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Abstract. We study the Fictitious Play process with bounded and unbounded recall in pure
coordination games for which failing to coordinate yields a payoff of zero for both players. It is shown
that every Fictitious Play player with bounded recall may fail to coordinate against his own type. On the
other hand, players with unbounded recall are shown to coordinate (almost surely) against their own
type as well as against players with bounded recall. This implies that a FP player’s realized average
utility is (almost surely) at least as large as his minmax payoff in 2x2 coordination games.

JEL Classification Numbers: C72, D83.

Keywords: Learning, Fictitious Play,  Coordination Games, Pure Coordination Games.

                                                          
1 We would like to thank Karl Schlag and Dov Monderer for helpful comments. Financial support from
the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 504 at the University of Mannheim,
and from the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303 at the University of
Bonn is gratefully acknowledged.

2Department of Economics, University of Mannheim, Seminargebaeude A5, D-68131 Mannheim,
Germany.

3 Wirtschaftstheorie III, Department of Economics, University of Bonn, Adenauerallee 24-26, 53113
Bonn, Germany.



2

1. Introduction

Consider 2 players engaged in the repeated play of a finite game in strategic form. In

each period, every player observes the history of past moves, and forms a belief about

the next move of his opponent. He then chooses an action that is a myopic pure best

reply, that is, an action that maximizes his expected payoff in the next period

according to his belief. We call such a process a myopic learning process. One of  the

most common myopic learning models is the Fictitious Play (FP) process proposed by

Brown in 1951. In the FP process, each player believes that each one of his opponents

is using a stationary mixed strategy which is the empirical distribution of this

opponent’s past actions. A variation of the FP process is the Fictitious Play process

with bounded recall or short, the Bounded Fictitious Play (BFP). In the BFP process

the players’ beliefs  are based only on a finite number of the most recent periods

(players’ recall length). When a player has multiple best replies to his belief we

assume that he chooses each of them with a “strictly positive probability“. Most

research on the FP and similar processes has focused on the question whether players’

beliefs approach equilibrium (see for example, Robinson (1951), Miyasawa (1961),

Monderer/Shapley (1996)). However, this notion of convergence does not seem

appropriate for coordination games as was shown by Fudenberg and Kreps (1993):

consider a game in which each agent gets 1 if the players coordinate on the same

action, and if they fail to coordinate, each gets 0. In this case the players’ beliefs may

approach the mixed equilibrium strategy, although both players never coordinate, such

that both players receive payoff 0 in every period. From the standpoint of players

learning how their opponents behave, this sort of example does not seem a very

satisfactory notion of approaching equilibrium. This led us to consider the question

whether the players coordinate or not in pure coordination games. For illustrative

purposes we study the FP in 2 2x  coordination games. We limit our analysis to 2 2x

pure coordination games4 since every 2 2x  coordination game is best response

equivalent to 2 2x  pure coordination game. The results of this paper are easily

extended to the class of all NxN  pure coordination games.

                                                          
4 A pure coordination game is a coordination game for which the payoffs off the diagonal are zero.
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For 2x2 pure coordination games examples are known where BFP players converge to

equilibrium (see Li (1994)5, proposition 3). We show that in a generic class of games,

every BFP player may never coordinate against another BFP player. On the other

hand, a FP player, independent of initial beliefs, coordinates almost surely from some

stage on against any player with unbounded (FP) or bounded recall (BFP)6. With this

we can address the common objection to the FP process in 2x2 coordination games

(Fudenberg and Kreps (1993), and Young (1993)) namely that a FP player’s realized

average payoff might be less than his minmax payoff7. As our results show, this

cannot happen (almost surely) in 2 2x  coordination games.

2.  Preliminaries

Let Γ  denote the set of all 2 2x  coordination games in strategic form. A game G  is a

coordination game if the players have the same number of strategies, which can be

indexed so that it is always a strict Nash equilibrium for both players to play strategies

having the same index. Note that every 2 2x  coordination game is best response

equivalent to2 2x  pure coordination game for which the payoffs off the diagonal are

zero.8

There are two players denoted by 1 and 2. For every player i , the other player is

denoted by − i . The strategy set of player 1  is S a b1
1 1= { , }  and the strategy set of

player 2 is S a b2
2 2= { , } . Let S S xS= 1 2 . Player i 's  payoff function is U S Ri : → ,

where R denotes the set of real numbers. The set of mixed strategies of player i  is

∆ ∆i iS= ( ) . Let ∆ ∆ ∆= 1 2x . We think of x Si i∈  as being an extreme point in ∆i .

                                                          
5 Unfortunately, his results about the convergence to risk-dominated equilibria are flawed. See footnote
12 for further comments.
6 There is a related literature which analyzes the impact of the finiteness of memory on equilibrium
play. Young (1993) studies a different kind of FP process of finite memory and shows that players
coordinate after a finite number of periods. Other literature does not use the FP process but relies on
finite automata to model memory of players. See Neyman (1985) and Rubinstein (1986) for some
earlier work. Ben-Porath (1986), Gilboa/Samet (1989), and Lehrer (1988) analyze the strategic
advantage the player with the longer or with the shorter recall length may have.

7 v1  is a minmax payoff of player 1 if, v U x x
x S x S

1 1 1 2

2 2 1 1
=

∈ ∈
min max ( , ).

( ) ( )∆ ∆
8 It can be easily verified that in everyNxN  pure coordination game every myopic learning player
discussed in this paper (FP or BFP player) uses from some stage on at most two actions from his
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A game G ∈Γ  is non-degenerate  if for every i , U xi i( ) ,⋅ −  is a one-to-one function

for every x Si i− −∈ . Note that every 2 2x  coordination game is non-degenerate game.

A Fictitious Play (FP) player, observes at each point of time the history of past moves

and forms a belief about his opponent’s action in the next period. He believes that his

opponent is using a stationary mixed strategy which is the empirical distribution of his

opponents’ past actions. That is,

b t
t

x s b ti i

s

t
i( ) ( )= 





>−

=

−

∑1
0

1

1

 + (0)  ,  , where b ti i( ) ∈ −∆  is the belief of player i  about

the strategy of player − i  at stage t , and bi ( )0  is the initial belief of player i .

b t m Sm
i i( ),   ∈ − , is player i ' s belief about strategy m as  his opponent’s choice at stage

t . A FP player chooses at each stage t ≥ 1 an action x ti ( )  that maximizes his payoff

in  period t , i.e. x ti ( )  is a best reply to his belief b ti ( ) .

A bounded fictitious play (BFP) player with recall k ≥ 1 believes that his opponent is

using a stationary mixed strategy which is the empirical distribution of his opponent’s

past actions over the k  most recent periods (k  denotes  the  player’s  length of

recall),  that is,

b t
t

x s b t ki i

s

t
i( ) ( )= 





≤ ≤−

=

−

∑1
1

1

1

 + (0)  ,  ,

And,

b t
k

x s t ki i

s t k

t

( ) ( )= >−

= −

−

∑1 1

  ,   .

A BFP player chooses in each period t ≥ 1, an action x ti ( )  which is a best reply

according to his belief b ti ( ) .

We assume the following tie-breaking rule:  if a player is indifferent among some of

his best replies at stage t , he uses each of them with a positive probability.

If at some stage FP players choose a pure  equilibrium profile, then they will choose

this equilibrium profile from this stage on (see Monderer/Sela (1993)). This result

does not necessarily hold for BFP players. If player i has a tie between his best replies

when a pure equilibrium profile is chosen, it depends on what action x t ki− − +( )1  is

                                                                                                                                                                     
strategy set, such that the players play actually from some stage on a 2 2x  coordination subgame.
Hence, all our results hold for allNxN  pure coordination games.
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dropped from the memory of length k  at stage t . If that action x t ki− − +( )1  is the

same as his opponent’s action in the pure equilibrium profile then the beliefs at stage

t +1 is the same as at stage t and due to the tie, an action different from the pure

equilibrium profile might be chosen. If the dropped action x t ki− − +( )1  is not the

pure equilibrium profile then the belief at stage t +1 is different and therefore the pure

equilibrium profile will be chosen forever.

3. Results

First we show that BFP players may (depending on the players’ initial beliefs) never

coordinate in an open and dense subset of 2 2x  coordination games.

Proposition 1: For every k ≥ 1, there exists an open and dense subset of 2 2x

coordination games, in which BFP players with recall k , may never coordinate.

Proof: Let k ≥ 1 and let Γ  be the set of all games G  of the

form,     

a b

a x z

b y w

x y z w
2 2

1

1

0 0

0 0

0( , ) ( , )

( , ) ( , )

, , , > .9 The games in Γ  for which either of the

following conditions hold is an open and dense subset of Γ :

1.  
x

y
k

w

z
k∈ − ∞ ∈ − ∞( , ) ( , )1 1 and .

2.    
x

y
s s

w

z
s s k∈ + ∈ + −( , ) ( , ),1 1 2 and   for some  s = 1,2,3,... ,

The players may fail to coordinate in either of the cases 1 or 2. We show just the first

case. The other case can be verified by the same reasoning. Assume that

x

y
k k∈ − ∞ ∈ − ∞( , ) ( , )1 1  and  

w

z
, and b b b( ) ( ( ), ( )) (( , ),( , ))0 0 0 1 0 0 11 2= = .10 Every

k +1periods the same path is generated by the process as follows: During the first k

periods the players play ( , )a b1 2 since b t
k

kb2

1 1
( ) ≤ −

 and  b t
k

ka1

2 1
( ) ≤ −

.

                                                          
9 Note that every 2x2 coordination game is best response equivalent to a game from the set of games

G .
10 The proof goes through for an open and dense subset of initial beliefs.
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In the ( )k +1 -th stage, the players have pure beliefs, that is, b t b tb a2 1

1 2 1( ) ( )= =  , and

therefore they play ( , )b a1 2 in this stage. Hence, the players never coordinate. �

The meaning of Proposition 1 is that when BFP players have “similar and opposite

preferences”, i.e. the payoff ratio between the two Nash equilibria is approximately

the same for both players and each player prefers a different Nash equilibrium, then

the players never coordinate.

Knowing that all  BFP players may fail to coordinate for any (finite) recall length,

poses the question: Is there a class of pure coordination games in which a FP player

may fail to coordinate as well ?

The following theorem shows that if a FP plays against a BFP player, they coordinate

almost surely in every2 2x  coordination game.

Theorem A: Let player 1 be a FP player and player 2 be a BFP player. Then, in every

2x2 pure coordination game, independent of initial beliefs and actions, the players

coordinate almost surely from some stage on.

Proof: Let G  be a 2 2x  pure coordination game, such

that ( ( , ), ( , ))p p p q q qa b a b= =
1 1 2 2

 is the mixed strategy equilibrium of G . We assume

that the players never coordinate. Note that if the players coordinate infinitely often,

they coordinate (almost surely) from some stage on for ever.

Suppose that along the path generated by the players, the players do face only finitely

often a tie. Due to the tie-breaking rule such a path occurs with probability one.

Without loss of generality, we can concentrate on the case where players never face a

tie11.

Denote the number of times ( , )m n S∈  was played up to stage t  by

T t m S n Sm n( , ) ( ),   ,  ∈ ∈1 2 .

Now, since one of the players has a finite recall, the players generate a repeated cycle

of Y  stages, such that the empirical distribution of the players’ actions converges as

follows: lim ( )( , )
t

a b bT t q Y z
→∞

= =
1 2

 and lim ( )( , )
t

a b aT t q Y w
→∞

= =
2 1

 where w  and zare

                                                          
11 Whether there are many or zero ties does not matter, since the process is deterministic once all ties
are resolved.
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integers. Otherwise the FP player would prefer from some stage on one of his actions,

which is the best reply to his belief such that the players will coordinate for ever.

Suppose that the players switch from ( , )a b1 2  to ( , )b a1 2  at stage t0 , and without loss

of generality suppose that the players played k times ( , )a b1 2 up to stage t0 . Thus by

the FP’s  behavior rules:

k

t

z

Y0

<  and 
k

t

z

Y

+
+

>1

10

.

This implies that ,

k

t

z

Y

k

t

k

t

k

t

k

t t

+
+

− < +
+

− < +
+

−
+

<
+

1

1

1

1

1

1 1

1

10 0 0 0 0 0

.

Note that if the players switch from ( , )a b1 2  to ( , )b a1 2  at stage t , Player 1’s best

response in the next period is necessarily a1 . Thus, the players switch back at stage

t + 1 from ( , )b a1 2 to ( , )a b1 2 , otherwise they would coordinate at t + 1. Hence, by

induction on t and the assumption that the limit distribution ( , )
z

Y

w

Y
is never obtained

in a finite stage, we obtain that for every t t> 0 ,

T t

t

z

Y t
a b( , ) ( )

1 2 1− < . By the same argument, for every t t> 0 , 
z

Y

T t

t t
a b− <( , ) ( )

1 2 1
.

Therefore, for every t t> 0 , 
T t

t

z

Y t
a b( , ) ( )

1 2 1− < .

Let t rY=  for some large integer r . Clearly 
T t

rY

v

rY
a b( , ) ( )

1 2 =  for some integer v. By

the last inequality,

T t

rY

z

Y

v

rY

rz

rY

v rz

rY rY
a b( , ) ( )

1 2 1− = − =
−

< .

Since both v  and rzare integers, v rz−  must be equal to zero, and therefore the limit

distribution ( , )
z

Y

w

Y
is obtained at a finite step. A contradiction to our assumption. �

The following result shows that a FP player coordinates not only against every BFP

player, but also against his own type in almost every 2 2x  pure coordination game.
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Theorem B: FP players, independent of initial beliefs, coordinate almost surely from

some stage on in almost every 2x2 pure coordination game.12

Proof: Let G  be a 2 2x  pure coordination game, where the mixed strategy equilibrium

of the game is ( ( , ), ( , ))p p p q q q xa b a b= = ∈
1 1 2 2

1 2∆ ∆ , where p qa b1 2
≠ . Let player 1

and 2 be  FP players. Assume that the players never coordinate. Note that if FP players

coordinate once at some stage, they coordinate always from this stage on.

Now, suppose that along the path generated by the players, the players do face only

finitely often a tie. Due to the tie-breaking rule such a path occurs with probability

one. Without loss of generality, we can concentrate on the case where players never

face a tie. Hence, the players play at every stage either ( , )a b1 2  or ( , )b a1 2 . By

Monderer and Shapley (1996), a FP player’s  belief converges to his opponent’s Nash

equilibrium strategy in every 2x2 game13 with the diagonal property14. Since every

2x2 coordination game is a game with the diagonal property, Monderer/Shapley’s

result holds for 2x2 coordination games. By our assumption of failure of coordination

and Monderer/Shapley’s result, we obtain that the belief of player i converges to

player j’s mixed strategy equilibrium, i.e. lim ( )
t

b bb t q
→∞

=
2

1 , and lim ( )
t

a ab t p
→∞

=
1

2 .

However, lim ( ) ( )
t

b ab t b t
→∞

− =
2 1

1 2 0 , and p qa b≠  . Hence, we obtain a contradiction to

our  assumption about failure of coordination. �

                                                          
12 Li (1994) claims that FP players always coordinate on the risk-dominant equilibrium. He first claims
to show that BFP players cannot coordinate on the risk-dominated equilibrium  (his proof erroneously
relies on beliefs which imply coordination although he considers failure of coordination). Combining
this with the result of Miyasawa (1961) he deduces that FP players must coordinate on the risk
dominant equilibrium. He completely ignores the possibility of convergence to  (the mixed) equilibrium
with failure of coordination. We show in Theorem A that almost surely there is no convergence to
equilibrium with failure of coordination.

13 Miyasawa was the first who proved that  FP players’ beliefs converge to a Nash equilibrium profile in
every 2x2 game, but he proved it under the assumption of a specific tie breaking rule. Monderer/Sela
(1996) showed that if we assume another tie-breaking rule, then there is a 2 2x  game in which a belief
sequence of FP players does not converge to equilibrium profile. However, Monderer/Sela’s result
holds for a degenerate game only.
14 We say that a game G D E d m n e m n m n= = =( , ) ( ( , ), ( , )) , ,1 2

2  has the diagonal property if f ≠ 0and

g ≠ 0 , where f e e e e= − − +( , ) ( , ) ( , ) ( , )11 21 1 2 2 2 and

g d d d d= − − +( , ) ( , ) ( , ) ( , )11 21 1 2 2 2.
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By Theorem A if a FP player plays against a BFP player, they coordinate in every 2 2x

game. By Theorem B if a FP player plays against another FP player, they coordinate in

almost every game. Theorem B excludes a class of games with measure 0, which is

the class of 2 2x  coordination games where players have identical mixed strategy

equilibrium profiles, i.e. ( , )p q x∈∆ ∆1 2 , and p q= . This class of 2 2x  games with

measure zero includes the symmetric example of Fudenberg and Kreps (1993) in

which each player gets 1 if they coordinate and 0 if the fail to coordinate. To prevent

convergence in Fudenberg and Kreps (1993) and Young (1993) either players’ beliefs

or payoffs have to be irrational numbers. If beliefs and payoffs are rational numbers,

then, by using the idea of the proof of Theorem A, it can be shown that FP players

coordinate almost surely from some stage on in every 2x2 coordination game, even if

p q= .
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