!
exp

�
�1

2
�

�
p�2

�r+2j
(zr)(D.2)

Z 1

0

zjx

�
bx

bx + �r

� 1
2
(�x+2k)

p�2
�x+2k

�
bx + �r

bx
zx

�
d

�
bx + �r

bx
zx

�
:

The integral (D.2) can be expressed in terms of the j-th moment about zero of a central

�2 distribution with �x + 2k degrees of freedom9:�
bx

bx + �r

� 1
2
�x+k+j

2
j
�(1

2
(�x + 2k) + j)

�(1
2
(�x + 2k))

:

D.1. Definition. Let strictly positive random variables r1; : : : ; rn as well as strictly

positive constants r0, b1; : : : ; bn, �1; : : : ; �n, �1; : : : ; �n be given. Suppose that for each

j 2 f1; : : : ;ng the random variable (bjrj) conditioned on rj�1 is noncentral �
2 distributed

with �j degrees of freedom and noncentrality parameter �jrj�1. Then we call rn n times
multiple compound noncentral �2 distributed with transformation coe�cients bj.

D.2. Lemma. The probability density function p(bn � rn = zn) of the multiple compound
noncentral �2 distributed random variable (bnrn) is

p(bn � rn = zn) =

1X
j1=0

1X
j2=0

� � �
1X

jn=0

�
1
2
�1r0

�j1
j1!

exp

�
�1

2
�1r0

�
p�2�n+2jn

(zn)

nY
k=2

�
1
2
�kb

�1
k�1

�jk
jk!

�
bk�1

bk�1 + �k

� 1
2
(�k�1+2jk�1)+jk

2
jk
�(1

2
(�k�1 + 2jk�1) + jk)

�(
1
2
(�k�1 + 2jk�1))

:(D.3)

Proof: We prove the lemma by induction: For n = 2 we get (D.2). Now let (D.3) be

valid for some n. For n+ 1 we have

p(bn+1 � rn+1 = zn+1)

=

Z 1

0

p(bn+1 � rn+1 = zn+1 j bnrn = zn)p(bnrn = zn)dzn

=

Z 1

0

0
@ 1X

jn+1=0

�
1
2
�n+1b

�1
n zn

�jn+1

jn+1!
exp

�
�1

2
�n+1b

�1
n zn

�
p�2�n+1+2jn+1

(zn+1)

1
A

�
 

1X
j1=0

1X
j2=0

� � �
1X

jn=0

�
1
2
�1r0

�j1
j1!

exp

�
�1

2
�1r0

�
p�2�n+2jn

(zn)

nY
k=2

�
1
2
�kb

�1
k�1

�jk
jk!

�
bk�1

bk�1 + �k

� 1
2
(�k�1+2jk�1)+jk

2
jk
�(1

2
(�k�1 + 2jk�1) + jk)

�(1
2
(�k�1 + 2jk�1))

!
dzn

and analogously to ((D.1) , (D.2)) we get (D.3) for n+ 1.

2

9See Johnson and Kotz (1970a), ch. 17, p. 168.
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D.3. Remark. Since only the values of the central �2 densities in (D.3) depend on zn,

we can interchange addition and integration and write the multiple compound noncentral

�2 distribution function as

P (bn � rn � zn) =

1X
j1=0

1X
j2=0

� � �
1X

jn=0

�
1
2
�1r0

�j1
j1!

exp

�
�1

2
�1r0

�
P�2�n+2jn

(zn)

nY
k=2

�
1
2
�kb

�1
k�1

�jk
jk!

�
bk�1

bk�1 + �k

� 1
2
(�k�1+2jk�1)+jk

2
jk
�(1

2
(�k�1 + 2jk�1) + jk)

�(1
2
(�k�1 + 2jk�1))

:(D.4)

Due to the nested in�nite sums, calculating (D.4) appears to be of exponential complexity

in n. Fortunately, this is not the case. In fact, were it not for the term �(1
2
�k�1+jk�1+jk),

it would be possible to separate the terms and calculate (D.4) as a product of n one{

dimensional sums, obviously a problem of linear complexity in n. As it is, the number of

operations necessary to determine P (bn � rn � zn) still only increases linearly in n.

We start by calculating the terms�
1
2
�1r0

�j1
j1!

exp

�
�1

2
�1r0

�
(D.5)

for all j1 2 J1 := fj1; : : : ; j1g. Note that (D.5) is unimodal in j1, therefore j1 and j1 can

be chosen in such a manner that (D.5) is smaller than � > 0 for any j1 62 J1. For each

j1 2 J1 we then calculate�
1
2
�2b

�1
1

�j2
j2!

�
b1

b1 + �2

� 1
2
(�1+2j1)+j2

2
j2
�(1

2
(�1 + 2j1) + j2)

�(
1
2
(�1 + 2j1))

(D.6)

for all j2 2 J2 := fj2; : : : ; j2g, where (D.6) is again unimodal in j2: We multiply (D.6)

with (D.5) for each (j1; j2) 2 J1 � J2 and then sum over j1 for each j2, reducing the index

dimension to 1 again. Substituting the result for (D.5) and de�ning (D.6) analogously for

(j2; j3), we iterate until we reach jn, yielding a value for each jn 2 Jn, which we multiply

with the respective value of P�2�n+2jn
(zn) and sum one last time to get P (bn � rn � zn).

D.4. Lemma. The derivative of (D.4) with respect to r0 is

@

@r0
P (bnrn � zn) = ��n

 
n�1Y
j=1

�jb
�1
j

!
~p(bnrn = zn)(D.7)

where ~p(bnrn = zn) is de�ned as p(bnrn = zn), however with ~�j := �j + 2 8 1 � j � n, all
other coe�cients identical.

Proof: For n = 1, we have

@

@r0
p(bnrn = zn) =

@

@r0
q�2(z; �1; �1r0) = �1

@

@(�1r0)
q�2(z; �1; �1r0)

which is equal to10

=� �1
@

@z
q�2(z; �1 + 2; �1r0)
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Now let

@

@r0
p(bnrn = zn) = ��n

 
n�1Y
j=1

�jb
�1
j

!
@

@zn
~p(bnrn = zn)(D.8)

for some n. Then for n+ 1

@

@r0
p(bn+1rn+1 = zn+1) =

@

@r0

Z 1

0

q�2(zn+1; �n+1; �n+1rn)p(bnrn = zn)dzn

=

Z 1

0

q�2(zn+1; �n+1; �n+1b
�1
n zn)

 
��n

 
n�1Y
j=1

�jb
�1
j

!
@

@zn
~p(bnrn = zn)

!
dzn

and doing integration by parts:

= �n

 
n�1Y
j=1

�jb
�1
j

!0
@��q�2(zn+1; �n+1; �n+1b

�1
n zn)~p(bnrn = zn)

�1
0| {z }

=0

+

Z 1

0

�
@

@zn
q�2(zn+1; �n+1; �n+1b

�1
n zn)

�
~p(bnrn = zn)dzn

�

= �n

 
n�1Y
j=1

�jb
�1
j

!Z 1

0

��n+1b
�1
n

�
@

@zn+1

q�2(zn+1; �n+1 + 2; �n+1b
�1
n zn)

�
~p(bnrn = zn)dzn

= ��n+1

 
nY

j=1

�jb
�1
j

!
@

@zn+1

~p(bn+1rn+1 = zn+1)

We have thus shown (D.8) for all n by induction, and integrating with respect to zn yields

(D.7).

2

In order to implement the multifactor version of the segmented square root model along

the lines of Chen and Scott (1995), we need the following

D.5. Proposition. The characteristic function of the (k � n) times multiple compound
noncentral �2 distribution is given by

	n+1;k(x) =

 
kY

j=n+1

(1 + 2Lj;k(x))
� 1

2
�j

!
exp

�
� Ln+1;k(x)

1 + 2Ln+1;k(x)
�n+1rn

�
(D.9)

with Lj;k(x) recursively de�ned as

Lj�1;k(x) :=
Lj;k(x)�jb

�1
j�1

1 + 2Lj;k(x)
and Lk;k(x) := �ix(D.10)

Proof: For k � n = 1 we have

	k;k(x) = (1� 2ix)�
1
2
�k exp

�
ix�krk�1(1� 2ix)�1

	
which is the characteristic function of the noncentral �2 distribution with �k degrees of

freedom and noncentrality parameter �krk�1
11. Let (D.9) be valid for some 0 < n < k.

10see Jamshidian (1995), p. 69
11See for example Johnson and Kotz (1970b).
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Then we have for n� 1:

	n;k(x) =E [exp fixbkrkg]

=

Z 1

0

eixzkpn�1(bkrk = zk)dzk

=

Z 1

0

eixzk
Z 1

0

pn(bkrk = zk
���n+1b

�1
n zn )q�2(zn; �n; �nrn�1)dzndzk

interchanging the order of integration yields

=

Z 1

0

	n+1;k

�
x
���n+1b

�1
n zn

�
q�2(zn; �n; �nrn�1)dzn

and inserting (D.9)

=

 
kY

j=n+1

(1 + 2Lj;k(x))
� 1

2
�j

!

�
Z 1

0

exp

�
� Ln+1;k(x)

1 + 2Ln+1;k(x)
�n+1b

�1
n zn

�
q�2(zn; �n; �nrn�1)dzn

and applying (D.10) and remark C.2

=

 
kY

j=n

(1 + 2Lj;k(x))
� 1

2
�j

!
exp

�
� Ln;k(x)

1 + 2Ln;k(x)
�nrn�1

�

� (1 + 2Ln;k(x))

Z 1

0

q�2

0
@(1 + 2Ln;k(x)) zn; �n;

=:�z }| {
(1 + 2Ln;k(x))

�1�nrn�1

1
A dzn:

| {z }
=:�(x)

Now if �(x) = 1 for all x, then the proposition is proven. Inserting for q�2 its in�nite sum

expression12

�(x) =(1 + 2Ln;k(x))

Z 1

0

1X
j=0

�
1
2
�
�j

j!
e�

1
2
�p�2�n+2j

((1 + 2Ln;k(x)) zn) dzn

=

1X
j=0

�
1
2
�
�j

j!
e�

1
2
�
(1 + 2Ln;k(x))

Z 1

0

p�2�n+2j
((1 + 2Ln;k(x)) zn) dzn:

12Note that q�2 and p�2 must now be interpreted as functions with complex arguments, not densities.
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This equals 1 if (1 + 2Ln;k(x))
R1
0
p�2�n+2j

((1 + 2Ln;k(x)) zn) dzn = 1 8j 2 IIN. We have

(1 + 2Ln;k(x))

Z 1

0

p�2�n+2j
((1 + 2Ln;k(x)) zn) dzn

=(1 + 2Ln;k(x))

Z 1

0

2
� 1

2
�n�j�

�
1

2
�n + j

��1

((1 + 2Ln;k(x)) zn)
1
2
�n+j�1

� exp
�
�1

2
(1 + 2Ln;k(x))zn

�
dzn

=�

�
1

2
�n + j

��1�
1

2
(1 + 2Ln;k(x))

� 1
2
�n+j Z 1

0

z
1
2
�n+j�1

n exp

�
�1

2
(1 + 2Ln;k(x))zn

�
dzn

which by formula 6.1.1 in Abramowitz and Stegun (1964) equals

=�

�
1

2
�n + j

��1

�

�
1

2
�n + j

�
= 1

2
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