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Abstract

The aim of this paper is the valuation and hedging of defaultable bonds and options on

defaultable bonds. The Heath/Jarrow/Morton-framework is used to model the interest rate
risk, and the time of default is determined by the �rst jump time of a point process.

In the �rst part, we consider valuation and hedging of a defaultable bond. The �rm

value process is modelled explicitly, and is used to determine the default intensity or the
payout ratio after default. This means that default intensity or payout ratio are not ex-

ogenously given, but determined implicitly by the speci�cation of the �rm value process.

Incompleteness of markets arises naturally, and therefore we apply the local risk-minimizing
methodology introduced by F�ollmer, Schweizer and Sondermann to determine a martingale

measure and to calculate hedging strategies. In incomplete markets, the total risk of a

contingent claim can be divided into traded risk and totally non-tradeable (intrinsic) risk.
Therefore, a contingent claim cannot be hedged perfectly. We can only reduce the risk

to the intrinsic component. In our model, we can hedge partly against the risk of default

because we assume that the �rm value is a traded asset.
In the second part, we consider the valuation and hedging of options on defaultable

bonds. Again, we are in an incomplete market. In addition to the traded assets, we

introduce a virtual asset to the market which represents non-hedgeable risk. We derive
the partial di�erential equation which is satis�ed by the value process of the option and

show how the risk-minimizing hedging strategy can be computed.

JEL Classi�cation: G12, G13

Keywords: Credit Risk, Incomplete Markets, Risk Minimization
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1 Introduction

Each model which aims at pricing contingent claims on defaultable bonds has to specify three
characteristic points:

� Which interest rate model is used?

� When does default occur?

� What is the payo� after default?

Known models for the valuation of defaultable bonds can be subdivided into two groups. The
�rst one, so-called "classical group", explicitly models the evolution of �rm value, and default
takes place when the �rm value falls below an exogenously speci�ed boundary. The second one,
so-called "intensity group", models default as the �rst jump of a point process with deterministic
or stochastic intensity.

The classical approach was started by Black and Scholes [1973] and Merton [1974]. Newer
papers of this group include Longsta� and Schwartz [1995] and Zhou [1997]. Here, default occurs
when �rm value falls below a certain threshold level, which is exogenously given. The default
time � can then be expressed formally as

� = infft � 0jV (t) � Kg;

that is the �rst passage time for V (t) to cross the lower bound K. The �rm value is mostly
modelled as a di�usion process (with the exception of Zhou [1997]), and this has several impli-
cations:

� Firms never default unexpectedly.

� The �rm's probability of defaulting on very short-term debt is zero and therefore its short-
term debt should have zero credit spread.

� The �rm has a constant value upon default.

All of these implications of the di�usion approach are strongly rejected. A generalization to �rm
value processes with jumps is di�cult, because explicit solutions for passage times, except in the
case of some very special di�usion processes, are not known. The last step in this direction is
Zhou [1997]. He models the �rm value with jumps and obtains an exact formula for the value
of defaultable bonds in a simpli�ed model with a predetermined date of possible default. In his
general model, he gives an approximation for the value of the defaultable bond.

Du�e and Lando [1998] provide a �rm value model where the �rm value is only partially
observed, and thereby the time of default is unpredictable.

The intensity approach models the time of default as the �rst jump-time of a point process,
which is totally unpredictable. This approach was adopted by Du�e and Singleton [1994],
Jarrow and Turnbull [1995], Madan and Unal [1994], and others. It has the attractive property
of tractability, while its main draw-back is the missing link between �rm value and corporate
default. In most models of this type the intensity of the point process as well as the payout ratio
are imposed exogenously, and are not linked explicitly to the �rm value.

Linetsky [1997b] uses both the intensity approach and the �rm value. In his paper, the �rm
is risk free for a �rm value over a certain, exogenously given level, and below this level has a
constant probability of defaulting.

2



In this paper, we will combine the classical and the intensity approach. We will model the
time of default as the �rst jump-time of a point process, but we will allow the �rm value process
to in
uence either the time of default through the intensity of the point process or the payo�
after default. This paper extends Jarrow and Turnbull [1995] by introducing the �rm value
process and making default intensity or payout ratio dependent on the �rm value, and also by
relaxing the assumption of independence between the default process and default-free interest
rates. By introducing the �rm value, we are able to endogenize the default intensity and payout
ratio. Assuming that the �rm value is a traded asset, we are able to hedge partly against the
loss in the value of credit risky bonds due to a deterioration in credit quality. Because of the
incompleteness of the markets under consideration, we will introduce the local risk-minimizing
approach of F�ollmer, Schweizer and Sondermann (F�ollmer/Sondermann [1986], Schweizer [1991])
into the context of markets for defaultable bonds. In incomplete markets the martingale measure
is no longer unique, and contingent claims cannot be perfectly replicated. However, a hedging
strategy which minimizes risk in a certain sense can be computed, and the initial investment
required is equal to the expectation of the contingent claim under the local risk-minimizing
martingale measure.

The basic framework of the bond market is similar to Jarrow and Madan [1995], which allows
bonds to depend on point processes as well as the usual, well known di�usion processes. Most of
the results can easily be generalized to include marked point processes, using setup and results
from Bj�ork et al. [1996]. However, we refrain from including this to keep everything clear and
simple, and to concentrate on the key results.

The structure of the paper is as follows. In section 2, we give an exposition of the basic bond
market framework and review some useful results from Jarrow/Madan [1995]. At the end of this
section, we introduce the reader into local risk-minimizing hedging and valuation in incomplete
markets. In section 3, we compute the value of defaultable bonds when a non-defaultable bond
and the �rm value are traded in the market. We consider two di�erent speci�cations of default
intensity and payo� after default:

� The intensity of the point process depends on the �rm value, and the payo� after default
is constant.

� The intensity of the point process is deterministic, and the payo� after default depends on
the �rm value.

In section 4, we value options on defaultable bonds when a non-defaultable bond and a defaultable
bond are traded in the market. For this purpose, again we use the local risk-minimizing approach,
and the option pricing problem is formulated as a partial di�erential equation. Simultaneously
we obtain expressions for the local risk-minimizing hedging strategy.

2 The Bond Market

In the present section, we introduce the basic setting of the bond market, which we will build
upon in the following chapters to value and hedge bonds subject to credit risk and options on
risky bonds.

We begin by presenting basic de�nitions and results concerning point processes. Subsequently,
we de�ne forward rates and bond prices. Our setting is similar to that of Jarrow/Madan [1995]
and Jarrow/Turnbull [1995], and we note some of their results which we will use later on. Finally,
we mention some results of Bj�ork et al. [1995], which deal with the existence and uniqueness of
martingale measures in a more general setup.
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2.1 Mathematical Setup

We consider a continuous trading economy with trading interval [0; �T ] for a �xed �T > 0. In
the present model, random shocks driving the market are generated by two distinct processes:
A point process as well as the usual n-dimensional Brownian Motion. The uncertainty in our
model is speci�ed by a probability space (
;A; P ), and a complete, right-continuous �ltration
F = (Ft)t�0. Adapted to this �ltration are the following processes:

� A point process N (t) = 1[�; �T [(t), where � is a F-stopping time, with F-predictable intensity,
and

� an n-dimensional Brownian Motion fW (t) = (W1(t); : : : ;Wn(t)) : t 2 [0; �T ]g starting in 0.

The key characteristic of a point process is its intensity, which can be de�ned as follows (Br�emaud
[1981], p. 27):

De�nition 1. Let N (t) be a point process adapted to F and let �(t) be a nonnegative F-predictable
process such that for all t � 0 Z t

0

�(s) ds <1 P-f.s.

If for all nonnegative F-predictable processes C(t) the equality

E

"Z �T

0

C(s) dN (s)

#
= E

"Z �T

0

C(s)�(s) ds

#

is veri�ed, then we say: N (t) admits the intensity �(t).

The compensated point process, de�ned by

�N(t) := N (t)�
Z t

0

�(s) ds

is a martingale, and we have the following formula for the probability of no jump up to time t:

P [N (t) = 0] = E

�
exp

�
�
Z t

0

�(s) ds

��

The next lemma contains some useful results on the (conditional) quadratic variation of point
processes:

Lemma 1. The previously de�ned processes satisfy the following equations:

[N;N ](t) = [ �N; �N ](t) = N (t)

hN;N i(t) = h �N; �Ni(t) =
Z t

0

�(u) du

[N;Wi](t) = [ �N;Wi](t) = 0

Proof. See Protter [1990], pp. 62�.

Finally, we note the Itô-formula in a version for point processes, also taken from Protter
[1990]:
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Lemma 2. Let X = (X1; : : : ; Xm) be an m-tuple of semimartingales, and let f : Rm! R have

continuous second order partial derivatives. Then f(X) is a semimartingale and the following

formula holds:

f(X(t)) � f(X(0)) =

Z t

0+

rf(X(s�)) dXc(s)

+
1

2

X
1�i;j�m

Z t

0+

@2f

@xi@xj
(X(s�)) d[Xi; Xj]

c(s)

+
X

0<s�t

ff(X(s)) � f(X(s�))g

2.2 Setup of the Bond Market

On the stochastic basis of the previous section we will now build the economic model of a credit
market with default risk. We will �rst introduce non-defaultable bonds, using the approach of
Heath et al. [1992]. Afterwards, we consider defaultable bonds by adding the in
uence of the
point process N (t).

Assumption 1. The dynamics of non-defaultable forward rates are given by the following stochas-

tic process:

df0(t; T ) = �0(t; T ) dt+ �0(t; T ) dW (t);

where �0 is deterministic and satis�es certain technical integrability conditions.

Remark. The �rst jump of the point process indicates default. Therefore, forward rates
belonging to non-defaultable bonds do not depend on the point process and are de�ned exactly
as in Heath et al. [1992] with deterministic volatilities.

Proposition 3. Under Assumption 1, the non-defaultable short rate satis�es

dr0(t) = [�0(t; t) +
@f0

@T
(t; t)] dt+ �0(t; t) dW (t)

and the non-defaultable bond prices are given by

dp(t; T ) = p(t; T ) [r0(t) +A0(t; T )] dt+ p(t; T )S0(t; T ) dW (t)

, p(t; T ) = p(0; T ) exp
nZ t

0

[r0(u) + A0(u; T )] du
o
E
nZ t

0

S0(u; T ) dW (u)
o

where

S0(t; T ) := �
Z T

t

�0(t; u) du

A0(t; T ) := �
Z T

t

�0(t; u) du+
1

2
kS0(t; T )k2

Proof. See Heath et al. [1992].

Remark. Again, we want to mention that we reserve the point process for defaultable bonds.
Non-defaultable bond prices are only in
uenced by the Brownian Motions.

We now turn our attention to defaultable bonds. As mentioned above, the time of default is
the �rst jump time of the point process and at that time, defaultable forward rates have a jump.
Following Jarrow/Turnbull [1995], we can then introduce
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Assumption 2. The dynamics of defaultable forward rates are given by the following stochastic

process:

df1(t; T ) = �1(t; T ) dt+ �1(t; T ) dW (t) + #(t; T ) dN (t);

where �1 and # are deterministic and satisfy certain technical integrability conditions.

Furthermore, we denote the (random) payo� after default with �. We want to allow the
intensity of N (t) or the payo� after default to depend on the �rm value, and therefore we
introduce

Assumption 3. The dynamics of the �rm value are given by the following stochastic process:

dV (t) = V (t)�2(t) dt+ V (t)�2(t) dW (t)

, V (t) = V (0) exp

�Z t

0

�2(u) du

�
E
�Z t

0

�2(u) dW (u)

�

Following Jarrow/Turnbull [1995], the defaultable short rate and bond prices can be calcu-
lated. Both have a jump at the same time as the forward rates:

Proposition 4. Under Assumption 2, the defaultable short rate satis�es

dr1(t) = [�1(t; t) +
@f1

@T
(t; t)] dt+ �1(t; t) dW (t) + #(t; t) dN (t)

and the defaultable bond prices are given by

dq(t; T ) = q(t�; T ) [r1(t) +A1(t; T )] dt

+ q(t�; T )D(t; T )�(t) dt
+ q(t�; T )S1(t; T ) dW (t)

+ q(t�; T )D(t; T ) d �N(t)

, q(t; T ) =q(0; T ) exp
nZ t

0

[r1(u) +A1(u; T )] du
o

exp
nZ t

0

D(u; T )�(u) du
o

E
nZ t

0

S1(u; T ) dW (u)
o
E
nZ t

0

D(u; T ) d �N(u)
o

where

S1(t; T ) := �
Z T

t

�1(t; u) du

A1(t; T ) := �
Z T

t

�1(t; u) du+
1

2
kS1(t; T )k2

�(t; T ) := �
Z T

t

#(t; u) du

D(t; T ) := �e�(t;T ) � 1

Proof. See Jarrow/Turnbull [1995].

Remark. To obtain this result, Jarrow and Turnbull employ a very interesting foreign
currency analogy. Please note that we have not said anything yet about the connection between
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non-defaultable and defaultable rates and prices. We will do that in section 3 where we value a
defaultable bond when a non-defaultable bond and the �rm value are traded in the market.

The next two sections will contain some results on absence of arbitrage and completeness of
our market. For these two sections, we make the following assumption:

Assumption 4. A continuum of non-defaultable and defaultable bonds as well as the �rm value

process are traded in the market.

2.3 Absence of arbitrage and existence of martingale measures

The following proposition is a well known result (see, for example, Bj�ork et al., Proposition 3.9):

Proposition 5. If there exists an equivalent martingale measure, then the model is arbitrage-

free.

In order to characterize the set of equivalent martingale measures, the following lemma is
fundamental:

Lemma 6. Let F = (Ft)t2[0; �T ] denote the internal �ltration generated by the Brownian Motion

and the point process, satisfying the usual conditions. Then every square integrable, F-martingale

M (t) has a representation

M (t) =M (0) +

Z t

0

�M (u) dW (u) +

Z t

0

#M (u) d �N(u); (1)

where the integrands �M and #M satisfy

� �M is measurable, F-predictable and ful�lls for 0 � t � �TZ t

0

k�M (u)k2 du <1 P-f.s. (2)

� #M is measurable, F-predictable and ful�lls for 0 � t � �TZ t

0

j#M(u)j2�(u) du <1 P-f.s. (3)

Proof. See Bj�ork et al. [1996], Remark 3.2.

We can now proceed to characterize the set of all equivalent measures by a suitable version
of Girsanov's theorem (see Bj�ork et al. [1996]):

Theorem 7. Let ~P be a measure equivalent to P and let G be the density process of ~P given by

G(t) = E

"
d ~P

dP

��Ft
#
; 0 � t � �T (4)

Then there exist F-predictable processes f
(t); �(t)g such that

1)

Z �T

0

k
(u)k2 du <1 P-f.s.
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2) �(t) � 0 and

Z �T

0

�(u)�(u) du <1 P-f.s.

3) The P -martingale G is given by

G(t) = exp
nZ t

0


(u) dW (u) � 1

2

Z t

0

k
(u)k2 du

+

Z t

0

log�(u) dN (u)�
Z t

0

[�(u)� 1]�(u) du
o

4) Under ~P , the processes

d ~W (t) = dW (t)� 
(t) dt

d ~N (t) = dN (t)� �(t)�(t) dt

are martingales.

Conversely, every P -Martingale of the type given in 3) is the density of a measure equivalent to

P .

The next theorem gives conditions under which the bond price processes become martingales
under an equivalent measure:

Theorem 8. Under assumptions 1, 2, 3 and 4, a martingale measure exists if and only if the

following conditions hold:

� There exist predictable processes f
(t); �(t)g such that for all T � �T , on [0; T ] we have

A0(t; T ) + S0(t; T )
(t) = 0; (5)

r1(t) � r0(t) + A1(t; T ) +D(t; T )�(t)�(t) + S1(t; T )
(t) = 0 (6)

and

�2(t) � r0(t) + �2(t)
(t) = 0 (7)

� The predictable processes f
(t); �(t)g satisfy the integrability conditions of theorem 7 and

are such that EP [G(t)] = 1.

Proof. See Jarrow/Madan [1995].

For the model to possess a martingale measure, the forward rate drift can not be chosen
freely, but it is determined by the volatilities:

Proposition 9. The existence of an equivalent martingale measure implies

�0(t; T ) = ��0(t; T )S0(t; T )� �0(t; T )
(t) (8)

�1(t; T ) = ��1(t; T )S1(t; T )��e�(t;T )#(t; T )�(t)�(t)� �1(t; T )
(t) (9)

r1(t) � r0(t) = (1��)�(t)�(t) (10)
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Proof. For the �rst two equations see Bj�ork et al. [1996]. The last relationship follows from
equation (6) by setting T = t.

Remark. Equation (10) shows that the di�erence between the non-defaultable and default-
able short rate is equal to the expected loss-rate. Du�e/Singleton [1994] model directly non-
defaultable and defaultable short-rates, and this is the central equation connecting both rates. It
is interesting to see that the same relationship can be obtained in a Heath/Jarrow/Morton-type
of setup, where instead of the short rates the forward rates are modelled. As Sch�onbucher [1997]
shows, conditions (8) to (10) are necessary and su�cient for the existence of a martingale mea-
sure when only bonds are present. Here, the �rm value is also a traded asset and so additionally
condition (7) has to be ful�lled.

2.4 Completeness and uniqueness of martingale measures

In our context we know that the existence of a unique martingale measure is su�cient for
completeness of the market. The set of equivalent martingale measures is uniquely de�ned by
the set of possible processes f
; �g satisfying the conditions of theorem 8. For each ! and t,
these n+1 variables, the so-called market prices of risk, are the solution of the following system
of equations with d = n+ 1 equations (see Jarrow/Madan [1995]):

0
BBBBBBBBBBBBBBBB@

S0;1(t; T1) � � � S0;n(t; T1) 0
...

...
...

S0;1(t; Td0 ) � � � S0;n(t; Td0) 0
S1;1(t; Td0+1) � � � S1;n(t; Td0+1) D(t; Td0+1)

...
...

...
S1;1(t; Td) � � � S1;n(t; Td) D(t; Td)
S2;1(t) � � � S2;n(t) 0

1
CCCCCCCCCCCCCCCCA

0
BBBBBB@


1(t)
...


n(t)
�(t)�(t)

1
CCCCCCA
= (11)

�

0
BBBBBBBBBB@

A0(t; T1)
...

A0(t; Td0 )
r1(t)� r0(t) + A1(t; Td0+1)

...
r1(t)� r0(t) +A1(t; Td)

�2(t) � r0(t)

1
CCCCCCCCCCA

Here we have taken d0 non-defaultable bonds, n � d0 defaultable bonds and the �rm value to
calculate the market prices of risk. The equivalent martingale measure exists and is uniquely
determined if and only if this system of equations possesses a unique solution, which is indepen-
dent of the choice of bonds (Jarrow/Madan [1995]). This is su�cient to ensure completeness of
the market.

2.5 Incompleteness and local risk-minimization

The conditions for uniqueness of the martingale measure and thus completeness of the market are
not always satis�ed. This is especially true for the market of defaultable bonds. The government
issues bonds in regular intervals, so that at each time there are many bonds of di�erent maturities
traded in the market. Firms, however, issue bonds only infrequently, and so the number of assets
which is traded on the market is smaller than the number of stochastic processes driving the
market. As a result from this, the equation system (11) has less equations than variables and
therefore, many possible martingale measures exist.
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If markets are incomplete, the martingale measure is no longer uniquely de�ned and riskless
hedging of arbitrary derivatives is no longer possible. On the contrary, the typical claim has an
intrinsic risk, and all one can do is reduce the actual risk to the intrinsic part. This can be done
by local risk-minimizing hedging and the local risk-minimizing martingale measure.

Let us denote the (discounted) price processes of traded assets with X = (X1; : : : ; Xd). In a
complete market every contingent claimH with maturity T is attainable. Under the martingale
measure ~P it can be written as

H = V(T ) = V(0) +
Z T

0

�H(s) dX(s);

where �H is the invested part of a self-�nancing trading strategy with value process V. In
this way, the total risk from the contingent claim can be eliminated. In an incomplete market,
however, we have to incur additional costs. The additional costs at time T are given by

C(T ) = H � V(0) �
Z T

0

�H(s) dX(s)

F�ollmer/Sondermann [1986] suggested to minimize riskiness, which they de�ned by

R(t) := E[(C(T )�C(t))2jFt]

Under a martingale measure, it turns out that the risk-minimizing strategy is given by the
Kunita-Watanabe decomposition of the claim, namely

H = E[H] +

Z T

0

�H (s) dX(s) + L(T ):

Here, L is a martingale orthogonal to X and stands for the additional costs, while �H is the
invested part of the risk-minimizing strategy (see F�ollmer/Schweizer [1990]). Please note that, as
the process of additional costs is a martingale, a risk-minimizing strategy is mean-self-�nancing.
This implies that, in the average, the additional costs are zero or

E[C(T )�C(t)jFt] = 0

Let us now turn to the general case, where asset prices X = (X1; : : : ; Xd) are semimartingales
with a Doob-Meyer-decomposition

X(t) = X(0) +A(t) +M (t)

In this case, Schweizer [1991] introduced the criterion of local risk-minimization and showed
that a replicating strategy is locally risk-minimizing if it is mean-self-�nancing and its cost
process C(t) follows a martingale strongly orthogonal to M (t). This strategy corresponds to the
F�ollmer-Schweizer-decomposition, which is de�ned as follows:

De�nition 2. A random variable H 2 L2(
;F ; P ) admits a F�ollmer-Schweizer decomposition

if it can be written as

H = H0 +

Z T

0

�H(s) dX(s) + L(T ); P -f.s.;

where H0 is an F0-measurable random variable, X is a semimartingale with a decomposition

X = X0+M +A, �H 2 L2(M ) and L = (L(t))0�t�T is a martingale in M2
0, strongly orthogonal

to
R
� dM for all � 2 L2(M ).

10



Again, �H is the invested part of the risk-minimizing strategy, and L(T ) coincides with the
additional cost. However, this time X is not a martingale, but a semimartingale. Under very
general conditions Monat and Stricker [1995] show the existence, uniqueness and continuity of
the F�ollmer-Schweitzer-decomposition.

The F�ollmer-Schweizer-decomposition can be calculated in the case of continuous processes
by �rst going over to the so-called local risk-minimizing martingale measure, and then using
the Kunita-Watanabe projection. The expectation under the local risk-minimizing martingale
measure is the initial value of the local risk-minimizing hedging strategy.

The local risk-minimizing martingale measure P � is characterized by the fact that all P -
martingales which are orthogonal to M under P stay martingales under P �. In the following,
we will construct the local risk-minimizing martingale measure, as done in Schweizer [1991].

From the Doob-Meyer decomposition of traded assets above, we de�ne the following processes:

�ij(t) :=
dhMi;Mji(t)

dt

ai(t) :=
dAi(t)

dt

The density process of the risk minimizing martingale measure P � is given by

G�(t) := E
8<
:�

dX
j=1

Z t

0

 j(u) dMj(u)

9=
;

for certain  j . For the Xi to be martingales under the minimal martingale measure, it is
necessary that

Ai(t) =

dX
i=1

Z t

0

 j(u) dhMi;Mji(u):

Therefore, the  j are given by the solutions of the following system of linear equations:

dX
j=1

�ij(t) j(t) = ai(t)

In the next section, we will show how this technique can be used to value defaultable bonds
in a local risk-minimizing way.

3 Valuation of a defaultable bond

This section concentrates on the valuation of defaultable bonds in incomplete markets. We �rst
introduce the traded assets. Subsequently we compute the minimal martingale measure, which
is determined by the traded assets. We introduce the general formula for a defaultable bond
and go over to the forward measure to simplify calculation. Finally, we present two alternatives
of modelling the defaultable bond and in each case give an approximation of the local risk-
minimizing value of the defaultable bond. Because the �rm value is a traded asset in our model,
we are able to hedge some of the risks of defaultable bonds. However, because the market is not
complete, the hedge is not perfect and there still remains some unhedgeable risk.

11



3.1 Traded assets

We assume that the following assets are traded in the market and can be used for hedging
purposes:

Assumption 5. � A bank account with the interest rate of non-defaultable bonds

B(t) = e
R
t

0
r0(s) ds

� One non-defaultable bond with maturity T , given by

dp(t; T ) = p(t; T )[r0(t) +A0(t; T )] dt+ p(t; T )S0(t; T ) dW (t)

, p(t; T ) = p(0; T ) exp
nZ t

0

[r0(u) +A0(u; T )] du
o
E
nZ t

0

S0(u; T ) dW (u)
o

� Additionally, we introduce the �rm value, given by the process

dV (t) := V (t)�2(t) dt+ V (t)�2(t) dW (t)

, V (t) = exp
nZ t

0

�2(s) ds
o
E
nZ t

0

�2(u) dW (u)
o

Please recall that we have assumed from the beginning that all volatilities are deterministic.

In all of the above, the Brownian Motion is at least two-dimensional.

Remark.

� The whole analysis that follows can be done in exactly the same way if marked point
processes are included in the bond price and �rm value processes. However, formulas
become more complicated, and that is the reason why we refrain from using them here.

� It seems reasonable to assume that the Brownian Motion is at least two-dimensional. This
allows the non-defaultable bond and the �rm value to be correlated only partially. Because
the number of random sources driving the market is three (Brownian Motion plus point
process, which governs default), but the number of traded assets is only two, the market
is incomplete.

In the next subsection we will show how to compute the local risk-minimizing martingale
measure.

3.2 The minimal martingale measure

We denote the local risk-minimizing martingale measure by P̂ . It is completely determined
by the assets which are traded in the market. For the existence of the local risk-minimizing
martingale measure, we need the following assumption:

Assumption 6. Suppose that the following linear system of equations has a unique solution

( p;  V ):  
dA

p

dt

dAV

dt

!
=

0
@ dhMpi

dt

dhMp;MV i
dt

dhMV ;Mpi
dt

dhMV i
dt

1
A  p

 V

!

Here Ap; AV ;Mp;MV are the parts of �nite variation resp. martingale parts of the discounted

processes p(t; T )=B(t) resp. V (t)=B(t).
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Remark. There are two cases in which the assumption above is not satis�ed:

� Either one of the martingale parts vanishes or

� both assets are perfectly correlated.

This seems reasonable: In both cases, we can no longer use both assets independently to hedge
against changes.

The next theorem provides an explicit formula for the minimal martingale measure in our
setup:

Theorem 10. Under assumptions 5, 6 de�ne

Ĝ(t) := E
�
�
Z t

0

hk�2(u)k2A0(u; T )� S0(u; T )�2(u)(�2(u)� r0(u))

kS0(u; T )k2k�2(u)k2 � (S0(u; T )�2(u))2
S0(u; T )

+
kS0(u; T )k2(�2(u)� r0(u))� S0(u; T )�2(u)A0(u; T )

kS0(u; T )k2k�2(u)k2 � (S0(u; T )�2(u))2
�2(u)

i
dW (u)

�

Suppose further that E[Ĝ] = 1. Then Ĝ is the density of the minimal martingale measure. The

Brownian Motion under the new measure is given by

Ŵ (t) = W (t) +

Z t

0

hk�2(u)k2A0(u; T )� S0(u; T )�2(u)(�2(u)� r0(u))
kS0(u; T )k2k�2(u)k2 � (S0(u; T )�2(u))2

S0(u; T )

+
kS0(u; T )k2(�2(u)� r0(u)) � S0(u; T )�2(u)A0(u; T )

kS0(u; T )k2k�2(u)k2 � (S0(u; T )�2(u))2
�2(u)

i
du

Proof. See Appendix.

We know that after the change of measure, the price processes of the riskless bond and the
�rm value can be written as

p(t; T ) = p(0; T ) exp

�Z t

0

r0(u) du

�
E
�Z t

0

S0(u; T ) dŴ (u)

�

V (t) = V (0) exp

�Z t

0

r0(u) du

�
E
�Z t

0

�2(u; T ) dŴ (u)

�

where Ŵ is a Brownian Motion under P̂ .

3.3 Modelling a defaultable bond

Having changed to the minimal martingale measure, we are now in a position to determine
the risk-minimizing price of a defaultable bond. Here by risk-minimizing price we mean the
initial investment in a trading strategy which allows us to hedge the defaultable bond in a
risk-minimizing way. To model a defaultable bond with maturity T we have to specify two
characteristics:

� The time of default � and

� the payo� after default � as percentage of the bonds face value.

13



As we noted in the introduction, there are basically two approaches to the modelling of credit
risk: The so-called classical approach, where default occurs when the �rm value falls below a
prespeci�ed boundary, and the intensity approach.

We want to employ the intensity approach, where the time of default � is the �rst jump time
of a point process. In this case, the modelling of the default intensity is of particular interest.
In the following, we will consider in detail two possibilities of modelling the intensity of the
default-governing point process:

� The intensity is stochastic. While the point process itself is independent of the other
processes driving the market, its intensity will depend on the �rm value.

� The intensity is deterministic. This seems like a step backwards, but while restricting the
intensity to be deterministic, we can allow the payo� after default to be stochastic and
depend on the �rm value.

In general, the value of a defaultable bond before the time of default can be written as

q(t; T ) = B(t)Ê

�
1

B(T )
1f�>Tg +

�(� )

B(T )
1f��TgjFt

�
(12)

In order to get rid of B(T ) inside the expectation, we change the numeraire and go over to the
forward measure P̂T .

3.4 The forward measure

The change of numeraire from "money today" to "money at time T" corresponds to a change
of measure from the standard martingale measure to the so-called T -forward-measure. For
an exposition of the usage of the T -foward-measure in the Heath-Jarrow-Morton model see
Rutkowski [1996].

De�nition 3. A probability measure P̂T equivalent to P̂ with the Radon-Nikodym density given

by the formula

dP̂T

dP̂
=

B(T )�1

Ê[B(T )�1]
=

1

B(T )p(0; T )
=: GT

is called a forward probability measure for the settlement date T .

In our setting, an explicit representation for the density process GT is available.

Theorem 11. The density process of the forward measure is given by

ĜT (t) =
p(t; T )

B(t)p(0; T )
= E

�Z t

0

S0(u; T ) dŴ (u)

�

and so the Brownian Motion under the forward measure is given by

ŴT (t) = Ŵ (t) �
Z t

0

S0(u; T ) du

Proof. We have

1

B(T )p(0; T )
=

B(t)

B(T )

1

B(t)p(0; T )
=

p(t; T )

B(t)p(0; T )

14



2

The bond price process and the �rm value process can be calculated under P̂T to be

p(t; T ) =p(0; T )B(t) exp

�Z t

0

S0(u; T )
2 du

�
E
�Z t

0

S0(u; T ) dŴ
T (u)

�

V (t) =V (0)B(t) exp

�Z t

0

�2(u)S0(u; T ) du

�
E
�Z t

0

�2(u) dŴ
T (u)

�

Under the forward measure, expression (12) becomes

q(t; T ) =p(t; T )ÊT
�
1f�>Tg +�(� )1f��TgjFt

�
=p(t; T )

�
1� ÊT

�
(1��(� ))1f��TgjFt

��
(13)

Because of

P̂T [� � T jFt] = 1� ÊT [e�
R
T

t
�(u)dujFt];

the defaultable bond can be written as

q(t; T ) = p(t; T )
�
1� ÊT [1� e�

R
T

t
�(u)dujFt]ÊT [1��(� )jFt]

+ dCovT (e� R Tt �(u)du;�(� )jFt)
�

However, as the covariance between payo� after default and intensity of default-time is usually
not known, this expression is di�cult to evaluate. The simplest way around this problem is
to take � constant or a random variable independent of the time of default and � determin-
istic. Under these very restrictive assumptions (see Jarrow/Turnbull [1995]), the value of the
defaultable bond before default is equal to

q(t; T ) = p(t; T )(1 + ÊT [�� 1](1� e�
R
T

t
�(u)du))

In the following, we will derive explicit formulae for the value of a defaultable bond in a more
general setup. To calculate the expectation, we have to impose the following assumptions on our
model:

1) We can either assume that the payo� after default is independent of the time of default
and that the intensity of the point process is stochastic, or

2) we can assume that the payo� after default is stochastic, but the intensity of the point
process is deterministic.

In the following, we will treat both cases.

3.5 Constant payo�, stochastic intensity

In this subsection, we work under the following additional assumptions:

Assumption 7. 1) Let the payo� after default be constant,

�(� ) � � = const
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2) Let the intensity of the default-governing jump process depend on the discounted �rm value

V �(t) = V (t)=B(t) and be given by

�(t) =
�
K � C logV �(t)

�+
= l (V �(t)) ;

where K and C are positive constants which have to be chosen and can be used to adjust

the model to market data.

Remark. The functional form 2) has the following characteristics: For discounted �rm
values greater than a threshold, default risk vanishes,

�(t) = 0,V �(t) � e
K
C ;

while for very small discounted �rm values, default risk is very high,

�(t)! +1,V �(t)! 0:

It can be seen that the constants K and C can be chosen in such a way that �rm values where
default is possible, but not certain comprise a speci�c interval ] 0; exp(K

C
) [� R. Moreover,

the functional form exhibits the property that a doubling of the �rm value induces a constant
decrease in default risk:

l (2V �(t)) =K � C log 2V �(t) = K � C logV �(t) �C log 2

=l (V �(t))� C log 2 (14)

as long as

V �(t) � 1

2
exp(

K

C
)

Remark. The value expfK=Cg can be interpreted as the amount of debt �nancing of the �rm:
If the �rm value is bigger than the amount of debt, then there is no default risk. Hence, the
ratio V (0)= expfK=Cg has the interpretation of initial leverage.

Madan/Unal [1994] use a similar function as intensity:

�(V �) = � +
c

(log(V �=�))2

This function, however, has not all the convenient characteristics of our speci�cation.

Because of assumption 7.1), we can write expression (13) more explicitly as

q(t; T ) = p(t; T )
�
�+ (1��)ÊT

"
exp
n
�
Z T

t

�� (u) du
o
jFt
#�

(15)

= p(t; T )
�
�+ (1 ��)ÊT

"
exp
n
�
Z T

t

(K �C logV �(u)) 1flogV �(u)�K
C
g du

o
jFt
#�
;

and it remains to calculate the conditional expectation on the right side. This can be done
numerically, for example, by Monte-Carlo simulations or by using a tree for the �rm value
process. Further down, we will show another way to compute the expectation by an application
of the Feynman-Kac theorem.

Before we do that, however, we want to obtain some qualitative results on the behaviour
of our speci�cation. For this purpose, we have to simplify the problem. We will introduce an
assumption which allows us to leave aside the indicator function inside the expectation:
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Assumption 8. The discounted �rm value is almost always smaller than K
C
, or formally

P̂T [logV �(t) >
K

C
] � 0 8t 2 [0; �T ] (16)

Remark. Because under assumption 8 negative default probabilities are taken into account,
the defaultable bond will tend to be overvalued.

We can now formulate the following result:

Theorem 12. Under the assumptions 5, 6, 7 and 8, the value of a defaultable bond before the

time of default can be approximated by

q(t; T ) �p(t; T )
 
�+ (1 ��)e�(T�t)�(t)

exp

�
C

Z T

t

(T � v)S0(v)�2(v) dv + 1

2
C

Z T

t

�2(v)
2
�
(T � v)2 � (T � v)

�
dv

�!

and the corresponding credit spread is given by

S(t; T ) := � 1

T � t
log

q(t; T )

p(t; T )

= � 1

T � t log
 
�+ (1��)e�(T�t)�(t)

exp

�
C

Z T

t

(T � v)S0(v)�2(v) dv + 1

2
C

Z T

t

�2(v)
2
�
(T � v)2 � (T � v)

�
dv

�!

Proof. See Appendix.

Remark. The theorem gives a very easy formula for the valuation of defaultable bonds. All
that is needed is the price of a non-defaultable bond of the same maturity and the �rm value,
estimates of the volatilities of non-defaultable bond and �rm value, and an estimate of the payo�
after default.

It can be seen that the credit spread which is due to the time of default consists of two parts:
The �rst one covers default risk based on the current �rm value, while the second one captures
variations in the �rm value until maturity of the bond.

The drift of the �rm value, �2(t), does not enter into the formula due to the change to the
local risk-minimizing martingale measure.

The e�ect of the parameters on the credit spread is as follows: An increase in the volatility
of the risk-free bond increases the credit spread, as long as risk-free bond and �rm value are
positively correlated. The correlation itself also has a positive e�ect on the credit spread. The
e�ect of an increase in the �rm value volatility is ambiguous, but for reasonable parameter values
the credit spread is increasing in the �rm value volatility. All of these �ndings are consistent
with the results of Merton [1974] and Shimko/Tejima/Deventer [1993], who considered classic
�rm value models. Therefore, the present model can be seen as a link between the classical and
the intensity approach. It captures many important characteristics of �rm value models and in
addition allows for unpredictable default times.

We now turn to the question of �nding an analytic expression for the defaultable bond price
(15). For this purpose we employ the technique of Linetsky [1997a,b]. First, let us introduce

~V = logV �
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and consider

U ( ~V ; t) =E~V ;t

"
exp

(
�
Z T

t

(K � C ~V (u))1f~V (u)�K
C
g du

)#

=E~V ;t

"
exp

(
�
Z T

t

(K � C ~V (u))+ du

)#
;

In order for our analysis to go through, we have to make the following assumptions:

Assumption 9. The (logarithmic) �rm value process ~V (u) is an arithmetic Brownian Motion

with constant drift and volatility:

d~V (u) = �du+ � dW (u);

and initial condition ~V (t) = ~V .

Let us denote

B :=
K

C

An application of the Feynman-Kac theorem leads then to the following PDE for U ( ~V ; t):

�2

2

@2U

@ ~V 2
+ �

@U

@ ~V
� (K �C ~V )+U = �@U

@t

or, if we introduce v = T � t

�2

2

@2U

@ ~V 2
+ �

@U

@ ~V
� (K �C ~V )+U =

@U

@v

with terminal condition

U ( ~VT ; T ) = 1

The solution to this problem can be represented in the form

U ( ~V ; v) =

Z 1

�1

K�
rB
( ~VT ; ~V ; v) d~VT ;

where K�
rB
(xT ; x; v) is the Green's function for Brownian Motion with constant drift rate � and

with killing at stochastic rate rB( ~V ) = K �C ~V below the barrier level B = K=C. K�
rB

can also
be interpreted as transition probability density:

K�
rB
( ~VT ; ~V ; v) d~VT = E~V ;t

"
exp

(
�
Z T

t

(K � C ~V (u))+ du

) �� ~V (T ) 2 d~VT
#

The Green's function solves the PDE

�2

2

@2K�
rB

@ ~V 2
+ �

@K�
rB

@ ~V
� (K � C ~V )+K�

rB
=
@K�

rB

@v
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with initial condition

K�
rB
( ~VT ; ~V ; 0) = �( ~VT � ~V ):

We can use the Girsanov-Transformation to eliminate the drift from the process ~V . Then we
get the Green's function with drift � in terms of the Green's function with zero drift:

K�
rB

= exp

�
�

�2
( ~VT � ~V )� �2v

2�2

�
KrB

Here, KrB satis�es the equation

�2

2

@2KrB
@ ~V 2

� (K � C ~V )+KrB =
@KrB
@v

The following two continuity boundary conditions have also to be satis�ed by Green's func-
tion:

KrB ( ~VT ; B � 0; v) = KrB( ~VT ; B + 0; v)

@KrB
@ ~V

( ~VT ; B � 0; v) =
@KrB
@ ~V

( ~VT ; B + 0; v)

To solve the PDE for Green's function with zero drift, we introduce the resolvent kernel GrB

by

GrB ( ~VT ; ~V ; s) =

Z 1

0

e�svKrB ( ~VT ; ~V ; v) dv

The resolvent kernel satis�es the following ODEs with boundary conditions:

Region I: ~V > K=C, ~VT > K=C

�2

2

@2GI
rB

@ ~V 2
� sGI

rB
= ��( ~VT � ~V )

with the asymptotic boundary condition

lim
~V!1

GI
rB
( ~VT ; ~V ; s) = 0;

Region II: ~V < K=C, ~VT > K=C

�2

2

@2GII
rB

@ ~V 2
� (s +K �C ~V )GII

rB
= 0

with the asymptotic boundary condition

lim
~V!�1

GII
rB
( ~VT ; ~V ; s) = 0;

The resolvent in these two regions is connected by the following two boundary conditions:

GI
rB
( ~VT ; B � 0; s) = GII

rB
( ~VT ; B + 0; s)

@GI
rB
( ~VT ; B � 0; s)

@ ~V
=
@GII

rB
( ~VT ; B + 0; s)

@ ~V
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Region III: ~V > K=C, ~VT < K=C

�2

2

@2GIII
rB

@ ~V 2
� sGIII

rB
= 0

with the asymptotic boundary condition

lim
~V!1

GIII
rB

( ~VT ; ~V ; s) = 0;

Region IV: ~V < K=C, ~VT < K=C

�2

2

@2GIV
rB

@ ~V 2
� (s +K �C ~V )GIV

rB
= ��( ~VT � ~V )

with the asymptotic boundary condition

lim
~V!�1

GIV
rB
( ~VT ; ~V ; s) = 0;

Continuity boundary conditions are similar to the ones given above.

The solutions to these ordinary di�erential equations can be computed explicitly. In region
I, the solution is given by

GI
rB
( ~VT ; ~V ; s) =

1

�
p
2s
(exp(�jyT � yj

p
2s) � (1� 2GI

1(s)) exp(�jyT + yjp2s))

where GI
1(s) is still unspeci�ed and has to be determined from the boundary condition with

region II. We have used the abbreviations

y =
~V � B

�
; yT =

~VT �B
�

The general solution for the ODE in region II can be written as

GII
rB
( ~VT ; ~V ; s) = GII

1 (s)Ai(a1) + GII
2 (s)Bi(a1)

where

a1 =
3

r
2

C2�2
(s +K �C ~V )

and GII
1 (s); GII

2 (s) are parameters of the solution. Ai(z);Bi(z) are Airys functions de�ned by
(see Abramowitz/Stegun [1965])

Ai(z) =
1

�

Z 1

0

cos(uz +
u3

3
) du

Bi(z) =
1

�

Z 1

0

[exp(uz � u3

3
) + sin(uz +

u3

3
)] du

However, Bi(z) is exponentially increasing with z, and so we know that GII
2 = 0. GII

1 (s)
can be determined by the boundary conditions with region I. It turns out that GI

1(s); G
II
1 (s) are
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given by

GI
1(s) =

1

1�p2s 3

q
1

2C�
Ai(a2)
Ai'(a2)

GII
1 (s) =

1
p
2s�2Ai(a2) � 3

q
C�4

4 Ai'(a2)
exp

n
�yT

p
2s
o

Here the argument of Airy's function is always

a2 = s
3

r
2

C2�2

The solution of the ODE in region III is given by

GIII
rB

( ~VT ; ~V ; s) = GIII
1 (s)e�y

p
2s

In region IV, the solution of the ODE consists of two parts:

GIV
rB
( ~VT ; ~V ; s) =

= GIV
1 (s)Ai(a1) + �

3

r
�2

2C
Ai(a3)Bi(a1) for ~V > ~VT

=

 
GIV

1 (s) + �
3

r
�2

2C
Bi(a3)

!
Ai(a1) for ~V < ~VT

where

a3 =
3

r
2

C2�2
(s +K � C ~VT )

GIII
1 (s); GIV

1 (s) can be calculated to be

GIV
1 (s) = ���

p
2s 3

q
1

2C�Bi(a2) � Bi'(a2)

3
p
2C�Ai'(a2)�

p
2sAi(a2)

Ai(a3)

GIII
1 (s) = GIV

1 (s)Ai(a2) + � 3

r
�

2C
Ai(a3)Bi(a2)

The �nal step is to invert the Laplace transform to �nd expressions for the transition prob-
abilities. However, there do not exist closed form expressions for the Laplace inversion of Airy's
functions. If the roots of expressions like

p
sAi(s) � Ai'(s) were known, we could use Cauchy's

residue theorem as in Pelsser [1997]. However, this is not the case and therefore this last step
has to be taken numerically.

Remark. The same calculation can be done, of course, when the payo� after default is
not constant, but stochastic and independent of the time of default. In this case, � has to be
replaced by ÊT [�].

Because the market under consideration is incomplete, there exists no perfect hedging strategy
for the defaultable bond. In addition, because the point process governing default is not traded
in the market, hedging against the loss from default is not possible. However, we can use the
traded assets p and V to hedge the risk in the defaultable bond resulting from a deterioration in
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credit quality. As discussed in subsection I.6, we use a hedging strategy which minimizes local
risk. The local risk-minimizing hedging strategy consists of the three parts (�; �p; �V ), where �p

and �V are the investments into the assets p and V and � is put onto the savings account. Due
to the Kunita-Watanabe decomposition, they are given by the solution to the following linear
system of equations: �

dhq; pi
dhq; V i

�
=

�
dhp; pi dhV; pi
dhp; V i dhV; V i

��
�p

�V

�
�(t) = q(t) � �p(t)p(t)� �V (t)V (t);

The hedging strategy cannot be calculated analytically in our case, but can be computed nu-
merically when using a tree implementation of the model.

3.6 Stochastic payo�, deterministic intensity

In this subsection, we change our assumptions:

Assumption 10. 1) Let the payo� after default depend on the discounted �rm value V �(t) =
V (t)=B(t) and be given by the following expression:

�(t) = min
n
(K +C logV �(t))

+
; 1
o
= ��(V �(t))

Again, K and C are constants which have to be chosen and can be used to adjust the model

to market data.

2) Let the intensity of the default-governing point process �� be deterministic and known.

Remark. Specifying � like in 1) implies the following: For discounted �rm values below

e�
K
C , payo� after default is zero, while for discounted �rm values over e

1�K
C , the full amount

is paid back. Again, a doubling of the �rm value means that payo� after default increases by
C log 2 as long as

e�
K
C � V �(t) � 1

2
e�

K
C
+ 1
C

Because the volatility is deterministic, expression (13) simpli�es to

q(t; T ) =p(t; T )ÊT
�
1f�>Tg +�(� )1f��TgjFt

�
=p(t; T )

�
e�
R
T

t
�(u)du + ÊT

h
�(� )1f��TgjFt

i�
In order to compute the last expectation, we make use of the fact that we know the distribution
of the default time and thus its density function:

P̂T [� � ~T jFt] = 1� e�
R ~T

t
�(u)du

f(t; s) = e�
R
s

t
�(u)du�(s)

With the density function, we can rewrite the expectation as

ÊT [�(� )1f��TgjFt] = ÊT
hZ T

t

�(s)f(t; s) dsjFt
i

In contrast to the previous subsection, here we can give an exact formula for the value of the
defaultable bond. However, as we will see, it is not very descriptive:
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Theorem 13. Under the assumptions 5, 6 and 10, the value of a defaultable bond is given by

q(t; T ) =p(t; T )

 
e�
R
T

t
�(u)du +

Z T

t

Z 1�K
C

�K
C

(K + Cy) g(t; s; y) dy f(t; s) ds

+

Z T

t

Z 1

1�K
C

g(t; s; y) dy f(t; s) ds

!

where g(t; s; y) is the density function of a normal distribution with mean

V (t) +

Z s

t

S0(v; T )�2(v) dv � 1

2

Z s

t

k�2(v)k2 dv

and variance Z s

t

k�2(v)k2 dv

Proof. See Appendix.

However, we can obtain a result which is analogous to that of the previous subsection if we
introduce the following assumption, which is an analogon to assumption 8.

Assumption 11. Let

P̂T [�K
C
� logV �(t) <

1�K

C
] � 1 8t 2 [0; �T ] (17)

Under this assumption, we can forget about the indicator function inside the expectation,
and we have the following result:

Theorem 14. Under the assumptions 5, 6, 10 and 11, the value of a defaultable bond can be

approximated by

q(t; T ) � p(t; T )

 
�(t) + (1��(t))e�

R
T

t
�(u)du

+ C

Z T

t

F (t; v)S0(v)�2(v) dv � 1

2
C

Z T

t

F (t; v)k�2(v)k2 dv
!

where

F (t; v) :=

Z T

v

f(t; u) du

Proof. See Appendix.

Remark. Comparing theorem 14 with theorem 12, we see that both formulas are very
similar. Instead of the time to maturity T �v, in the present case we have F (v), which measures
the remaining default risk. This time, the write-down on the defaultable bond which is due to
the payo� after default, consists of two parts: The �rst one is based on the current, time t �rm
value, while the second one captures changes in the �rm value until maturity of the bond. These
changes are weighted with the probability that a default occurs until T .

Again, the local risk-minimizing hedging strategy can be computed as at the end of the
previous subsection.
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4 Valuation and hedging of options on defaultable bonds

In this section, we will concentrate on the valuation and hedging of options on defaultable
bonds, again in the setting of an incomplete market. We will make use of the F�ollmer-Schweizer-
decomposition to split the value process of an option into a traded part, the risk of which can
be hedged, and a totally untraded part, which cannot be hedged. The totally untraded part
corresponds to the additional cost mentioned at the end of section 2, while hedging the traded
part can be seen as a local risk-minimizing hedging strategy for the option. In order to calculate
the value and the hedging process for an option, we will make use of the partial di�erential
equations approach.

The article by Colwell and Elliot [1993] has a technically similar setup. However, they
concentrate on another derivation of the local risk-minimizing martingale measure, while in the
present approach no change of measure is carried out.

There is a particular reason why we do not change our measure: In a market where only
di�usion processes are involved, we know that the change to the local risk-minimizing martin-
gale measure preserves orthogonality (Schweizer [1990]). This means that martingales which are
strongly orthogonal under the original measure stay strongly orthogonal under the local risk-
minimizing martingale measure. As a consequence of this the Kunita-Watanabe decomposition
under the local risk-minimizing martingale measure is equivalent to the F�ollmer-Schweizer de-
composition under the original measure. As soon as point processes are involved, however, this
useful property of the local risk-minimizing martingale measure is no longer valid. There are still
cases where one can proceed as in the continuous situation, but we are not in such a context.
A strategy, computed by the Kunita-Watanabe decomposition under the local risk-minimizing
martingale measure, would no longer minimize the risk with respect to the original measure.

4.1 Traded assets

In this section, we want to keep the setup as simple as possible in order to minimize notation.
Therefore, we assume that the market is driven only by one Brownian Motion and by a single
point process with deterministic intensity. We assume that the following assets are traded in the
market and can be used for hedging purposes:

Assumption 12. � One non-defaultable bond p(t; T p) with maturity T p, given by

dp(t; T p) = p(t; T p)[r0(t) +A0(t; T
p)] dt

+ p(t; T p)S0(t; T
p) dW (t)

, p(t; T p) = p(0; T p) exp
nZ t

0

[r0(u) + A0(u; T
p)] du

o

E
nZ t

0

S0(u; T
p) dW (u)

o

� One defaultable bond q(t; T q) with maturity T q � T p, given by

dq(t; T q) = q(t�; T q)[r1(t) +A1(t; T
q)] dt

+ q(t�; T q)Dq(t; T q)�(t) dt

+ q(t�; T q)S1(t; T q) dW (t)

+ q(t�; T q)Dq(t; T q) �N (t)
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, q(t; T q) = q(0; T q) exp
nZ t

0

[r1(u) + A1(u; T
q)] du

o

exp
nZ t

0

Dq(u; x; T q)�(u) du
o

E
nZ t

0

S1(u; T
q) dW (u)gE

nZ t

0

Dq(u; T q) �N (u)
o

In the following, we will leave out the dates of maturity T p; T q to simplify notation.

We assume that all volatilities and the intensity of the point process are deterministic.

Remark. Please note that we have not assumed the existence of a bank account. The reason
for this is that the interest rate r0(t) is not necessarily a Markov process in our model. In the
following, we will think of the non-defaultable bond as a numeraire. The signi�cance of this will
become apparent later.

Because we have only one traded asset (the non-defaultable bond plays the role of the nu-
meraire), it is enough to assume that the Brownian Motion is one-dimensional to make the
market incomplete.

In order to calculate the locally risk-minimizing hedging strategies for contingent claims in
this incomplete market, we will make use of the F�ollmer-Schweizer decomposition.

In our case, the market can be completed by the introduction of one other asset. However,
our model is not fully in line with the F�ollmer- Schweizer case because of the missing bank
account.

We solve this problem by choosing p as num�eraire, thus going over to the forward market.
Let C(t) be the discounted price of an option with maturity T p at time t, and Z(t) the price of
the additional asset introduced to complete the market. Then in our model the value process of
a trading strategy replicating the option price would be

~V(t) = �0(t)p(t) + �1(t)q(t) + �2(t)Z(t) = ~C(t):

Dividing this equation by p(t), we see

~V(t)
p(t)

= V(t) = �0(t) + �1(t)
q(t)

p(t)
+ �2(t)

Z(t)

p(t)
=

~C(t)

p(t)
= C(t)

The interpretation is the following: Instead of the spot market, we use the forward market to
hedge. Introducing new de�nitions, we set

X1(t) :=
q(t)

p(t)
; X2(t) :=

Z(t)

p(t)

and together with the self-�nancing condition for V (t) we can write

dV(t) = �1(t) dX1(t) + �2(t) dX2(t)

The next proposition states the exact formula for X1(t):

Proposition 15. The process X1(t) is given by

dX1(t) = X1(t�)�X1 (t) dt+X1(t�)�S(t) dW (t) +X1(t�)Dq(t) dN (t)

where

�X1(t) := r1(t) + A1(t)� r0(t) �A0(t) + S0(t)
2 � S0(t)S1(t)
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and

�S(t) := S1(t)� S0(t)

subject to the initial condition

X1(0) =
q(0)

p(0)

Proof. An application of Ito's formula to X1(t) = q(t)=p(t) yields the result.

2

To complete the market subject to the conditions of the F�ollmer-Schweizer theorem, we
introduce an asset which is strongly orthogonal to the martingale part of X1(t). This asset is
given by the next proposition.

Proposition 16. The asset with the following di�erential equation is strongly orthogonal to the

martingale part of X1(t):

dX2(t) = �X2(t�)Dq(t)�(t) dW (t) +X2(t�)�S(t) d �N (t)

We choose X2(0) = 1.

Proof. The process X2 has the form

dX2(t) = X2(t�)�X2 (t) dW (t) +X2(t�)DX2 (t) d �N (t)

The conditional quadratic covariation of X1 and X2 is given by

dhX1; X2i(t) = X1(t�)X2(t�)�S(t)�X2 (t) +X1(t�)X2(t�)Dq (t)DX2 (t)�(t) dt

This should equal zero, and so we choose

�X2 (t) = �Dq (t)�(t)

DX2 (t) = �S(t)

2

After the introduction of this asset, we can continue to derive the partial di�erential equation
which is satis�ed by the price process of a derivative security like in a complete market. The
result of this will be a replicating strategy � = (�0; �1; �2) in terms of the three assets (1; X1; X2).
However, because X2 is orthogonal to the traded asset X1, and because of the F�ollmer-Schweizer
decomposition, the strategy (�0; �1) just using the assets (1; X1) will be the risk-minimizing
strategy in the incomplete market. Here, risk is measured with respect to the forward measure.

4.2 Partial di�erential equations

A good reference for the technique used in this subsection is Rutkowski [1996]. We will consider a
European pathwise independent claim ~C associated with the defaultable bond q and with expiry
date TC = T p. The discounted price process of this claim is denoted by C(t) = ~C(t)=p(t). We
want to express the discounted price of this claimC(t) as a function of the price of the discounted
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defaultable bond X1(t), the discounted virtual asset X2(t) and of time t. Therefore, we assume
that the discounted value of the claim admits the representation

C(t) = �C(X1(t); X2(t); t) for all t 2 [0; TC]

and satis�es a certain terminal condition, which, in the case of a call option on the defaultable
bond, would be

�C(x; y; TC) = (x�K)+ for all y 2 R+:

A replicating trading strategy � of the option has the form

�(t) =(�0(t); �1(t); �2(t))

=(g0(X1(t); X2(t); t); g1(X1(t); X2(t); t); g2(X1(t); X2(t); t))

where g0; g1; g2 are functions not yet known. Because the trading strategy replicates the payo�
of the option, the value process of the strategy satis�es

V (t) = �0(t) + �1(t)X1(t) + �2(t)X2(t) = �C(X1(t); X2(t); t) = C(t) (18)

Because the trading strategy is self-�nancing, its value process satis�es

dV (t) = �1(t�)dX1(t) + �2(t�)dX2(t)

Substituting the dynamics of the price processes, we get

dV (t) =
�
�1(t�)X1(t�)�X1 (t) � �2(t�)X2(t�)�S(t)�(t)

�
dt (19)

+
�
�1(t�)X1(t�)�S(t) � �2(t�)X2(t�)Dq(t)�(t)

�
dW (t)

+
�
�1(t�)X1(t�)Dq(t) + �2(t�)X2(t�)�S(t)

�
dN (t):

In the next step, we assume that �C = �C(x; y; t) satis�es the necessary di�erentiability conditions
to apply Ito's formula:

dC(t) =
@ �C

@t
dt+

@ �C

@x
dXc

1(t) +
@ �C

@y
dXc

2(t)

+
1

2

@2 �C

@x2
dhXc

1i(t) +
1

2

@2 �C

@y2
dhXc

2i(t)

+
@2 �C

@x@y
dhXc

1 ; X
c
2i(t) + �C(t) dN (t)

Here the arguments (X1(t�); X2(t�); t�) of �C have been omitted. �C(t) denotes the jump
height of C in case a jump happens at time t and can be expressed as

�C(t) = �C(X1(t�) + �X1(t); X2(t�) + �X2(t); t)� �C(X1(t�); X2(t�); t�);

where

�X1(t) = X1(t�)(Dq (t)� 1)

�X2(t) = X2(t�)(�S(t) � 1)
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Substitution of the dynamics of price processes yields

dC(t) =
@ �C

@t
dt

+X1(t�)�X1 (t)
@ �C

@x
dt+X1(t�)�S(t)@

�C

@x
dW (t)

�X2(t�)�S(t)�(t)@
�C

@y
dt�X2(t�)Dq (t)�(t)

@ �C

@y
dW (t)

+
1

2
X1(t�)2�S(t)2 @

2 �C

@x2
dt

+
1

2
X2(t�)2Dq(t)2�(t)2

@2 �C

@y2
dt

�X1(t�)X2(t�)�S(t)Dq (t)�(t)
@2 �C

@x@y
dt

+�C(t) dN (t)

Comparing the last equation with equation (19), we can derive the following two relationships:

I �C(t) = �1(t�)X1(t�)Dq(t) + �2(t�)X2(t�)�S(t) for every t 2 [0; TC]

II X1(t�)�S(t)@
�C

@x
�X2(t�)Dq(t)�(t)

@ �C

@y

= �1(t�)X1(t�)�S(t) � �2(t�)X2(t�)Dq(t)�(t) for every t 2 [0; TC]

These two equations can be solved for �1 and �2, respectively:

I' �1(t�) = 1

X1(t�)Dq(t)

�
�C(t)� �2(t�)X2(t�)�S(t)

�
for all t 2 [0; TC]

II' �2(t�) = 1

X2(t�)Dq(t)�(t)

�
�1(t�)X1(t�)�S(t) �X1(t�)�S(t)@

�C

@x

+X2(t�)Dq(t)�(t)
@ �C

@y

�
for all t 2 [0; TC]

Substitution of �2(t�) in I' from II' yields

�1(t�) = 1

X1(t�)
Dq(t)�(t)

Dq(t)2�(t) + �S(t)2

�
�C(t) +X1(t�) �S(t)2

Dq(t)�(t)

@ �C

@x
�X2(t�)�S(t)@

�C

@y

�
;

and inserting this into II', we see

�2(t�) = 1

X2(t�)
�S(t)

Dq(t)2�(t) + �S(t)2
�C(t)

+
1

X2(t�)Dq(t)�(t)

�
�S(t)2

Dq(t)2�(t) + �S(t)2
� 1

�
�
X1(t�)�S(t)@

�C

@x
�X2(t�)Dq(t)�(t)

@ �C

@y

�
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Substituting for �1 and �2 in the dt-part of dV and setting this equal to the dt-part of dC gives
us the following equation:

�X1(t)Dq (t)�(t) + �S(t)2�(t)

Dq(t)2�(t) + �S(t)2
�C(t)

+
�X1(t)�S(t) �Dq(t)�(t)�S(t)

Dq(t)2�(t) + �S(t)2

h
X1(t�)�S(t)@

�C

@x
�X2(t�)Dq(t)�(t)

@ �C

@y

i

=
@ �C

@t
+X1(t�)�X1 (t)

@ �C

@x

�X2(t�)�S(t)�(t)@
�C

@y

+
1

2
X1(t�)2�S(t)2 @

2 �C

@x2

+
1

2
X2(t�)2Dq(t)2�(t)2

@2 �C

@y2

�X1(t�)X2(t�)�S(t)Dq (t)�(t)
@2 �C

@x@y

Sorting this equation according to derivatives, we arrive at the �nal partial di�erential equation
which is satis�ed by any contingent claim in our market:

@ �C

@t
� �X1 (t)Dq(t)�(t) + �S(t)2�(t)

Dq(t)2�(t) + �S(t)2
�C(t)

+
�X1 (t)Dq(t)2�(t) +Dq(t)�(t)�S(t)2

Dq(t)2�(t) + �S(t)2
X1(t�)@

�C

@x

+
��X1 (t)Dq(t)�(t)�S(t) �Dq(t)2�(t)2�S(t)

Dq(t)2�(t) + �S(t)2
��S(t)�(t)

�
X2(t�)@

�C

@y

+
1

2
X1(t�)2�S(t)2 @

2 �C

@x2

+
1

2
X2(t�)2Dq(t)2�(t)2

@2 �C

@y2

�X1(t�)X2(t�)�S(t)Dq (t)�(t)
@2 �C

@x@y

=0

This partial di�erential equation, subject to some terminal condition according to the option's
payo� at maturity, can be solved numerically with well-known methods such as �nite elements
for the function �C. From this, the risk-minimizing hedging strategy can be computed as follows:
�1 and �2 are given by equations I' and II' above. From these, �0 can be calculated from equation
(18), and (�0; �1) constitute the risk-minimizing trading strategy in the forward market with
value process �0(t) + �1(t)X1(t).

This model can easily be generalized to multiple Brownian Motions and multiple point pro-
cesses. However, in this case more than one virtual asset has to be constructed to complete the
market, and the PDE gets more complicated.

The same technique can be used to compute the risk-minimizing value and hedging portfolio
of a defaultable bond if only a non-defaultable bond and the �rm value are tradeable. This
would be an alternative to our approach taken in section 3.
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5 Conclusion

Pricing formulae for defaultable bonds in two di�erent speci�cations of our model have been
derived. They combine the advantages of the classical approach of modelling credit risky bonds,
based on the �rm value, and of the intensity-based approach. The formulae allow for partial
hedging of default risk through trading in the �rm value as well as in a non-defaultable bond.
We consider in detail the possibility that the �rm value enters into the intensity, and therefore
time of default, or that the �rm value enters into the payout ratio after default. Dealing with
incomplete markets, we use the minimal martingale measure to value defaultable bonds and to
calculate local risk-minimizing hedging portfolios.

Furthermore, a partial di�erential equation for the price process of contingent claims in our
model is derived. Again, we are in an incomplete market and we employ the F�ollmer-Schweizer
decomposition to value the contingent claim and to construct the local risk-minimizing hedging
portfolio.

6 Appendix

Proof of Theorem 10. First, we have to compute the Doob-Meyer decomposition of the
discounted bond and �rm value process:

dAp(t; T ) = p(t; T )A0(t; T ) dt

dMp(t; T ) = p(t; T )S0(t; T ) dW (t)

dAV (t) = V (t)(�2(t) � r0(t)) dt
dMV (t) = V (t)�2(t) dW (t)

As we noted in chaper 2, subsection 6, the solutions f p;  V g of the following linear system of
equations are needed for the change of measure:

 
dAp

dt

dAV

dt

!
=

0
@ dhMpi

dt

dhMp;MV i
dt

dhMV ;Mpi
dt

dhMV i
dt

1
A
 
 p

 V

!

This, of course, is only possible if the matrix of predictable quadratic covariations has full rank.
These so-called angle bracket processes can be calculated to be

dhMpi(t) =p(t; T )2kS0(t; T )k2 dt
dhMp;MV i(t) =p(t; T )V (t)S0(t; T )�2(t) dt

=dhMV ;Mpi(t);
dhMV i =V (t)2k�2(t)k2 dt

and thus, the determinant of the matrix is given by

det = p(t; T )2V (t)2

(
kS0(t; T )k2k�2(t)k2 � (S0(t; T )�2(t))

2

)
:

We can clearly see that the determinant exists if at least one of the volatilities of p and V are
di�erent. Economically, this means that they do not react in the same way to all random shocks.
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Under this assumption we can solve the system of equations for ( p;  V ):

 
 p

 V

!
=

1

det

0
@ dhMV i

dt
�dhMp ;MV i

dt

�dhMV ;Mpi
dt

dhMpi
dt

1
A
 

dAp

dt

dAV

dt

!

Explicitly, the processes can be calculated to be

 p(t) =
k�2(t)k2A0(t; T )� S0(t; T )�2(t)(�2(t) � r0(t))
p(t; T )(kS0(t; T )k2k�2(t)k2 � (S0(t; T )�2(t))2)

 V (t) =
kS0(t; T )k2(�2(t)� r0(t)) � S0(t; T )�2(t)A0(t; T )

V (t)(kS0(t; T )k2k�2(t)k2 � (S0(t; T )�2(t))2)
;

and �nally we arrive at the Girsanov-density for the local risk-minimizing martingale measure:

Ĝ(t) = E
�
�
Z t

0

hk�2(u)k2A0(u; T )� S0(u; T )�2(u)(�2(u) � r0(u))
kS0(u; T )k2k�2(u)k2 � (S0(u; T )�2(u))2

S0(u; T )

+
kS0(u; T )k2(�2(u)� r0(u)) � S0(u; T )�2(u)A0(u; T )

kS0(u; T )k2k�2(u)k2 � (S0(u; T )�2(u))2
�2(u)

i
dW (u)

�

2

Proof of Theorem 12. Using equation 2, the default risk process can be written as

�� (t) = K �C
�
logV (0) +

Z t

0

S0(u; T )�2(u) du+

Z t

0

�2(u) dŴ
T (u) � 1

2

Z t

0

k�2(u)k2 du
�

Furthermore,

�
Z T

t

�� (u) du = �K(T � t) +C

Z T

t

log
V (u)

B(u)
du

= �K(T � t) +C(T � t) log
V (t)

B(t)
+ C

Z T

t

[log
V (u)

B(u)
� log

V (t)

B(t)
] du

= � (T � t)�� (t) +C

Z T

t

[log
V (u)

B(u)
� log

V (t)

B(t)
] du

Examining the last integral, we see

Z T

t

[log
V (u)

B(u)
� log

V (t)

B(t)
] du

=

Z T

t

Z u

t

S0(v; T )�2(v) dv du+

Z T

t

Z u

t

�2(v) dŴ
T (v) du � 1

2

Z T

t

Z u

t

k�2(v)k2 dv du

and changing the order of integration yields

=

Z T

t

Z T

v

S0(v; T )�2(v) du dv +

Z T

t

Z T

v

�2(v) du dŴ
T (v) � 1

2

Z T

t

Z T

v

k�2(v)k2 du dv

=

Z T

t

(T � v)S0(v; T )�2(v) dv +

Z T

t

(T � v)�2(v) dŴ
T (v) � 1

2

Z T

t

(T � v)k�2(v)k2 dv
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Because we have to take the exponential of these integrals, and because we want some of the
exponentials to be stochastic exponentials, we add and subtract some terms:

=

Z T

t

(T � v)S0(v; T )�2(v) dv +
1

2

Z T

t

k�2(v)k2
�
(T � v)2 � (T � v)

�
dv

+

Z T

t

(T � v)�2(v) dŴT (v) � 1

2

Z T

t

(T � v)2k�2(v)k2 dv

Finally, taking the exponential,

exp
n
C

Z T

t

[
V (u)

B(u)
� V (t)

B(t)
] du
o

=exp

(
C

Z T

t

(T � v)S0(v; T )�2(v) dv +
1

2
C

Z T

t

k�2(v)k2
�
(T � v)2 � (T � v)

�
dv

E
(
+C

Z T

t

(T � v)�2(v) dŴT (v)

)

Now, we are in a position to calculate the expectation. We have

ÊT [e�
R
T

t
�� (u)dujFt]

=e�(T�t)�� (t)

exp

(
C

Z T

t

(T � v)S0(v; T )�2(v) dv + 1

2
C

Z T

t

k�2(v)k2
�
(T � v)2 � (T � v)

�
dv

)

where the last stochastic exponential vanishes because of its martingale property.

2

Proof of Theorem 13. We can write

ÊT [�(� )1f��TgjFt]

=ÊT
hZ T

t

0 � 1
flog V (s)

B(s)
<�K

C
g
f(t; s) ds

+

Z T

t

�(s)1
f�K

C
�log

V (s)

B(s)
< 1�K

C
g
f(t; s) ds

+

Z T

t

1
f 1�K

C
�log V (s)

B(s)
g
f(t; s) dsjFt

i

and interchanging expectation and integration, we get

=p(t; T )

Z T

t

ÊT [�(s)1f�K
C
�log V (s)

B(s)
< 1�K

C
gjFt]f(ts) ds

+

Z T

t

ÊT [1
f1�K

C
�log

V (s)

B(s)
g
jFt]f(t; s) ds
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But we know the distribution of V (t)
B(t) under the measure P̂T [�jFt]:

V (t)

B(t)
=V (0) expf

Z t

0

S0(u; T )�2(u) dug

Ef
Z t

0

�2(u) dŴ
T (u)g

) log
V (u)

B(u)
�N

�V (t)
B(t)

+

Z u

t

S0(v; T )�2(v) dv � 1

2

Z u

t

k�2(v)k2 dv;Z u

t

k�2(v)k2 dv
�

Denoting the density of this normal distribution by g(t; u; y), we get

ÊT [�(� )1f��TgjFt]

=

Z T

t

Z 1�K
C

�K
C

(K + Cy) g(t; s; y) dyf(s) ds

+

Z T

t

Z 1

1�K
C

g(t; s; y) dyf(s) ds

!

2

Proof of Theorem 14. Under the last assumption, the expectation becomes

ÊT

"Z T

t

(K +C log
V (u)

B(u)
)f(t; u) du

����� Ft
#

=K
�
1� e�

R
T

t
�� (u)du

�
+ CÊT

"Z T

t

log
V (u)

B(u)
f(t; u) du

����� Ft
#

=K
�
1� e�

R
T

t
�� (u)du

�
+ C log

V (t)

B(t)

�
1� e�

R
T

t
�� (u) du

�

+CÊT

"Z T

t

�
log

V (u)

B(u)
� log

V (t)

B(t)

�
f(t; u) du

����� Ft
#

=�(t)
�
1� e�

R
T

t
�� (u)du

�
+CÊT

"Z T

t

�
log

V (u)

B(u)
� log

V (t)

B(t)

�
f(t; u) du

����� Ft
#

Examining only the last expectation and substituting for the �rm value, we see

Z T

t

�
log

V (u)

B(u)
� log

V (t)

B(t)

�
f(t; u) du

=

Z T

t

nZ u

t

S0(v)�2(v) dv +

Z u

t

�2(v) dŴ
T (v) � 1

2

Z u

t

k�2(v)k2 dv
o
f(t; u) du
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Z T

t

Z u

t

S0(v)�2(v) dv f(t; u) du+

Z T

t

Z u

t

�2(v) dŴ
T (v)f(t; u) du

� 1

2
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t

Z u

t

k�2(v)k2 dvf(t; u) du
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Changing the order of integration yields

=

Z T

t

Z T

v

S0(v)�2(v)f(t; u) du dv +

Z T

t

Z T

v

�2(v)f(t; u) du dŴ
T (v)

� 1

2

Z T

t

Z T

v

k�2(v)k2f(t; u) du dv

We de�ne

F (t; v) :=

Z T

v

f(t; u) du

=� e�
R
T

t
�� (s)ds + e�

R
v

t
�� (s)ds

=P [� > vjFt]� P [� > T jFt]
=P [� 2 ]v; T ] jFt];

so that F (t; v) can be interpreted as the default probability between v and maturity T . Then

ÊT

"Z T

t

�
log

V (u)

B(u)
� log

V (t)

B(t)

�
f(t; u) du

����� Ft
#
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"Z T

t

F (t; v)S0(v)�2(v) dv +

Z T

t

F (t; v)�2(v) dŴ
T (v) � 1

2

Z T

t

F (t; v)k�2(v)k2 dv
����� Ft

#

Because of the conditional expectation, the martingale parts drop out:

=

Z T

t

F (t; v)S0(v)�2(v) dv � 1

2

Z T

t

F (t; v)k�2(v)k2 dv

Here, again we have used the assumption that volatilities are deterministic.
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