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Abstract

In a general setting of private information, the possibility (impos-
sibility) theorem is said to be valid, if a balanced and ex post efficient
mechanism exists (does not exist) which agents voluntarily participate
at. Possibility and impossibility results are called robust if they hold
for all priors with independently distributed private information. The
following papers, among others, implicitely contain such results: My-
ERSON AND SATTERTHWAITE (1983), GUTH AND HELLWIG (1986),
CRAMTON, GIBBONS AND KLEMPERER (1987), MCAFEE (1991),
MAKOWSKI AND MEZZETTI (1993), WILLIAMS (1994) and SCHMITZ
(1998). The present paper introduces a criterion which does not de-
pend on the prior distribution of information. This criterion allows,
not only, to simplify drastically earlier proofs, but also to generalize
the existing results in a substantial way.
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1 Introduction

Let us assume that a finite number of risk-neutral agents is facing a deci-
sion which affects individual profits (or utility). The shape of each profit
function is private information of the corresponding agent. To solve their
decision problem, the agents make use of a mechanism. Particular attention
will be paid to mechanisms where participation remains voluntary. If a bal-
anced mechanism, allowing for voluntary participation, exists which leads to
the ex post efficient decision then the possibility theorem is said to be valid.
The existence of such a mechanism may depend on the prior distribution of
private information. If such a mechanism exists for all priors with indepen-
dently distributed private information then the robust possibility theorem is
said to hold. The impossibility theorem is valid if the possibility theorem is
not. The robust impossibility theorem, finally, is valid if, for any priors with
independently distributed private information, the impossibility theorem is
valid.

The scope for possibility or impossibility results can be explored by look-
ing at either one of the following two mechanisms. The cheapest Groves
mechanism implements the ex post efficient decision in dominant strategies.
Participation of all agents remains voluntary. The mechanism, of course,
fails to be balanced such that losses or gains must be borne by the outside
party which operates the mechanism. The cheapest Groves mechanism is,
from the viewpoint of a risk-neutral outside operator, the cheapest to run
among all such mechanisms. If the private information, at which participa-
tion constraints are binding, does not depend on the prior distribution then
the robust possibility theorem (robust impossibility theorem) is valid if and
only if the cheapest Groves mechanism never (always) runs a deficit. The
possibility theorem (impossibility theorem) is valid if and only if the cheapest
Groves mechanism leads, in expected terms, to a gain (loss) for the outside
operator.

The least dissent mechanism is balanced, has telling the truth as a Bayesian
Nash equilibrium and leads to the ex post efficient solution. Participation,
however, need not be voluntary. At the private information where the interim
expected net profit as compared to the outside option is lowest or, equiva-
lently, where the dissent against participation attains its maximum, the least
dissent mechanism leads, by definition, to the same maximum dissent for all
agents. In other words, the maximum dissent from enforced participation
is the same for all agents. If the private information, at which the dissent



attains its maximum, does not depend on the prior distribution then the pos-
sibility theorem is valid if and only if, for a given prior distribution of private
information, the least dissent mechanism does not violate any participation
constraints, i.e. participation does never give rise to dissent. If this is the
case for any prior with independently distributed private information then
the robust possibility theorem is valid. The impossibility theorem is valid if,
for a given prior distribution, the maximum dissent of each agent is positive,
l.e. at least some of the participation constraints must be violated such that
participation has to be enforced. Finally, the robust impossibility theorem
is valid if some of the participation constraints are violated under the least
dissent mechanism, no matter how the prior distribution of information looks
like

To my knowledge, the explicit notion of a robust possibility theorem or
impossibility theorem as introduced above is new. Nevertheless, implicitely,
the existing literature contains many results which are robust. MYERSON
AND SATTERTHWAITE (1983) have the robust impossibility theorem shown
to be valid for the case of a seller owning an indivisible good and facing a
potential buyer of his good; GUTH AND HELLWIG (1986) have done the same
for the case of an indivisible public good; MAKOWSKI AND MEZZETTI (1993)
deal with the case of a seller of an indivisible private good facing an arbitrary
number of potential buyers (private information is assumed to be identically
distributed for all buyers); CRAMTON, GIBBONS AND KLEMPERER (1987)
have the possibility theorem shown to be valid if initial endowments are
equally distributed among agents (again, private information is assumed to
be identically distributed for all agents); SCHMITZ (1998) has a similar result
for the case of an indivisible public good; WILLIAMS (1994) has considered
several buyers facing several potential buyers (private information of sellers
and buyers, respectively, are assumed to be identically distributed); MCAFEE
(1981), finally, explores the case of a seller of a divisible private good facing
a single potential buyer.

All these papers — the list is not claimed to be complete — implicitely
contain robust possibility or impossibility results in the sense of the present
paper. They have in common to calculate, for a given prior distribution of
information, the agents’ interim expected net profits, taking the Bayesian
incentive and participation constraints into account. The present paper,
instead, introduces a criterion which does not depend on the underlying
prior and which still allows to fully explore the scope for possibility and
impossibility results, including robust ones. It turns out that the propagated
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shift of attention allows, not only, to simplify proofs drastically but also to
extend the earlier results in a substantial way.

The paper is organized as follows. In section 2, the general setting is
introduced. Moreover, the basic insights of incentive theory are briefly re-
called. While this section may not present truly new results, the shift from
traditional to robust possibility theorems or impossibility theorems will be
emphasized. Section 3 deals with the case of an indivisible public decision.
In section 4, a seller of an indivisible private good is facing an arbitrary
number of potential buyers whereas, in section 5, the analysis is extended to
the case where several sellers are present. In sections 3 to 5, the scope for
robust possibility and impossibility results is fully specified. Since the prior
distribution of information does not enter our criterion, these distribution
functions need not be assumed to be identical. Generalizing CRAMTON ET
AL. (1986) and ScHMITZ (1998), sections 3 to 5 also present possibility
theorems which are shown to be valid if agents, ex ante, are able to specify a
default decision properly. In the case of identical distribution functions it is
the equal distribution of initial endowments which gives rise to the possibility
theorem. Yet, in more general cases, the initial assignment of endowments
required to ensure the validity of the possibility theorem may depend on the
prior distribution of information such that the robust version of the pos-
sibility theorem may fail to hold. In any case, the result initially due to
CRAMTON ET AL. (1987) can, not only, be established in a much simpler
way but also, its generalized version is shown to hold far beyond the case of
a single indivisible private good with identical prior distributions for which it
has originally been established. Section 6 deals with the first order approach
to possibility and impossibility results. Under Concluding Remarks, the re-
sults are summarized and their meaning for market type institutions, among
them are double oral auctions and the explicit implementation of Walras and
Lindahl equilibrium, will be explored.

2 The model

Aset I ={1,...,n} of agents is facing a decision x from a set X of alternatives.
X is either a finite set or a subset of an Fuclidean space. The profit (or utility)
mi(x, B;) of agent i depends on the decision x as well as on his information
parameter 3, which is drawn from an interval [3,;,0,,] of the real line.
Private information is independently distributed, the density function of 3,



being denoted by f;(5;). If, in addition, agent i receives payment z; his
net profit (or quasi-linear utility) amounts to 7;(z,5;) + 2;. For a given
realization 8 = (0, ...,3,) of information parameters, the ex post efficient
decision solves
z() Eargmaxz iz, B;) (1)
T er

such that the ex post efficient surplus is given by

W(8) =) m(x(9), 8y). (2)

il

The agents’ decision problem is assumed to be solved by a mechanism which,
in its general form, can be described by a game form

g:S1xX..x8, —XxR"

where agent 7 must choose his strategy s; from strategy set S;. At strategy
profile s = (sq, ..., sn), the allocation

g(s) = [X(s),Zl(s),...,Zn(s)] (3>

results with X (s) € X being the decision and Z;(s) € 3 the payment to
agent 1.

Without such mechanism, by assumption, the outside option 2° € X
would be reached. The game form (3) allows for voluntary participation if
each agent has one strategy s? € S; at least for which

Wi(X(S?, s_i),3;) = Wi(ajouﬂi)

holds, no matter what strategies s_; are chosen by the other agents. At the
outside option, agent i receives zero payment, i.e. Z;(s?, s ;) = 0. Tt is the
distinctive feature of market-type institutions that they allow for voluntary
participation.

Since ; is assumed to be private information of agent i, his strategy
s; = s;(0;) can depend on [, only. Suppose we are given a Bayesian Nash
equilibrium s(8) = (s1(81), .-+, sn(8,)) which leads to the ex post efficient
decision (1). Associated with such an equilibrium, there exists the direct
mechanism

(), 21(8) = Z1(s(B)), ., 20 (0) = Zn(s(0))] (4)



which satisfies the incentive constrainis

Ri(8,) = E_ilmi(2(8, 8,), 8:) + 2:(8)] = B_ilmi(x(3;,8.,), B;) + zi@,ﬁig)

for all 7 € I and all 3;, BZ € |8, B as well as the participation constraints

Ri(8;) > 7Ti(3707 ;) (6)

foralli € I and all 3, € |3, B,]- In (5), E_; denotes the expectation opera-
tor with respect to all information parameters but 3,. The direct mechanism
(4) has telling the truth as a Bayesian Nash equilibrium and leads to the
same allocation as the equilibrium s(3) under the original game form (3).
In this sense we can, without loss of generality, restrict attention to direct
mechanisms which satisfy the incentive constraints (5) and the participation
constraints (6). This, of course, is the well-known revelation principle.

The ex post efficient decision (1) and the incentive constraints (5) jointly
determine, up to a constant of integration, the interim expected net profit
R;(3;) of agent i as defined in (5). Moreover, if the information parameter
32 solves

B) € argmin E_;[W(3)] — m;(zo, 3;) (7)
Bi€lBirBim]
then it is sufficient to check the participation constraint at ﬂ? For any given
mechanism leading to interim expected net profit R;(3;) of agent i, let

D;(8;, 370) = Wi(ﬂvoa B;) — Ri(B;)

denote the dissent of agent 7 against using the mechanism as compared to
the outside option. If the dissent is positive, i.e. if D;(3;,z°) > 0, then the
participation constraint is violated at 3, whereas, if D; < 0, it is not. The
dissent of agent i attains its maximum at information parameter 35. If the
participation constraint is binding at ﬂ?, i.e. if the maximum dissent is zero,
then the interim expected net profit of agent 7 is given by

Ri(8;) = BE-s[W(B)] — E[W (8}, 8,)] (8)

such that the expected gain, loss if negative, of an outside party operating
the mechanism amounts to

E[=) =(8)] = E[A(B, )] - TT° (9)
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where, by definition,
)=> W(B8.) — (n—1)W(B) (10)

el

and
I° EZ i (2%, 3Y). (11)
il
The expected gain (9) must be the same for any mechanism for which the
participation constraints are binding at 3 for all 7 € I. The cheapest Groves
mechanism

Z(8) =) mix(B),8,) — W(B,8,) + m(a®, 57) (12)

J#i
is such a mechanism. It has telling the truth as dominant strategies and, if
information parameters § are drawn, then the gain from running the cheapest

Groves mechanism is
= 28 =AB8°) -

such that the expected gain amounts to (9). Notice, if the information pa-
rameter ﬂ? as defined by (7) does not depend on the prior distribution (as
will be the case in many applications below), then this prior distribution need
not be known to specify the mechanism (12). Moreover, from the view of a
risk-neutral outside operator, implementing in dominant strategies comes, as
compared to Bayesian implementation, at no extra cost.

For any direct mechanism (4) which is balanced, i.e. > z(8) = 0, it

follows that
> R A3, 8°)]. (13)

If a mechanism is balanced, some of the participation constraints may be vi-
olated. The least dissent mechanism is, by definition, a balanced mechanism
where the maximum dissent is equal for all agents. It can be constructed as
follows. For any constant redistribution E%‘ = 0, the mechanism

21(8) =2 (8) — —— Z )+ 7 (14)
J#Z

where, by definition,



must be balanced and, hence, satisfies (13). Moreover, it has telling the
truth as a Bayesian Nash equilibrium. Due to (13), finally, the constant
redistribution can be specified such that, for

RI(B,) = B i[mi(2(8)8,) + 2(8)),
it holds that

R (B)) = mi(2®, 8) +

Therefore, under the least dissent mechanism, the interim expected loss at
information parameter 3 as compared to the outside option, i.e. the max-
imum dissent, is the same for all agents. Since the mechanism is balanced,
no outside operator is needed to cover losses from running the least dissent

BIA(, %) ~TI°)

mechanism. Participation, however, may need to be enforced. To specify the
mechanism (14), the prior distribution of information must be known.

The possibility theorem is valid in the sense of the introduction if and
only if the expected gain (9) from operating the cheapest Groves mechanism
is non-negative and if and only if the least dissent mechanism satisfies all par-
ticipation constraints. If the information parameter, at which the dissents
of agents attain their maximum, do not depend on the prior distribution of
information then the robust possibility and impossibility theorem can equiva-
lently be expressed in terms of both the cheapest Groves and the least dissent
mechanism. In fact, the robust possibility theorem is valid if, for all 3,

A(B,5°) —TI" 2 0. (15)

This is the case if and only if the cheapest Groves mechanism never, not
just in expected terms, runs a deficit and if and only if, for all priors with
independently distributed information, the least dissent mechanism satisfies
all participation restraints. The impossibility theorem is valid if and only if
the cheapest Groves mechanism runs an expected loss and if and only if the
least dissent mechanism violates some participation constraints. The robust
impossibility theorem, finally, is valid if, for all 3,

A(B,3°) —TI°<0and A(F,3°)-TI° <0 (16)

for some 3. This is the case if and only if the cheapest groves mechanism
always, not just in expected terms, runs a deficit and if and only if, for all
priors with independently distributed private information, the least dissent
mechanism violates some of the participation constraints.
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3 Indivisible Public Good

In this section, the set I = {1,...,n} of agents is assumed to face an indivisible
public decision x € X = {0,1}. The valuation of agent i for decision x = 1 as
compared to the status quo z = 0 is denoted by 3, such that profit functions
can be expressed in the form m;(z, ;) = 5,2. The ex post efficient surplus
(2) amounts to W () = max[>_ f3,,0]. The outside option coincides with
the status quo z° = 0. Hence, for II° as defined in (11), it holds that I1° =
0.Moreover, since OW (3)/93; > 0, it follows from (7) that the participation
constraints are binding at the lowest valuations 3° = (ﬂ(l), ,ﬂg) =3, =
(B1Ls s Bnr). For n =2, the setting corresponds to that of MYERSON AND
SATTERTHWAITE (1983) and, for n > 2, to that of GUTH AND HELILWIG
(1986).

The following theorem deals with the sophisticated case where the ex
post efficient decision truly depends on the realization of the information
parameters and where there is more than one-sided asymmetric information.
It is characterized by the conditions

Z Bir <0 <Z Bin (17)
icl icl
and
#{i €l | Bip <Bin} =22 (18)
For all other cases, the robust possibility theorem is valid as may be obvious
and as will be shown later.

Theorem 1 (sophisticated case)

In the case of an indivisible public decision, the robust impossibilily the-
orem 18 valid.

Proof:

The term (10) can be calculated as follows. Let P(3) ={i € [ | W(8,.,0_;) >
0} be the set of agents for which the ex post efficient decision would be z = 1
even at their lowest valuation 3,,. It follows that

AB,B) = (B, = B+ W(B) — (n— W () =
i€ P(B)

> (B —8)—(n—1—p(B)W(3) (19)

i€ P(B)



where, by definition, p(3) = #P(3). It follows from (19) that A(3,3,) <0
for all 8 such that p(8) < n — 1. Moreover, for p(8) = n, it follows from
(19) that A(G,8,) = ;. which, in the sophisticated case (17), is negative.

icl
Finally, for 8 = 3y, it follows from (17) and (19) that A(3,,5,) < 0 if
p(f) # n — 1 whereas, if p(f) = n — 1, then

A(B,8) = Z (BiL — Bim) <0

i€ P(B)

as follows from (18). The theorem is established.
It also follows from (19) that the robust possibility theorem holds when-
ever (17) or (18) are violated. In fact, if W (3,) > 0 then p() = n and, hence,

A(B,BL) =Y. ;1 whereas, if W(3) = 0 then p(8) = 0 and A(3,8,) = 0.
icl

If, finally, (18) is violated such that W (3,,,5_,) = W(/) holds for all agents

but one, say i = 1, then A(3,8;,) = W(5,,5_1) > 0. Therefore, unless we

are facing the sophisticated case, the robust possibility theorem must hold.

These results are not new. But, by checking (16) directly and not, as in
earlier proofs, in expected terms, skillful integration can be dispensed with.
The approach simplifies the proof in a drastic way.

Let us consider next the case where the agents are able to specify ex
ante a default decision z° = prob{zx = 1} which means, unless they reach
agreement at the interim stage, the decision will be £ = 1 with probability
z° as specified ex ante. SCHMITZ (1998) has established, for n = 2 and
for n > 2 but identical distribution functions, that, if specified properly, the
default decision x° gives rise to a possibility theorem. The following theorem
generalizes and simplifies his findings.

The interim expected net profit R;(5;) is, up to a constant of integration,

uniquely determined. Its derivative

Ri(8;) = E[0W(3)/08,] = E_[x(9)]

is monotonically increasing, i.e. R;(3;) is a convex function. The information
parameter 3 at which the participation constraint of agent 4 is binding (c.L.
(7)) depends on the default decision 2° and can be obtained as follows:

B it Ri(B,) > 0
g =0 =4 8 i Ry(f)=a°
B it Ri(Bin) < a°
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Theorem 2 There exists a default decision z° € [0,1] such that, for 3° =
3(2°),
A(B, %) 2> mi(a®, 3) (20)
iel

holds for all 3. At this default decision, the possibility theorem must be valid.

Proof:

Without loss of generality we can focus on the sophisticated case such that
(17) can be assumed to hold. If z° = 0 then % = 3, and, by (17), S <0
whereas if 3° = 3 then 3% > 0. Therefore, by the intermediate value
theorem, there exists a probability z° € (0,1) such that Zﬁ? = 0 and,

hence, S 7;(2°, 3?) = 0. For this realization 8° of information parameters,

if W(B) =0 then A(3,8°) = S W(3),8_;) > 0 whereas, if W(3) > 0, let
" PB)={iel|W(g.0_;) >0}
" N@) ={icl|H+) p; <0} =1\P(B). (21)
It follows that .

A(B, By) ;; (57 = B; + W(B)) — (n = YW (B) =

@Z(B) (57 - ﬂ;)ﬂ)— (n() = YW (9) (22)

where, by definition, n(3) = #N (). Similarly, (21) implies that

S B -BAWE) =D (B —B)+nBW(B) <0

ieN(B) iEN(8)
and hence, by (22), that
AWBBY =Y (B =B+ W)+ > (B —8)=)_ =0

i€ P(8) tEN(B) el

as was to be shown.

It seems fair again to claim that this proof is much simpler than that of
ScHMITZ (1998). Moreover, since theorem 2 does not require distribution
functions to be identical, the result is also more general.
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Since (20) is shown to hold for all g, it also must hold in expected terms
such that the possibility theorem is valid indeed. Notice, however, that the
default decision z° leading to the possibility theorem depends on the prior
distribution of information. As a consequence, it cannot be claimed that the
robust possibility theorem would be valid.

4 Indivisible Private Good

Let us now assume that a seller (i = 1) of an indivisible private good is facing
n — 1 potential buyers (i = 2,...,n). The decision z = (1, ...,x,) € {0,1}"
requires to identify the agent i who receives the good (z; = 1). Since only one
unit of the good is available the constraint > z; = 1 must be met. The val-
uation of agent i of the good is denoted by Zﬂilsuch that, presently, the profit
functions are of the form m;(z, 3;) = ;z;. The outside option z° = (1,0, ...,0)
corresponds to the decision where the seller keeps his good. The ex post effi-
cient surplus amounts to W (3) = max|f, ..., 3,]. Since 0 < W (8)/08, <1
it follows that the seller’s participation constraint is binding at the maximum
valuation ﬂ(l) = (3,5 whereas the buyers’ participation constraints are binding
at their lowest valuation 39 = 3,; for i = 2,...,n. Hence, for TI° as defined
by (11), I = 3,5 must hold. The present setting corresponds to that of
MAKOWSKI AND MEZZETTI (1993).

It proves useful to introduce the following notation. For any real valued
vector ¥y = (y1,...,yx) of arbitrary dimension, let M(y) = max[y, ..., ¥x]
denote the largest value and m(y) the second largest value of all coordinates
of y. More precisely, if y; = M(y) then m(y) = M (y_,;).

For the present setting, the sophisticated case is as follows. The valuation
of the seller and of one buyer at least must be uncertain. Moreover, if the
seller 1s at his lowest valuation while all buyers are at their highest valuation
then it is efficient that one of the buyers receives the good. Finally, if the
seller is at his highest valuation whereas all buyers are at their lowest valu-
ations, then efficiency requires the seller to keep the good. More precisely,
the sophisticated case can be summarized by the following condition:

max|[3, M(B8_y)] <min[3,;, M(B_15)] (23)

In all other cases, the robust possibility theorem is valid as will be shown later
in this section. The following theorem deals with the sophisticated case. The
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robust impossibility theorem is shown to be valid except for the case where
there are two or more potential buyers and where the highest valuations of
two buyers at least exceed the highest valuation of the seller.

Theorem 3 (sophisticated case)

In the case of a single indivisible private good, the following must be true:

(1) The robust possibility theorem never holds.
(i1) If n = 2 then the robust impossibility theorem always holds.

(i11) If n > 3 then the robust impossibility theorem is valid if and only if
m(Baps s Bnnr) < Brm-

Proof:
In the present setting, the term A(3, %) can be calculated as follows:

A(3,8%) = M (B, B1)+ Z M(Bip,,8-5) — (n— 1) M(B)

2>2

To simplify, let m € {2,...,n} be the buyer with the highest valuation, i.e.
Bm = M(B_q). It then follows that M(5,;,5_;,) = M(f) for all i > 2 but
i # m. Hence

A(B,8°) = M(Bry, 1) + M (B, B ) — M(B). (24)

Claim 1: There exists 8 such that A(3,58°) < TI° = 8, 5.
Proof of claim 1: The sophisticated case (23) allows to find a feasible
vector 3 of information parameters such that

max|By,, M(B_1)] < By <m(B_y) < M(B_q) <min[Byz, M(B_14)]
holds. In this region, (24) amounts to
A3, 8% =By +m(B_,) —M(B_)) < Sy

as was to be shown. Claim 1 is established.

Claim 2: If there exists 8 such that A(3,3°) > TI° then n > 3 and
m(Bops s Bnrr) > Bim-
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Proof of Claim 2: If such a 8 does exist then, by monotonicity, M (5,1, 5_.)
< M(B) and, by (24) M (8,8 1) > By such that M(B_;) > By must
hold. It then follows again from (24) that

A(ﬂuﬂo) = M(ﬂmL?ﬂfm) > ﬂlH‘ (25>

If it were true that n = 2 then (25) would imply that M(8,,3,) > (15 and
hence, since 3, < By, that 357 > B,5. This would be in contradiction with
the sophisticated case (23). Therefore, if 3 exists such that A(g, ﬂo) > II°
then n > 3.

Finally, again by (23) and since 5, < B,y < M(B_,), it follows that
B < B1y and hence that M(8_,,) = m(8) = m(8_,) > (yy. Therefore,
by monotonicity, m(Bap, - Bnr) > B1y must hold. Claim 2 is established.
Claim 3: If m(8,, ..., ,) > By then A(3,3%) = m(B,, ..., 3,) and hence,
by monotonicity, m(8_,;) = A(By, 8°) > By
Proof of Claim 3:

It m(B_;) > By then, by (24), A(ﬂ;ﬁ()) = max|d,,,,m(8_,)]. Since, by
(23), B, < Biy and since, by assumption, (,,; < m(5_,) it follows that
A(B,8°) = m(B_;). Claim 3 is established.

The above claims immediately lead to the proof of the theorem. In fact,
(1) follows from claim 1, (ii) from claim 2 and (iii), {inally, follows from claims
2 and 3 jointly.

MAKOWSKI AND MEZZETTI (1993) have considered the special case
where all buyers’ valuations are identically distributed on a common interval,
say [Br, Bg]. In this case, the sophisticated case (23) requires the seller’s and
the buyers’ intervals of valuations to overlap. Then, according to theorem 3,
ifn=2orifn>3but By < B,y then the robust impossibility theorem is
valid. In other words, the possibility theorem can only be valid if n > 3 and
the maximum buyers’ valuation By exceed the seller’s maximum valuation
B1g- Theorem 3 contains this result due to Makowski and Mezzetti as a
special case.

Earlier it was claimed that the robust possibility theorem is valid for all
but sophisticated cases. Let us now establish this claim. If there is no uncer-
tainty about the seller’s valuation, i.e. if 5;; = 3; = By then it follows from
(24) that A(3,8°) = M (B, Bom) > B > Big. If the seller’s maximum val-
uation is not larger than all buyers’ lowest valuations, i.e. if 5,5 < M(8_,;)
then, by (24), A(ﬂ;ﬁ()) = M(Bpr:B_m) = M(B) = M(B_11) = B1y. For
the remaining cases M(F_,;) = M(6_y) and M(F_,5) < [y, it can be
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shown that A(3, 8% = M(B,y,3_,) > By- If this were not true then

M(ﬂmL? ﬂfm) = max[ﬂlu ﬂmL? m(ﬂfl)] < M(ﬂ) = max[ﬂlu m> m(ﬂl)(]26>
as follows from (24). But (26) can only hold if 3,, > max[3,, 3,,., m(5_1)]
which, in case M(8_,;) = M(8_,y), would imply that 3, = M(8_,;) =
M(B_yy) = max|8,,., m(6_,)], a contradiction and which, in case M (8_, ) <
By, would imply that 3, = M(8_,5) < By < (4, a contradiction again.
To summarize in all but sophisticated cases it holds that A(3,3°) > Bin
which means that the robust possibility theorem is valid indeed.

To conclude this section, let us consider the case where the agents can ex
ante specify a default decision 2° € [0, 1]" which will be implemented unless
they reach agreement at the interim stage. The i-th coordinate expresses
the probability ¥ with which agent i would receive one unit of the good.
Since one unit of the good is available, the constraint 3" 2 = 1 must hold.
Alternatively, 7 could also be defined to be the fraction of the good which
agent 4 initially owns. This interpretation is in line with CRAMTON ET
AL. (1987) who have studied the present setting for the case where all
agents’ valuations are identically distributed. By making use of the method
as propagated by the present paper, their result can be obtained in a much
simpler way and, more important, it can be generalized to any collection of
priors as long as private information remains independently distributed.

The interim expected net profit R;(5;) is, as usual, uniquely determined
up to a constant of integration by the incentive constraints and the priors.
Its derivative

R;(ﬂz> = E,J@W(ﬂ)/@ﬂl] = E*Z[ajz(ﬂz)]

is monotonically increasing in 3; such that R;(3;) is a convex function. The
information parameters ﬂ? at which participation constraints are binding
depends on the default decision in the following way:

B if R;(ﬂzL> > 37?
3 i Ry(3]) =a?
B it R;(ﬂzH) < 37?

Theorem 4 There exists a default decision 2° € [0,1]", Y~ 29 =1, such that

A(B, 8% ZZ mi(2, ;)

il

3 =0 () =

15



holds for all 3 and for 3° = B°(a°). At this default decision, the possibility
theorem must be valid.

Proof:

We first deal with the case where all valuations are drawn from the some
interval [By, By|. Notice, however, that density functions are not required
to be identical.

Claim 1: There exists By < B® < By and z° € [0,1]", 3 29 = 1 such that
all agents’ participation constraints are binding at B°, i.e. ﬂ?(a:?) = BY for
alli € 1.

Proof of Claim 1: If > R}(B;) > 1 then choose 2° such that R}(B) >
z) for all i € I and Y 2? = 1. In this case, all participation constraints
are binding at B® = By. Similarly, if " R/(By) < 1 then choose z° such
that R;(By) < 29 for all i € I and Y 29 = 1. In this case, all agents’
participation constraints are binding at B® = By. In the remaining cases,
by the intermediate value theorem, B® must exist such that > Ri(B°) = 1.
If we choose z? = R.(B°) then all participation constraints are binding at
B; = B° In any case, claim 1 is established.

Claim 2: If all participation constraints are binding at the same value 39 =

B° then, for 3° = (B°, ..., B),
A(B,3°) > B = Z?T, 2%, BY).

Proof of Claim 2: Since all participation constraints are binding at the
same value BY, it follows that

)=>_ M(B°3,)—(n—1)M(B). (27)

el

If B < M(B) = 3, it follows from (27) that A(3,3°) = M(B°,3_,,) > B°.
If B® > M(3) then it follows from (27) that

)= B°—(n—1)M(B) > B (28)

el

such that claim 2 is established. Therefore, theorem 4 is shown to hold if all
valuations are drawn from the same interval.

To finish the proof of the theorem for non-identical intervals of valuation,
let By, = min|fy;, ..., 8,,;] and By = max|3,, ..., 5, denote the lowest and
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highest valuation, respectively, of all agents. Take any sequence fF(3,) of
density functions on By, By| which converge to the given density functions
fi(B;) on 8,1, 0] as k — oo. According to the established part of the
theorem, there exist default decisions z* € [0,1]", > zF = 1, and a common
value By < B* < By at which all participation constraints are binding, i.e.

for all i € I and all k,

B* carg min RF(8,) — B,2% (29)

B;€(BL,BH]

Moreover, for all 3 and k,
AP, B =) mi(ah, BY) (30)

must hold. Without loss of generality, 2° = lim 2¥ and B® = lim B* can be
assumed to exist. It follows {rom (29) that

B? €arg min R;(3;) — B;x)

7
B;€[BL,BH]|

and from (30) that the possibility theorem is valid in the sense that more
incentive and participation constraints are met than what would be needed

for the given priors on the subset % |Bir, Bir) of |Br, Bg]™. In this way,
i=1

the theorem is shown to hold also for cases where the agents’ valuations are
drawn from different intervals.

CRAMTON ET AL. (1987) have assumed all agents’ valuations to be
distributed according to the same distribution function. In this case, the
interim expected net profit as a function of valuation does not depend on the
agent, i.e. R;(3;) = R(3;) for all i € I, such that, at identical shares z? =
1/n, all agents’ participation constraints are binding at the same value B°.
While the information parameter B° still depends on the prior distribution
of information, the default decision z? = 1/n does not. It then follows from
(28) that the possibility theorem must hold if all agents initially own identical
shares. Theorem 4 shows how this result due to Cramton et al. can be
generalized to non-identical distributions of information. Asymmetric priors,
of course, may require unequal redistribution of initial endowments in order
to ensure the possibility theorem. Moreover, in general, the default decision
depends on the priors such that the possibility theorem but not the robust
possibility theorem can be shown to hold.
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5 Several Buyers and Sellers

The setting of section 4 is now extended to the case where several sellers
are present, each of which owns one unit of an indivisible private good. No
agent desires to keep or to buy more than one unit of the good. The sets
of sellers and of buyers are denoted by S and B, repsectively, their number
being ng = #S and ng = #B. The decision z = (24, ..., x,) € {0,1}"~"81"s
concerns the subset of agents who obtain the goods, x; = 1 meaning that
agent 7 i1s among them. Since there are ng units of the good available the
constraint Y x; = ng most hold. The valuation of agent i is denoted by
B, and, hence, ;(z,3;) = B,x;. It proves useful to introduce the following
notation. Let

rank (3; | B) =4#{j € [ | B; > B, or B; = 3; and j < i}

denote the rank of valuation 3, among (34, ..., 8, where, by assumption, the
rank follows the rank of the index in case of ambiguities. Ex post efficiency
requires that the agents

P(B) = {i € 1] rank (8, | ) = ng)

whose valuations are among the ng highest receive one unit of the good. The

ex post efficient surplus (see (2)) amounts to W(3) = >, 0,
ieP(3)
The outside option consists of the initial owners keeping the goods, i.e.

22 =1ifi € Sand 2 = 0if i € B. Since 0 < dW/93; < 1, it follows
from (8) that, for sellers i € S, the participation constraint is binding at the
highest valuation 3 = f,; whereas, for buyers i € B, it is binding at the

lowest valuation 39 = 3,;. For TI° as defined by (11),

I :Z mi(2°, 67) :Z Bin

il €S

must hold. The present setting of the general model contains the examples
as studied by WILLIAMS (1994).

The analysis of the case with several sellers turns out to be quite tedious.
To simplify matters, it is assumed that valuations of sellers are from the same
interval [Sy, S|, those of the buyers from the interval [By, By, ie. ifi € S
then 3,;, = Si and 3,; = Sy whereas if 7 € B then 3,;, = By and 3, = By.

Distribution functions, however, need not be identical.
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The sophisticated case is characterized by two-sided asymmetric informa-
tion, i.e. By < By and S;p < Sp. Moreover some buyers at least should
receive the good if sellers have the lowest valuations but buyers have the
highest valuation, i.e. S; < Bp. Similarly, sellers should keep their good if
their valuation is at its maximum while the buyers’ valuation is at its mini-
mum, i.e. By < Sp. Therefore the sophisticated case can be summarized by
the following condition:

max|By, Si] < min[By, Sy (31)

Theorem 5 (sophisticated case)
In the case of ng indivisible private goods, the following must be true:

(1) The robust possibility theorem never holds.

(i1) The robust impossibility theorem is valid if and only if either ng = ng
orng <ng and Sy < Br orng > ng and By < Sg.

Proof:
In order to calculate A(S, ﬂo) as defined by (10), some further notation is
needed. Notice, if i € P(8,;.,5_,), then i € P(f). Similarly, if i € P(7),
then i € P(f3,y,0_;). Taking this into account, the set I of agents can be
partitioned as follows:
SO_SO()—{ZES’Z¢P( zH7 )}
51(8) = {i € 5| i € P(3hy. 01).i ¢ P(9))
S(8)={ies|ic P(3))
Bam o) = (€ B|5 # D)
B = Bu3) = {je B|j€ P(8).j & P60, 0,)}
By=By(B)={j€B|j€PBi. b}
It then follows that Sa(3) = SN P(B), B1(8)U By(5) = BN P() and, hence,
that

#[So(B) U S1(8)] = #[B1(8) U By(8)]. (32)

As a final piece of notation, let
M(P) = min{g; | i € P(B)}
m(8) = max{; | i ¢ P(0)}
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be the lowest valuation of agents who receive one unit of the good and the
highest valuation of those who do not, respectively. By making use of this
notation, it is easily seen that

A(ﬂuﬂo) - HO -
N> WY B = MAW)+ D (Bin — B+ W) +
€8y €9, 1€ Sy
SWHD (m=B+W)+ > (B = B+ W) —
i€ Bog i€ By 1€ By
[=1)W=> By

eS8

which, after rearranging terms, is equal to
A8, 8% —T1° :Z m Z Bir— Z Bin— Z M. (33)
1€ By 1€ By 1€ Sp 1€S1

Notice that, by (32), the first two sums in (33) have as many terms as the
second two.

In order to simplify (33), it proves useful to partition the set of all 3 into
the following four regions:

r1 = {0 | BL <m(B) and Sy < M(3)}
ry = {f | m(B) < B and Sy < M(0)}
rs = (8| By < m(B) and M() < Su}
re = {0 | m(8) < By and M(f) < Sy}

Claim 1:
HEBD DB ~Sul 7€
0 0 _ 2 L — 9H 1 S
ABAIZIC=Y LB(0) U BAImE) - M) KBern Y
#15,(3) By~ M(9) itf e,

Proof of Claim 1:

Suppose 3 € ry. If j € By then M < 3, and m < (3, = Br, whereas if i € S;
then 8, < m and M < 3,; = Sy. Since 8 € ry it follows that m = By, and
M = Sy and hence, from (33), that

AB,)—I =" m— Y Sy

B1UB>o SoUS1
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such that claim 1 holds for 5 € r (c.f. (32)).

Suppose 3 € ry. If j € By then M < 3, and 3,;, = By < m whereas if
i € S then, as above, M = Sg. Since 3 € ry it follows that B; = @ and
hence {rom (33) that

AB,8°) =TI° =" B,— > Sy
Bs

SoUS1

such that claim 1 also holds for (3, € 7 (c.f. again (32)).
Suppose 3 € r3. If j € By then, as in the case of 1, m = By whereas if
i € So then B, < m and 3,; = Sy < M. Since 8 € rs, it follows that Sp = &

such that
ABA)-TI"=>" m=> M

B1UB> S1

Claim 1 also holds for 3, € r3.
Suppose, finally, that g € r4. It follows, as in the case of ry, that B; = &
and, as in the case of r3, that Sy = @ and hence that

AP AT => Br—> M.
Bs S1

Therefore, claim 1 is shown to hold in all four regions.

Claim 2: There exists 3 such that A(3, 8°) < II° if and only if (31) ist met.
Proof of Claim 2:

Let us, first, assume that A(3,3°) < II°. If 8 € ry then By, < m < Sy,
Sy < M and B1(f8) U Bo(8) = BN P(8) # @ as follows from (34). Since
BN P(F) # @ there exists j € B such that M(8) < 8; < By. Moreover,
since m < Sy, it follows that Sy < Sy. As a consequence, (31) must hold in
this case.

If 3 € ry then m < Bp < Sy < M and By(f) # @ as follows from (34).
Since By(3) # & there exists j € B such that M(8) < 8; < By. Moreover,
since m < Bp < Sp, it follows that S; < B < Sg. Therefore (31) must
hold in this case as well.

If 8 € rg then By < m < M < Sy and B1(8)U Bs(8) # @ such that there
must exist j € BN P(B) for which it holds that M(3) < 3; < Bp. Since
M < Sg it follows that S;, < M < Bpg. If it were true that S; = By = M
then, for j € BN P(83), 8, = Br and, hence, m(3) = By which contradicts
m(5) < M(5) .Therefore S;, < By, and (31) must hold in this case as well.
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Finally, if 5 € r4 then m < B, < M < Sy and Bs(8) # @. Therefore,
as before, there exists j € B such that M < g, < Bpy. Therefore, since
St < M is always true, it follows that S; < Bpy. If it were true that
St = Bg = M then By < By = 51 < Sy such that m < By would not
be feasible. Therefore S; < By as was to be shown such that, indeed, if
exists such that A(3, %) < TI° then (31) must hold.

The other way round, let us assume that (31) holds. It is then easy to
find  such that

max|Byr, S] < m(8) < M() < min|Bg, Su|

and such that BN P(B) # @. It follows that § must be in region r3 such
that (34) implies that A(3,3°) — II° < 0. Claim 2 is fully established.
Claim 3: There exists 3 such that A(3,8°) > TI° if and only if

cither (a) Sy < Bp and npg > ng
or (b> SH < By, and npg < ng
or (C> SL<BL7‘SL<SH and np <nNg

Proof of Claim 3: If there exists 8 in 7, such that A(3,3%) > II° then
Br <m, Sy <m < M and BN P(B) # @. Since Sy < m it follows that
np > ng and Sy < By, L.e. (a). Moreover, if (a) holds then there exists (3
in r, such that A(3,3°) > II°.

If there exists 3 in 75 such that A(3, %) > II°. Then m < By, Sy < M,
Sy < Br and By # @ hence Sy < M < Bp. It follows that S;, < Sy <
By, < By and, since m < By, that ng < ng such that (b) holds. Conversely,
if (b> holds then SL < SH < By < By and ng < ng. If ng = ng then
B < M < By and S, < m < Sy such that there exists 3 in r9 as claimed.
If ngp < ng then Sp; < m < M < Sy whereas M = Sy is feasible such that
[ in 79 does exist in this case as well.

There never exists 3 in r3 with the desired property. If 3 in 74, finally,
such that A(3,8°) > T° then m < By, m < M < By and M < Sp.
Since M < By, it follows that ng < ng. Moreover, since Sy, < M always
holds, it follows that S; < Bj, and since M < Sy it must be true that
St < Sy such that (b) holds indeed. Conversely, if (b) holds then M < By,
must always be true. Moreover, since Sy < Sy and np < ng it is feasible
that S, < m < M < By and M < Sg. Hence rs is not empty and, since
P(8)N B = B, it follows from (34) that 5 must exist as claimed. Claim 3 is
established.

22



The proof of theorem 5 easily follows from the above claims. Claim 2
implies (i). Claims 2 and 3 jointly imply (ii) because condition (b) in claim
3 does not occur in the sophisticated case, whereas S; < Sy in (b) always
holds in the sophisticated case. Theorem 5 is fully established.

It also follows from the above proof that the robust possibility theorem
holds for all cases which are not sophisticated. In fact, if (31) is violated
then it follows from claim 2 in the above proof that no 3 exists for which
A3, ) < I,

The proof of theorem 5, while elementary, is tedious. But the result
reaches beyond the existing literature. In the sophisticated case where the
robust possibility theorem can never be valid, the robust impossibility theo-
rem 1is always valid if the numbers of sellers and buyers are equal or if there
are fewer buyers than sellers but the lowest valuation of sellers does not ex-
ceed the lowest valuation of buyers. The robust impossibility theorem is also
valid if there are more buyers than sellers but the highest valuation of buyers
does not exceed the highest valuation of sellers. In particular, if the valuation
of buyers and sellers are drawn from the same interval, 1.e. if By = S and
By = Sy then, no matter what the number of buyers and sellers, the robust
impossibility theorem always has to be valid. If, in addition, the density
functions of all buyers are identical and those of all sellers are identical, too,
the above result has been established by WILLIAMS (1994). Notice, however,
that theorem 5 covers more general cases. In particular, it does not require
identical density functions.

To conclude this section let us generalize the result of CRAMTON ET AL.
(1987) (c.f. section 4) to the case including several sellers. By assumption,
it is possible to specify ex ante which fraction ¥ of a good agent 4 initially
should own. Since there are ng units of the good available, the constraint for
the default decision is Y z? = ng. If the agents specify the default decision
2% properly then the following possibility theorem is valid.

Theorem 6 There exists a default decision 1° € [0,1]", Y 19 = ng such
that

A(B, ) =Y mi(a®,8Y)
holds for all 3. At this default decision, the possibility theorem must be valid.

Proof:
The proof is similar to the one of theorem 4. It is again sufficient to deal
with the case where all valuations are drawn from the same interval By, By|.
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0 can be shown to exist such

Moreover, also as in theorem 4, a default option x
that the participation constraint of all agents is binding at the same value
B of the information parameter. It follows that II° = S m;(z°, 39) = ngBy.

In order to calculate A(S, ﬂo), let us partition the set I of all agents as

follows:
Iy= Iy(p
L= L(8
]2 — IQ(ﬂ
Ii= L(B)= {i]|ieP(

Similarly as in the proof of (33), it can be shown that

A(B, Zm+ZBO—nBO ZM (35)

IoUlIg

~

) = (
)= {z[zEP(
) = (

Two cases must be distinguished. If, first, M(8) < B°. Then, if i € I, it
follows that M < 3, but B® < m and, hence, that m = M = B°. Ifi € [,
then 8, < m but M < B° Therefore (35) implies that

A3, H°>ZB°+ZB°—nB° ZBO—O

Ia2UIs

If, second, B® < M(f3) then I, = &. Moreover, if i € I; then M < (3, but
B < m. It then follows from (35) that

AP, A T >> B+ ) B®—ngB’=0

I I3

as was to be shown.
Notice, if all distribution functions are identical then, for the default

decision a:?

=ng/n (i =1,...,n), the participation constraints of all agents
are binding at the same information parameter such that equal shares lead
to the possibility theorem. In more general cases, however, unequal shares

may be needed to ensure the possibility theorem.

6 The First Order Approach

As a final application of the method propagated by the present paper, let
us consider a set of agents [ = {1,...,n} facing a divisible public decision
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x € [0,00]. Profit functions 7;(z,3;) are assumed to be differentiable in
quantity and information parameter. It is further assumed that profits are
concave functions of quantity, i.e. T, = 0%m;/02% < 0 and that the single
crossing properly holds, i.e. 7,5 = 8?m;/0x08; > 0. Finally it is assumed
that m;(0,3;) = 0 for all 8, € [B,1,0;u)- It then follows by integration
that mz = Om;(x,5,)/08;, > 0 for x > 0. The ex post efficient surplus
W(B) = > m(x(F), ;) is characterized by first order conditions

Z Tia(2(B), B;) = 0. (36)

The envelope theorem then yields

oW (B3)/08; = mis(x(8),8;) > 0

and, hence,
W (3)/08;08; = Tipa0x /013,

must hold for all j # i. Differentiating first order condition (36) leads, by
making use of the single crossing property, to the conclusion that dx /93, > 0
for all j € 1. The following line summarizes these findings:

oW (9)
2600, > " (37)

oW () .,
>
95, > 0 and, for i # 7,

Moreover, if the outside option is assumed to be z° = 0 then, by (37), the
participation constraints of all agents are easily seen to be binding at the
lowest information parameter, i.e. 30 = 3,; for all i € I. It follows that

W(B,) > 1I° = Zﬂi@o =0,0;,) =0. (38)

Theorem 7 If (37) and (38) hold, as would be the case in the above setting
of a divisible public decision, then the following must be true:

(1) The robust possibility theorem is valid if and only if A(By, ) > 0.

(i1) The robust impossibility theorem is valid if and only if W (5,) = 0.

25



Proof:
Since A(B,B.) =Y W(B,1,0_;) — (n — HW(F) it follows that

OA(S3, B) :Z [aw(ﬂibﬂi) oW (p)
8ﬂj aﬂj aﬂj

]
Since 8, < f;, it follows from (37) that

OA(B,5,)/08; < 0. (39)
Moreover, T1° = 0 by (38) and A(3;,5;) = W(8;) by definition. Therefore,

the theorem easily follows from monotonicity condition (39).

This result generalizes findings of MCAFEE (1991) who, however, deals
with a setting of two agents only where private and public decisions cannot
be distinguished. Notice, in the case of a divisible decision, it is quite likely
that, even at the lowest information parameters, the ex post efficient surplus
will be strictly positive, i.e. W(3,) > 0. In this case the robust impossibility
theorem can never be valid. Moreover, under the assumptions of the theorem,
the robust possibility theorem is valid if and only if the condition

ABu, 1) :Z W(Bip: B_su) — (n =)W (By) = 0

icl

is satisfied. Therefore, in the case of a divisible public decision, there is
scope for a robust possibility theorem even if the ex post efficient decision
truly depends on the realization of the information parameters (sophisticated
case).

We should also point out that, in the case of private goods, the mono-
tonicity condition (39) may be violated. In fact, for the indivisible decision
cases of sections 4 and 5, the monotonicity constraint typically fails to hold
if more than two parties are involved. This is the reason why the proofs of
theorems 3 and 5 are more complicated than those of theorems 1 and 7.

Nevertheless the first order approach may be of use beyond the case of
public decisions. Let x° be the outside option and let the participation
constraints of agent i be binding at ﬂ? (see (7)). For simplicity, let us assume
that 37 does not depend on the prior distribution of information. Moreover,
let B and £ be solutions of the following problems:

gmin ¢ argﬁmin A(ﬂ,ﬂo),ﬂmax € arggnax A(ﬂ,ﬂo)
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To find the above solutions, use of the first order condition could possibly be
made. The following theorem must hold.

Theorem 8 Let I1° = > m;(2°,3%). Then:

(i) The robust possibility theorem is valid if and only if A(p™™, %) > TI°

(ii) The robust impossibility thoerem is valid if and only if A(3™, 3°) < TI°
and there exists 3 such that A(B,3°) < II°,

(111) In all other cases, no robust theorem can be valid.

7 Concluding Remarks

In this paper, the robust possibility theorem is said to be valid if, for all
prior distributions of private information, a balanced mechanism exists which
agents voluntarily participate at and which leads to the ex post efficient de-
cision. The robust impossibility theorem is said to be valid if, for no prior
distribution of private information, the ex post efficient decision can be the
result of voluntary trade. In the case of indivisible decisions (sophisticated
cases only), robust theorems can never be valid whereas, in the case of di-
visible decisions, there is scope for robust possibility theorems while robust
impossibility theorems are unlikely to hold. In the case of an indivisible pub-
lic decision, the robust impossibility theorem is always valid whereas, in the
case of an indivisible private decision, there is scope for a possibility theorem
but not for a robust possibility theorem.

If the robust impossibility theorem is valid the ex post efficient solution
cannot be reached by a balanced mechanism allowing for voluntary participa-
tion. A double oral auction would be such a mechanism. Any computerized
experimentation of the double oral auction gives rise to a mechanism that
can be described by a game form such as (3). SADRIEH (1998) has worked
out the details of such a game form. Under complete information, he shows
that the efficient decision has to be reached in Nash equilibrium. Moreover,
he presents some evidence that a static experimental repetition of a game of
incomplete information leads, as a behavioral prediction, to the Nash equi-
librium of the corresponding game with complete information. If this is true
even 1n settings where the robust impossibility theorem is valid then the ef-
ficiency must result from the boundedly rational behavior of real subjects.
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In a framework of fully rational behavior, the theoretical results of Sadrieh
cannot generally be extended to settings where individual valuations are pri-
vate information. The impossibility theorem or even the robust impossibility
theorem is too likely to be valid if commodities are indivisible.

A similar argument holds for market solutions where the role of the Wal-
rasian auctioneer and the strategy sets of households are explicitely modeled
as a game form (3). Take any parameter configuration for which the robust
impossibility theorem has been identified to hold then the Walrasian equi-
librium cannot generally be reached, at least not if the auctioneer does not
know individual valuations. In other words, to reach the Walrasian equi-
librium, informational requirements are substantial. In fact, since some ro-
bust impossibility theorems hold for private as well as for public decisions,
Walrasian equilibrium can be equally demanding in terms of informational
requirements as Lindahl equilibrium would be. The crucial question seems
to be, not, whether private or public goods are at stake but, rather, whether
the robust possibility theorem or robust impossibility theorem is valid.
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