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1 Introduction

The recent years have seen a surge in the studies on evolutionary game the-
ory and much progress has been made in the understanding of evolutionary
dynamics. However, most studies have focused on finite strategy sets, es-
pecially when continuous time dynamics were involved (e.g. the replicator
dynamics).! The present paper extends previous work for studying evolu-
tionary dynamics with arbitrary, finite or infinite, strategy sets in R™. The
results we obtain should allow one to study evolutionary processes in a host
of applications where this hitherto could not be done in a natural way.”

It is not accidental that many relevant games in economics are modelled
with a continuous strategy space, e.g. bargaining games, games of timing,
oligopoly games, public good games or all games in which players are allowed
to use mixed strategies. To study such games with an arbitrarily chosen
finite approximation seems to be an unnecessary detour given that the direct
way is available and often more convenient.

Another reason for considering infinite strategy spaces is that one is
often interested in whether the infinite case is the limit of successively finer
approximations. In this case one needs the infinite case as a reference point.

Furthermore, in some cases the continuity of the strategy set really mat-
ters. For example, Gale et al. (1995) show that non—subgame perfect equi-
libria in a finite approximation of the ultimatum game cannot be ruled out
as outcomes of an evolutionary process. But Binmore and Seymour (1995)
find that only the subgame perfect equilibrium is asymptotically stable with
respect to the noisy replicator dynamics when a continuous strategy set
is considered. Below we will present further examples where dynamics on

continuous strategy sets yield different results from the finite case.

! Exceptions are Hopkins and Seymour (1996) who study the replicator dynamics but
only on spaces of probability distributions with a continuous density, Bomze (1990, 1991),
Seymour (1998), and Friedman and Yellin (1996). The latter study gradient dynamics.
The special case of mixed strategies has been studied by Akin (1982), Hines (1982), and
Zeeman (1981).

2 An example where our approach has already fruitfully been applied (besides the ones
in Section 5) is the evolution of preferences (Huck, Kirchsteiger, and Oechssler, 1997; see

also Ely and Yilankaya, 1997).



In the evolutionary context a population is identified with the aggregate
play of its members. Formally, a population is a probability measure on
the strategy set. If the strategy set is infinite, the set of populations is
a subset of the infinite dimensional vector space of finite sighed measures.
We build on work by Bomze (1990, 1991) for studying replicator dynamics
on this Banach space. Bomze shows that the replicator dynamics are well
defined if the mean payoff function of strategy x against population P is
Lipschitz continuous. We show that this assumption is always satisfied in
pairwise encounters if the underlying pairwise payoff function is bounded.
In particular, no continuity assumption for payoffs is needed in order for
the replicator dynamics to be well defined. This allows to study many
economically interesting games with discontinuous payoff functions.

Much work in evolutionary game theory (see Weibull, 1995, for an over-
view) has been done on bridging the gap between static stability concepts
(like ESS) and explicit dynamics (like the replicator dynamics). In the
finite strategy case one important fact is that an ESS, and a fortiori, a strict
equilibrium, is asymptotically stable (Hofbauer et al., 1979). A surprising
result of our analysis is that in the infinite case such results cannot be taken
for granted. We provide an example showing that even strict Nash equilibria
may be unstable with respect to the replicator dynamics, even when the
strategy space is compact and the payoff function is continuous. In general,
stronger static conditions are required for dynamic stability. We prove that
one such condition, namely uninvadability, is sufficient for dynamic stability
of a homogeneous population state.

After having set up the general framework, we study a number of specific
problems where a continuous strategy space is particularly natural. Namely,
we consider the replicator dynamics in the context of the Nash demand game,
the War of Attrition, linear—quadratic games, a harvest preemption game,
and games with mixed strategies.

In the Nash demand game we find that the symmetric efficient equilib-
rium is stable and weakly attracting with respect to the replicator dynamics.
In the War of Attrition the replicator dynamics converge to the unique mixed

equilibrium from initial states which are within finite Kullback—Leibler dis-



tance from the equilibrium.

Linear—quadratic games are games in which the payoff is quadratic in
the own action and linear in the opponent’s action. This class of games
includes some specifications of Common Pool Resource problems, public
good games, and Cournot duopolies. We show that the replicator dynamics
weakly converge to the unique equilibrium from all initial states with positive
weight on the equilibrium strategy.

The harvest preemption game has the same structure as a Bertrand
duopoly with homogeneous products. We show that if the strategy space is
slightly restricted, then there exists a unique (and very inefficient) equilib-
rium which is strongly attracting with respect to the replicator dynamics.
The unrestricted case, however, remains an open question.

Finally, the set of mixed strategies of a finite game can also be seen as
an infinite strategy space — though one with the particularly nice structure
inherent to the simplex. We show that mixed strategies also fit in our
framework and review results obtained by Hines (1982) and Zeeman (1981).
The advantage of using replicator dynamics on the space of mixed strategies
is that — in contrast to dynamics on pure strategy spaces — evolutionary
stable strategies are characterized by the asymptotically stable rest points
of the replicator dynamics.

The paper is organized as follows. In the next section we describe the
framework for analyzing dynamics on infinite dimensional spaces. In Section
3 we introduce the replicator dynamics and show that they are well defined
for infinite strategy spaces. Section 4 is devoted to the specification of
stability conditions. Section 5 contains the applications, Nash demand game,
War of Attrition, linear—quadratic game, the harvest preemption game, and
games with mixed strategies. Finally, Section 6 concludes. Some useful
facts about the variational norm and a number of proofs are relegated to an

appendix.



2 Formulation of the game

We consider a game with strategy set S. The usual approach in the literature
on evolutionary dynamics is to assume a finite strategy set S = {1,...,n}.
Here, we generalize this by allowing for arbitrary (Borel) strategy sets S C
R™. The Borel o—algebra on S is denoted by B.

We restrict ourselves to the case of symmetric two—player games, though
the setup can be extended to the asymmetric case. Let f: 5 x5 — R be a
bounded, Borel measurable function, where f(z,y) is the payoff for player
1 when she plays x and player 2 plays .

A population is identified with the aggregate play of its members and
is described by a probability measure P on the measure space (S, B). The
simplex of all populations is denoted by A. The average payoff of population
P against population @ is

B(P.Q) = / / £, 1)Q(dy) P(dz) 1)

The aim is to study the evolution of populations over time. For obvious
reasons it is more convenient to work with a vector space. Since A is not a
vector space, we work with the linear span of A, that is the space M®(S, B)
of all signed measures. Recall that v is a signed measure on (S, B) if there are
two finite measures ! and p? such that for all sets A € B, v(A) = u'(A) —
12(A). What kind of norm is appropriate to describe the “distance” between
two populations? Following Bomze (1990) we propose the supremum or

variational norm.

Definition 1 The variational norm on M(S, B) is given by

i

el = o | [ f

where the sup is taken over all measurable functions f : S — R bounded by
17 SUPges ’f(s)’ < L.

Endowed with the variational norm, M¢ is a Banach space (cf. Alt,

1992), that is, every Cauchy sequence in M® converges to an element in
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ME. Some useful facts about the variational norm are collected in the
appendix. For example, convergence in the variational norm is equivalent to
convergence in the £!-sense of the densities if these exist. In the finite case
convergence in the variational norm is equivalent to pointwise convergence
of probabilities. Thus, the case of finite strategy sets is contained in our

framework as a special case.

Remark 1 The variational norm is a very strong measure of distance. How-
ever, we think that it may be a plausible norm from an evolutionary point
of view. In evolutionary game theory, one frequently considers some equilib-
rium population P and studies its performance against some mutated popu-
lation P(g) = (1 —¢)P 4+ 2Q.? These two populations are close in the strong
sense that for all sets of strategies A € B, one has |P(A) — P(e)(4)| < e
uniformly. They are therefore close in the variational norm, as they should
be; indeed, their distance is at most 2=, compare (14). On the other hand,
two homogeneous populations 6, and 6, have maximal distance in the vari-
ational norm for x # y, even if the strategies x and y are close in the usual
metric. This might appear somehow implausible at first sight. But two dis-
tinct homogeneous societies are quite far from one another in evolutionary
terms because everyone in a population has to mutate in order to convert

one population into the other, which indeed would be a very rare event.

Remark 2 Although it is possible, in principle, to formulate replicator
dynamics with weaker topologies, this would require stronger assumptions
on the payoff function f.* To give an example, replicator dynamics for
the weak topology are only well defined for continuous payoff functions. In
general, the weaker the topology, the smaller is the dual space, and, thus, the
class of admissible payoffs. The variational norm has therefore the advantage

of allowing for the largest class of payoff functions.

Since we want to study the dynamics of populations as time unfolds,
we have to deal with curves m : Ry — M€ Such a function is called

continuously differentiable if there exists a continuous function m' : R, —

31n particular, this view is employed in the ESS and related concepts.
*See Oechssler and Riedel (1999) for the consequences of employing the weak topology.



M€ with (L4 1) o
m(t + —m
li =m/(t
T (),

where the limit has to be taken with respect to the variational norm. Let
F o M® — MF° be continuous. A continuously differentiable function m
with

m/(t) = F(m(t)), m(0) = p (2)

is called a solution to the ordinary differential equation (2).
A crucial fact is that with Lipschitz—conditions one has always a unique

solution to such initial value problems.

Theorem 1 Suppose that I is bounded and satisfies a global Lipschitz con-

dition:
dK >0 s.t. Yu,v e ME, ||[F(p) — F()|| < K ||jp—v] .

Then, a unique solution of the ordinary differential equation (2) exists on
[0, 00).

For a proof see e.g. Zeidler (1986, Corollary 3.9).

3 The Replicator Dynamics

The dynamics most widely studied in the literature on evolutionary game
theory are the replicator dynamics. They formalize the idea that in a dy-
namic process of evolution a strategy x should increase in frequency if it is a
successful strategy in the sense that individuals playing this strategy obtain
a higher than average payoff. Formally, the success (or lack of success) of a

strategy x if the population is @) is given by the difference

o(2,Q) = / 12 1)Q(dy)— / / £, 0) Q) Q) = B(82, Q) B(Q, Q).

The idea of replicator dynamics is that the relative increment of the fre-
quency of a set of strategies is given exactly by the average success of strate-

gies in that set.



Definition 2 The ordinary differential equation
QO = [ cmQuQUE). QO =P 3
for all A € B, is called replicator dynamics.

Note that by taking A = {z} we get the usual formulation of the replicator
dynamics for the finite strategy case.

One of the main results of this paper is the following extension of work
by Bomze (1991) for the present framework of pairwise encounters.” Bomze
assumes that ¢ is Lipschitz continuous in P and shows then that the repli-
cator dynamics are well defined. In the following theorem we prove that for

pairwise encounters this requirement reduces to f being bounded.

Theorem 2 If the payoff function f is bounded, then the replicator dynam-

ics are well defined.

The intuition for Theorem 2 is the following: when the payoff function f
is bounded, the bilinear functional F(P, Q) given by (1) is continuous in the
variational topology. This implies that the right-hand side of the replicator
dynamics, [, o(z,Q(t)) Q(t)(dx), is a Lipschitz continuous function on A. A
solution to the ODE thus exists and it remains to show that the trajectories
(Q(t)) of any solution never leave the set of populations A. This is done in

the appendix.

4 Stability concepts

We start with the classical concept of evolutionary stability introduced by
Maynard Smith (1974).

Definition 3 A population P is called an evolutionary stable state (ESS)
if for every “mutation” Q, there is an invasion barrier £(Q)) > 0 such that

foral0<n<e

E(P, (1 =P +n1Q) > BQ,(1-n)P+nQ). (4)

®See also the recent paper by Seymour (1998), who develops a similar framework to
ours for the asymmetric case.




As we will see below the concept of ESS is often too weak in the context

of infinite strategy spaces. The following stronger notion was suggested by
Vickers and Cannings (1987).°

Definition 4 A population P is called uninvadable if there is a uniform
invasion barrier, that is, an ¢ > 0 such that (4) holds for all Q and all
0<n<e.

Uninvadability requires a uniform invasion barrier for all possible mu-
tations ). In general, one could require even more. Up to now, we have
considered the case in which a small fraction 7 of the populations changes
arbitrarily. More generally, one could look at the case where the whole pop-
ulation is allowed to shift, but only in a manner that the distance between
the original and the mutated population remains small. This yields the

following definition introduced by Bomze (1990).

Definition 5 A population P is called strongly uninvadable if there is a
barrier ¢ > 0 such that for all populations R # P with |R — P|| < e, we
have

E(P,R) > E(R,R).

We collect some useful facts about the various stability concepts. The
first and third point are known, the second fact is new. The proof of the

others is given for completeness.

Lemma 1 1. Fvery strongly uninvadable population is uninvadable, and

every uninvadable population is evolutionary stable.

2. If a discrete measure P = Z?:l pjbz; 18 uninvadable, then it is also

strongly uninvadable.

3. If the strategy space S is finite, then the three concepts coincide.

SFor an introduction to static stability concepts with infinite strategy spaces see also

Bomze and Pétscher (1989).



Proof. The first statement is obvious. For the second, let P = Z?Zl Pjba;
be uninvadable, and assume without loss of generality that p; > 0 for all
j. Let ¢ be a uniform invasion barrier and set & := eminp;. Now assume
|R— P| <&. Setr;:=R({x;}). Then  := max |p; — ;| /p; < e. Define a
measure @ via @ = % (R—(1—=mn)P). Then it is easy to check that @ € A.
Hence, R can be written as R = (1 — n)P + n@ for some n < ¢ and some
population (). Since P is uninvadable, it follows that F(P,R) > E(Q, R)
and hence E(P, R) > E(R, R).

That every ESS is uninvadable in the finite case is well known (see e.g.
Vickers and Cannings, 1987). Since with a finite strategy space all popula-
tions are discrete measures, the second statement implies that every unin-

vadable population is also strongly uninvadable.
The next definition specifies the dynamic stability concepts we will use

in the following.

Definition 6 Let (Q* be a rest point of the replicator dynamics,

o(-,Q")=0 Q" —a.e.
Then

e ()" is called Lyapunov stable if for all e > 0 there exists ann > 0 such
that |Q(0) — Q*|| <n=||Q({) — Q*| <& for allt > 0.

o Q" is called strongly attracting if there exists € > 0 such that
1Q(0) = Q|| <= = [|Q(t) — Q] = 0.

e ()" is called weakly attracting if there exists € > 0 such that
|Q0) — Q|| < e = Q(t) — QF in distribution.

In the finite case the last two concepts coincide. Together with Lyapunov
stability they are called asymptotic stability. As is well known in the finite
case an ESS is sufficient for asymptotic stability (Hofbauer et al., 1979).
A fortiori, all strict equilibria are asymptotically stable. One may wonder

whether this result survives in the infinite case. Somewhat surprisingly it



does not as the following example shows. In fact, strict equilibria need not

even be Lyapunov stable.”

Example 1 Consider a game with compact strategy set S = [—1,1| and

differentiable payoff function
f(xvy) = —t + day.

It can easily be checked that (0,0) is a strict Nash equilibrium. However, it
18 not uninvadable and it is not Lyapunov stable. For all ¢ > 0, there exist

strategies x € S such that
o(z,(1 — )6 + e6;) = dex? — 2* > 0. (5)

Therefore, &g is not uninvadable. Moreover, the replicator dynamics imply
that for Q(0) = (1 — €)8¢ + b4, with some x such that (5) holds, the weight
on z, n(t) :

Q ({z}), increases according to

=

(
t)

Thus, n(t) increases to 1 and 6o is not Lyapunov stable.

~—

= o(x, Q1)) = 4n(t)z? — z* > 4n(0)z? — z* > 0.

3
~~

This example shows that stability results which are taken for granted in
the finite strategy case need not apply in the infinite case.® But rather than
discrediting the infinite case, we think that the example throws a critical
light on the stability concepts in the finite case. While it is true that the
strict equilibrium (0, 0) is asymptotically stable if the game is played with
any finite grid size, its basin of attraction vanishes as the grid becomes finer.
It seems that there are some strict equilibria which are less robust than

others, in particular, those which do not converge to a stable equilibrium as

"There exist examples in the literature showing that strict equilibria need not be un-
invadable. However, as far as we know they relied on either non—compactness of .S or on
discontinuities of f (see e.g. Vickers and Cannings, 1987).

1t should be pointed out that the example is not an artefact of our chosen topology.
In Oechssler and Riedel (1999) we show that with the weak topology similar examples can
easily be constructed.
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the grid size goes to zero. In the infinite case stronger concepts than ESS
are necessary. For this we have the following useful result, which connects

the static and the dynamic stability concepts.
Theorem 3 If Q* = 6, is an uninvadable, homogeneous population, then
e Q" is Lyapunov stable;
e if additionally the payoff function f is continuous, then Q* is weakly
attracting.
The second part of the Theorem is an adaptation of Theorem 2 in Bomze

(1990) to our setting.

Proof. Since 8, is uninvadable (and therefore strongly uninvadable by
Lemma 1), there exists an € > 0 such that for all R € A with ||[R —6,]| <«

E(62, R) > E(R, R).

For Q(0) = 65 there is nothing to show. Assume Q(0) # 6. The function
H(t) := Q(t) ({x}) is continuously differentiable. By Theorem 6, Appendix,
we have .
() = 11 exp ([ ote.@oas) )
hence
H'(t)
H(t)

= o(z,Q(1)) .-

We claim that H is strictly increasing. By assumption, H'(0) = o(x, Q(0)) >

0. Suppose that H' eventually became zero and set
to:==1inf {t > 0; H'(¢t) =0} .

Then H'(tp) = 0 since the set {¢ > 0; H'(t) = 0} is closed. For all s
to we have H'(s) > 0 which implies H(s) > H(0), hence ||Q(s) — 84|
e. Continuity of the trajectory yields [|Q(to) — 8z|] < e, hence H'(tg) =
o(z,Q(to)) > 0 by uninvadability, a contradiction. Therefore, H is strictly

<
<

increasing which implies that [|Q(t) — 6, < .

11



We show next that the fitness differential o(x, Q(¢)) vanishes. By (6),
the convergence of Q(t)({z}) = H(t) implies [y o(x,Q(s))ds < oo. The
claim follows if we show the equicontinuity of the map ¢ — o(x, Q(¢)). Since

the conditions of Lemma 3, Appendix, are satisfied, we have by (15),

|o(z, Q1) — (2, Q(s))| < L[Q() —Q(s)] -

The replicator dynamics and the boundedness of o on A see (16), yield for

every set A

QU(A) — Qs)(A)] = /:@’<u><A>du

= < oot —4|.

/st//4”<5’Q<“))@<u)<d5)du

Hence, using (14),

(2, Q(t)) — o(, Q(s))| < 2Low [t — 5| ,

which implies Lipschitz and hence equicontinuity of the map ¢ — o (z, Q(%)).

If the payoff function f is continuous, the expected payoff difference
E(6,,Q) — E(Q, Q) is continuous in ¢ with respect to the weak topology.
The set A of all populations is compact in the weak topology. Let P be
a weak accumulation point of the trajectory (Q(¢)). By the preceding, 0 =
limo(z,Q(t)) = lim [E(6z, Q(t)) — E(Q(), Q)] = E (6, P) — E(P, P).
By the first part of the theorem, 6, is stable, hence P is close to é,. By
uninvadability, P = é,.

The proof of the preceding theorem shows that the replicator dynamics
increase the weight on the pure strategy x if 6, is uninvadable. Therefore,
the weight Q(¢) ({x}) converges and the growth rate of the strategy must

vanish. We state this useful fact as a corollary.

Corollary 1 If Q* = &, is an uninvadable, homogeneous population, then

the fitness differential vanishes:

o(z, Q) — 0.

12



5 Applications

For many games it is more natural to think of strategies as belonging to
a continuum, in particular, if strategies involve the timing of actions or
the choice of prices or locations. Even if smallest measurement units for
quantities or prices exist, it is often more convenient to model them as
continuous. In this section we present a number of examples where the

replicator dynamics are applied to infinite strategy spaces.

5.1 Nash demand game

One simple example is the Nash demand game. Two players have to decide
how to divide a resource of size 1. Both players simultaneously submit
demands, z and y (i.e. S =Ry ). If the demands are feasible, both get what
they demanded. If not, both receive nothing. Thus the payoff function is

|z ifx4+y <1
f@’y)_{ 0 ifety>1

The unique efficient symmetric equilibrium of this game is (%, %).9 Since

this equilibrium is strict, it is an ESS. The next proposition shows that it is

uninvadable and weakly attracting.

Proposition 1 In the Nash demand game the homogenous population &y ;9

18 uninvadable, Lyapunov stable, and weakly attracting.

Proof. To establish uninvadability, we need to show that FE(P,P) <
E(81/9, P), for all P # &, with ||8; /5 — P|| <. All P in the e neighborhood

of 819 can be written as

P=a@Q +8Q"T+(1 —a—B)b1/9, (7)

where )~ and Q' are some probability measures with Q’([%, 1]) = 0 and
Q([o, %]) =0, and a + 8 < . For probability measures R, R concentrated

on [0, 3], one has E(R, R') =m(R) < 1/2, where m(R) = [ xR(dx) denotes

®Note that the asymmetric strict equilibria cannot be restpoints of one—population
dynamics.
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the mean value of population R. If 8 = 0, one has that F(P, P) = m(P) <
% = E<61/27P)

Next consider 8 > 0. In general, ()9, P) = %(1 — ). Note that
EQT,P)=aB(Q",Q ) <am(Q") < a. The bilinearity of F yields

)
>3(1-8)—am(Q ) —3(1—a—pB)(1 -8 —afm(QY) (8

=381~ —3a). (9)
Thus, 0(1/2,P) > 0if 8 > 0 and 3a + 8 < 1, which is satisfied for

small. Hence 8;/5 is uninvadable. It follows from Theorem 3 that &/ is
Lyapunov stable.

By Corollary 1 the fitness difference o (%, Q(t)) vanishes. Defining 5(¢), a(?)
for Q(t) as in equation (7), we obtain by (9) that 3(¢) — 0. (8) implies then
that a(t) — 0 or m(Q(t)") — 3. In both cases, Q(¢t)~ converges in L',
hence weakly, to 8; /5. Therefore, the 6,/ is also weakly attracting.

5.2 The War of Attrition

An example for a game in which timing is the relevant choice is the well
known War of Attrition, which has important applications in economics and
biology. Consider two players fighting for a prize worth V' to both players.
A strategy is to choose a length of time x € [0, M| for which one is prepared
to stay in the race. Fighting is costly. The payoffs are given as follows

V—y ifz>y

f(xvy): %_x iter=y

—x ifr<y
that is, a player gets the prize if he stay longer in the race than his rival but
has to share if they stay equally long. We assume that M > V/2. Otherwise

waiting until the end is always profitable.

14



It is obvious that no pure strategy Nash equilibrium exists. But as
shown by Bishop and Cannings (1978) there is a unique, completely mixed
Nash equilibrium, which has the following equilibrium distribution P*. Let
tr=M-V/2.

1—e V' ifg<tr
P0z))={ 1—e "V iftr<az<M
1 ife =M

Bishop and Cannings (1978) show that P* is an ESS. In fact, they show
(1978, p. 118) that the fitness differential between the equilibrium distribu-
tion P* and any mutation @ is given by the square of the £2-distance of the

corresponding distribution functions:

E(P*,Q) — B(Q,Q) = (|IP* - Q|.,)* (10)

= ( | Muqs,MD?ds)%

denotes the £2-norm on the space of distribution functions. Since the right
hand side of (10) is strictly positive for all Q # P*, P* is strongly uninvad-
able.

In light of (10), it seems natural to use the £2-topology in dynamic con-

where

siderations. On the space of populations A, this topology is equivalent to the
weak topology as shown by Hindy, Huang, and Kreps (1992). The following
theorem demonstrates that the replicator dynamics converge globally to P*
from all initial states Q(0) which have finite Kullback—Leibler distance (or

cross—entropy) with respect to P*.

Theorem 4 Assume Q(0) dominates P* and

dP*

Then the replicator dynamics with initial condition QQ(0) converge weakly to

the equilibrium distribution P*.

15



Proof. Because of Theorem 6, Q(¢) and Q(0) are uniformly equivalent.
Thus, the Kullback—Leibler distance

dP*
dQ(t)
is well defined, finite, and nonnegative. With the use of the representation

for the density of Q(¢) with respect to Q(0) obtained in Theorem 6 it follows
that

dP*

K(Q(). ") = [ 1o

0 < KQ) P
Q) dP* Y\ .,
[ e <d@<t> d@<0)> o

= KQW.7) - [ [ ote.Qeisar

— K(Q(),P*) - / (B(P,Q(s)) — B(Q(s), Q(s))) ds.

(10) yields
0< KQW).P) = [ (1P = Q) ds.

Hence, the integral

/ TP = Qo)) ds < o0 (12)

exists. It follows that the distance ||[P* —Q(s)||, tends to zero as s —
oo since the map s — ||[P* — Q(s)]|, is equicontinuous, which can be seen
as follows. By the triangular inequality, |||P* — Q(s)||, — | P* — Q(t)]],] <
|Q(s) — Q(t)]|5 - The £2-norm is dominated by the variational norm,

1
2

1) - Qll, = (/ <@<s)<[w)>—@<t><[x7m)>>2dx>

S Q6) -l

IA

and the trajectory (Q(t)) is Lipschitz, ||Q(s) — Q(?)|| < 20 |s — |, compare
the proof of Corollary 1.

16



5.3 Linear—quadratic games

In this section we consider games in which the payoff is quadratic in the
own action and linear in the opponent’s action. Let S = [0, M], for some
M large enough, be the strategy set for both players. The payoff function
is given by

f(z,y) = az” + bay + cx + dy,

with a,b < 0 and ¢ > 0. Given this assumptions there exists a unique sym-

metric and interior Nash equilibrium in which both players choose actions

__c
20+b°

and Cournot duopolies with linear demand and quadratic or linear costs

r* = This class of games includes Common Pool Resource problems

(for d = 0). Further, for d > 0 the payoffs represent that of a public good
problem in which the contributions are strategic substitutes.
To study the stability properties of * we need the following useful fact,

which is due to the model’s linearity in y.
Lemma 2 F(6,+,Q) > F(Q,Q) for all Q # 64+.

Proof. Let z := fOM xQ(dx) denote the average action. The Lemma follows

from the following chain of (in)equalities.

(e, Q) = f(z",7) > f(z,7) = B(Q,6:) = E(Q, Q).

The first equality follows from the linearity of the payoff function f(x,y) iny.
To verify the first inequality suppose < x* and let r(y) := arg max, f(z,y)
denote a player’s best reply. Since %;;J) < 0, r(y) < 0. Thus, r(z) >
r(z*) = z*. By definition of r(y) and z < z*

flr(z),z) > f(z, 7).

Concavity of f(z,y) in = implies that

f(=*,7) > [f(z, 7).

A similar argument holds for £ > z*.
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The second inequality follows directly from concavity of f(x,y) in x and

Jensen’s inequality.

f(z,7) > / f(2, 2)Q(dx) = B(Q, 6z).

Finally, the last equality follows again from linearity of f(x,y) in y.

Lemma 2 implies in particular that 6,+ is strongly uninvadable. Theorem
3, therefore, yields that the equilibrium is Lyapunov stable. We show next
that replicator dynamics converge globally to the equilibrium from all initial

states which put positive weight on the equilibrium.

Proposition 2 The replicator dynamics converge weakly to the equilibrium
distribution &, of the linear—quadratic game from any initial state with
Q(0)({z*}) > 0. In particular, 65+ is weakly attracting.

Proof. Since the profit difference o(z*, Q) > 0 for all populations @, the
weight on z* increases with time for every initial state Q(0), which puts
positive probability on z*. By Corollary 1 the fitness differential o(z*, Q(%))

vanishes. The mean payoff is

PQQ = [ raQu)
= /M [az? 4+ ba@ + cx + dz] Q(dx)
= f(z,z) +aVar(Q).
Thus

U($*7Q) = E<6SE*7Q) _E<Q7Q)
= f(=",2) — f(z,z) — aVar(Q).
Since f(x*,z) > f(x,z) by the proof of Lemma 2, o(z*, Q(t)) — 0 implies

that Var(Q(¢t)) — 0 and £ — z* (recall that a < 0). Thus, Q(f) — 85+ in

£?, which implies weak convergence.
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5.4 Harvest preemption game

Consider a mushroom, or some other plant for that matter, that grows in
the forest. The mushroom’s value to gatherers is determined by a time
dependent, continuous, and bounded function g(x) > 0, where we assume
that g(x) > 0 if and only if « € (0,z). That is, there is a date z after which
the mushroom is spoiled.

Two gatherers have to decide on the time for harvesting the mushroom.
While both know that it would be better to let the mushroom grow to its
optimal size, both try to preempt the other in order to have the mushroom
to themselves. Thus, the strategy in the harvest preemption game is timing,

xz,y € Ry, and the payoff function is given by

glz) x<y
flx,y) =14 g9(x)/2 z=y
0 T >y,

where we assume that both players get half of the mushroom if they arrive
at the same time. Note, that incidentally the game resembles exactly a
Bertrand duopoly with homogenous products and zero marginal cost.

It is easy to check by the usual undercutting argument that the unique
Nash equilibrium of this game is for both players to choose z = y = 0. Note,
however, that the game does not possess an ESS. In particular, g is not an

ESS since
E(60,(1 —€)0 + Q) < E(Q,(1 —e)do + Q)

for all @ with Q((0,z)) = 1. For the same reason, 8¢ is not Lyapunov stable.

For a discrete strategy space Hehenkamp (1997) demonstrates that the
smallest grid point above 0 is globally stable. We can derive a similar result
if we exclude from the strategy space some small open interval (0,b), b > 0,
for example because there is a minimum reaction time before one can realize
that the mushroom is out of the ground. The outcome for the unrestricted

strategy set, however, is still an open question.

Proposition 3 Let S = [b,00) for some b with x > b > 0. Then & is
uninvadable, and, therefore, Lyapunov stable with respect to the replicator

dynamics. Moreover, 6y is strongly attracting.
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Proof. Let K be an upper bound for the payoffs. Choose

n < <%_1>1. (13)

We show first that o(b, R) > 0 for every population R # &, with |R — &|| <
n. Every such R can be written as (1 — 8)8, + Pt with P ({b}) = 0 and
0 < B <n. Then E(&,R)=(14p)g(b)/2 and

E(R,R) = (1—p)E(&,R)+>E(PT, P")
< (1—-B)E(6, R) + 3’K.

Hence,

o(b, R) zﬁ(1+ﬁ)@—521{>0

by (13).Thus, & is uninvadable and, by Theorem 3, Lyapunov stable. Now
assume 8, # Q(0) ({b}) > 1 —n. Define §(¢) via

Q) = (1= B(t)) 6 + B() P (2)

as above. Then, exactly as before,

o0.Q(0) = 500 (1 =) 4 i) .

By Corollary 1, 8(¢) must go to zero.

5.5 Mixed strategies

Replicator dynamics are usually defined on the (finite) space of pure strate-
gies. In contrast, the static analog of an evolutionary stable strategy (ESS)
allows for individuals playing mixed strategies. This is the reason why the
set of EXSS cannot be characterized by the stable rest points of the replicator
dynamics. Every ESS is an asymptotically stable state of the finite replica-
tor dynamics but not vice versa (see e.g. Weibull, 1995). The divergence
of these concepts disappears if one defines replicator dynamics on the set of

mixed strategies.

20



Let < U, T > denote the underlying symmetric 2-player normal form
game, where U : T' x T" — R denotes the payoff matrix and 7" is the finite
set of pure strategies. Let n be the number of pure strategies. Let A(T") :=
{x e R"|z; > 0,57 | z; =1} denote the n — 1 dimensional simplex.

Since we are concerned with the evolution of mixed strategies, our strat-

egy set S is given by A(T"). The corresponding payoff function is simply

fle,y) =aUy=> > miy,Us.

i=1 j=1

Note that a mix over mixed strategies induces just another mixed strategy.

Let
= d
1t /A " z(Q(dzx)

denote the mean mixed strategy in the population. Compare now the fitness
of some subpopulation in which everyone mixes half-half between two pure
strategies 7 and 7 with some other subpopulation in which half of the players
choose ¢ and the others j. Since their mean mixed strategy is the same, one
cannot expect evolution to select among those subpopulations. At best one
can hope that the mean mixed strategies possess some kind of stability. Such
a result was proved by Hines (1982). By Lemma 5 of Zeeman (1981), the

evolution of the mean strategy satisfies
p (1) = QW)U (1),
where C(Q) = [(z — p)(z — p)Q(dz) denotes the covariance matrix.

Proposition 4 (Hines, 1982) Let z* >> 0 be a completely mized ESS.
Then p* is asymptotically stable if and only if p* = x*.

6 Conclusion

We have shown in this paper that the replicator dynamics can be applied
to continuous strategy spaces without modification. The only condition is
that the underlying payoff function must be bounded, which can often be

achieved by imposing arbitrarily large bounds on the strategy space.
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In games in which a continuous strategy space is more natural, e.g. when
quantities, prices, timing etc. are strategies, it should be possible now to use
replicator dynamics directly on the continuous strategy space rather than
on a more or less suitable discretization.

We have applied the theory to a number of examples. In the Nash de-
mand game, the War of Attrition, and linear—quadratic games, the results
for the discretization are (roughly) reproduced. However, in the harvest pre-
emption game the results of the discrete model turned out to be somewhat
misleading. While in the discrete model the smallest grid point above 0 is
asymptotically stable, in the continuous model with unconstrained strategy
set no such stable outcome seems to exist. The shape of the limit distribu-

tion is still an open question.
A Appendix

A.1 The variational norm

It is useful to have some tools at hand that make calculations of the vari-
ational norm easier and lead at the same time to a better understanding
of the induced topology. Let P, € A denote probability measures. For
probability measures we have that (cf. Shiryaev, 1995, p. 360)

I1P — Q|| = 2 sup | P(A) — Q(A)]. (14)
AeB

Thus, the maximum distance between two probability measures is 2 and

is reached when the measures are orthogonal,
PLQ=|P-Ql=2.

To see this, take a set A with P(A) =1 and Q(A°) =1andlet f =14—14c,

where 14 denotes the indicator function. Then

[ e @) = P+ Qua) =2,

The following theorem is an important auxiliary result for our further

analysis as it provides a method to calculate the variational norm if we
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have densities. Let p = aP — b@), for some nonnegative a,b > 0, be a
signed measure. Assume that there is a third probability measure R that
dominates'’ P, @, hence also pr. Then the Radon-Nikodym densities ¢ =
z—;, P = i—% and £ = 3—1‘% = a¢ — ) exist. We have

Theorem 5 The variational norm of p is given by

Il = / €] dR.

In particular, the distance between probability measures is given by
IP=@Ql = [ |6~ vldr.
s

Proof. It suffices to prove the first formula because the second formula
follows by taking a =b=1.
For a measurable function f bounded by 1, one has by the monotonicity

of the integral with respect to R

’/fdu’ - ’/fé‘dR’ < [irglar< [1gar

hence [|p|| < [ |¢|dR. To show equality, set A ={¢ > 0} and f =14 — 14e.
Then f is bounded by 1, hence

= ’/fdu’=’/Aé“dR—/Acé“dR’:/!é“!d&

because £ = |£| on A and —§ = |£| on A°.

The preceding theorem implies that the convergence of P* — P in the

variational norm is equivalent to the convergence of the densities % — z—;
in the £!-sense with respect to the dominating measure R if the sequence
(P™) and the measure P are dominated by R.

We state this as a corollary for the case of the Lebesgue measure.

Corollary 2 Let P" and P have densities v"(x) and v(x) with respect to

the Lebesque measure. Then

P”—>P<:>/ |v"(z) —v(z)| dx — 0.

Y Every set A with R(A) = 0 has P(A) = 0.
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Finally, let us have a look at the classical discrete case.
Corollary 3 Let S ={1,...,n}. Set p! = P"({i}) and p; = P({i}). Then
P" — P pl —p;,Vi

Proof. The discrete measures P" and P are dominated by the counting
measure ( = »_; 8. The densities are

ddi (i) =l

By Theorem 5,

dP™ dP
|P" = Pl = B¢\ Z = e | = 2ol =il
i
The left-hand side goes to zero if and only if for every ¢ the probabilities p}
tend to p’.

As we see, in the discrete case, the topology induced by the variational

norm is equivalent to the pointwise convergence of probabilities.

A.2 Replicator Dynamics are well defined

The strategy for proving Theorem 2 is the following. Denote by F(Q) =
[ o(z, Q)Q(dx) the right-hand side of the replicator dynamics. Since F is
neither bounded nor globally Lipschitz continuous on M€, we construct in
the following two lemmata an auxiliary function F which has these proper-
ties and coincides with F' on A. Theorem 1 then implies that the ordinary

differential equation

has a unique solution (Q(¢)). Finally, in Theorem 6 we show that (Q(¢) never
leaves A, which implies that (Q(¢)) also solves the replicator equation.

Lemma 3 Suppose the following Lipschitz and boundedness conditions hold

for o

QI IR <2 = suplo(z, @) —o(w, B)] < L@ — R (15)
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sup |0z, Q)] < 0o (16)
Qlel<e

where L and 0, are some constants with L, 0, < 00. Then there exists
a bounded, Lipschitz continuous function F : M® — ME, which coincides
with F on A,

F(P)=F(P), VP € A.

Proof. As a candidate for , We propose

FQ)=@2- Q" F@Q).

F is zero for ||Q|| > 2, bounded and coincides with F' on A because proba-
bility measures have norm 1. Let @) and R be measures with ||Q]|, || R < 2.
Choose P = (|Q| +|R|) /2 as the dominating measure. Here, we use the
notation |u| ;== p* + 1~ ,where the nonnegative measures u* and p~ form
the Jordan decomposition of x, i.e. u = ut —pu~. Note that F'(Q) has the
density o(-, Q) with respect to ) and therefore

dF(Q) aQ
dP P’

With the use of Theorem 5, we obtain

=0( Q)=

dr(Q) dF(R) ’

IP(@) - F(R)| = 7| =2 - o
dR

:/S a(x,Q)Z—g( ) — (e, R) S5 (2)
< [1o0.@ - ot )| {20

< [loe.@ = ote. Rl + [ lote 2] | F260 )]de

dP(x)

dP(x)

)| ap(a /]agcR[’ (=)

Using the boundedness and Lipschitz conditions (16) and (15) in conjunction
with Theorem 5, it follows that

(@) — F(R)]|

IA

L@ = RINQl + o Q- R]
< (2L+o) Q- R . (17)

A
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Hence, I is Lipschitz continuous on the set of measures with variational
norm less than 2.

To extend this property to I, we distinguish three cases. If both ||Q]| , | R|| >
2, then F(Q) = F(R) = 0 and there is nothing to show. If |Q|| > 2> ||R],
then

FQ =) = ||Fm)
= - |R]) |F®)] .

By Theorem 5 and the boundedness condition (16)

1F@) = [l w] [T ar@ <ol 0s)

Therefore,

FQ-F®)| < @-|Row Rl
< 2|Ql - Rl
< 2@ El .
If, finally, both ||Q]|, || 2] < 2, then
F@Q - F(R)| = 12-1QNFQ - - IRIER)

< - 1RIDIFQ) — FER) +[FER)HIQI =[£I -

Now we use the Lipschitz continuity of F' obtained in (17) and the upper
bound for ||F(R)|| of (18):

F@Q) - F(B)|

IA

2= IRINEL + 00) |Q — B| + 20 [|@ — Bl
AL +0x0) Q- R .

IA

This completes the proof of the Lemma.

Lemma 4 If the payoff function f is bounded, then conditions (15) and
(16) of Lemma 3 are satisfied.
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Proof. We have to check that a bounded payoff function f implies the
Lipschitz and boundedness conditions on ¢ assumed in Lemma 3. Let M

be a bound for the payoff function f. Then

5(Q,Q)] = ] [ [ sz < ver
and
] / f<x,y>@<dy)] < MQl,
vield
o, @) < M1QIC + QI (19)

whence (16) follows with o, = 6M.
For the Lipschitz condition (15), note that

0(5,Q) — o2, R)| = ] [ @Ry + BR.B - £Q.Q)
< M Q- R +|B(RR) - B@.Q)
The bilinearity of £ allows to write
B(RR) — B(Q Q)| < [E(R,R— Q)| + |E(R - @,Q)]

But

B(R, R - Q)| ] [ [t @ -y

M|R||| R - Q]

IA

implies
|E(R, R) — BE(Q, Q)| < M (||[R]| + Q) |12 -
and (15) follows.

By the preceding lemmata in combination with Theorem 1 we know that

the ordinary differential equation
Q1) =F(Q(t), Q) =P (20)

has a unique solution. For the replicator dynamics to be well defined we
need furthermore that the set A of all populations is invariant under these
dynamics. The proof of the following theorem appears in Bomze (1991,

Lemma 2).
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Theorem 6 Let (Q(t)) be the unique solution to (20) with initial condition
P e A Then (Q(t)) C A, that is, the set of all populations A is invariant
with respect to (20).

Moreover, Q(t) and P are uniformly equivalent in the sense that there

exist constants v, I'y > 0 such that
7 Q(1)(A) < P(A) < 1TQ(1)(A)
for all sets A € B. The density of Q(t) with respect to P satisfies

dgj(j) () = exp </0tg(g;7 Q(s))ds> : (21)

That is, if we start with a population P € A, the solution of (Q(¢)) stays
in the set of populations A. On A the functions F and F coincide, which

proves Theorem 2. The result on uniform equivalence is useful in Section
5.2.
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