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1 Introduction

Over time, barrier options have become increasingly popular to reduce the
cost of plain vanilla options while incorporating individual views of market
participants concerning the asset evolution in an easy way: the payo� of barrier
options depends on whether the asset price path will (not) cross a prespeci�ed
boundary. Of course, similar to standard options, they are also used to insure
against price drops below the barrier. Standard barrier options do then either
pay o� a call or a put at the maturity date. For all these eight standard barrier
options with single barrier, closed form solutions are available in the Black{
Scholes setup (see Rubinstein and Reiner (1991) and Carr (1995)). For double
barrier options, however, analytical approximations are known only in some
speci�c cases (see Kunitomo and Ikeda (1992)). Numerical procedures have to
be applied to come up with prices, especially in those generalizations of the
Black{Scholes setup, in which jumps are possible.

In this paper we are interested in the \e�cient" pricing of barrier options us-
ing approximations of the underlying process. It is well known that binomial
models su�er from numerical de�ciencies with barrier options: increasing the
re�nement, prices converge erratically in a saw{tooth manner to the contin-
uous time price and even high re�nements do not ensure adequate accuracy.
Many authors addressed this problem and suggested adjustments. Ritchken
(1995), and Cheuk and Vorst (1996) constructed trees where the nodes lie on
the barrier. Figlewski and Gao (1998) re�ne the tree further at the barrier.
Our improvements are related to the �nite di�erence approach (see Boyle and
Tian (1998)): we start from a discretization of the asset space, instead of dis-
cretizing time �rst, as previous approaches did. With barrier options this is a
straightforward way to have nodes on critical levels by construction. We re-
cover binomial models with the speci�c re�nement of Boyle and Lau (1994). To
incorporate our approach in full generality we make use of trinomial models.

Since discretizing the asset space breaks up the time discretization, we al-
low for random trading, similar to Leisen (1998b) for American put options,
and Rogers and Stapleton (1998) for barrier options. However, the latter did
not recognize the numerical de�ciencies resulting from the strike at maturity,
which will be prevented in our trinomial model. We also di�er from their
approach by assuming that trading dates are the jump times of a Poisson
process, which results in simple valuation formulas. Our parameters are set
in accordance with a convergence theorem of the processes which also en-
sures convergence of prices. The model smoothes the convergence structure
even better. The order of convergence increases from 1=2 to 1 and removes
the wavy patterns. Using extrapolation we are able to obtain even quadratic
order.
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After the numerical de�ciencies have been removed in the Black{Scholes setup,
we turn to the framework of Merton (1976), adding a compound Poisson pro-
cess to the Black{Scholes model. This models the empirical observation of
sudden strong price changes. An extension of binomial models to this setup
was proposed by Amin (1993), which unfortunately inherits from there its
poor convergence properties, especially with barrier options. Our model with
random jump times driven by a Poisson process allows us in a simple way
and intuitive way to incorporate jumps. It inherits the extraordinary conver-
gence properties from the trinomial model in its randomized version. Again,
a theorem ensures convergence to the continuous time solution.

The remainder of the paper is organized as follows. In section 2 we present the
jump{di�usion setup as well as the barrier option contract. Section 3 explains
the pitfalls in discretizing according to CRR. In section 4 these di�culties are
circumvented using a suitable trinomial model. This model is then random-
ized. Section 5 incorporates \strong" jumps. Section 6 discusses barrier option
valuation and the price accuracy in our framework. Section 7 concludes the
paper.

2 The Setup

On a probability space (
;F ; P ) we study an economy (B; S), consisting of
the Bond B and the stock S. The interest rate r is assumed to be constant over
time (Bt = expfrtg) and the stock price evolves under the objective measure
P according to

St=S0 �Gt � Jt ; (1)

where Gt=expf�t+ �Wtg ; (2)

and Jt=
NtY
i=1

Vi : (3)

(Nt)t is a Poisson process with constant parameter �, (Vi)i a sequence of non{
negative iid random variables, � 2 IR, � 2 IR+.

The process (Gt)t is the continuous process known as geometric Brownian
motion and has stationary, Gaussian returns. It was suggested by Samuelson
(1965) to model the evolution of a stock. Since Black and Scholes (1973) it is
used as one of the standard �nancial models. S evolves according to G until
the next jump time � of the Poisson process at which N changes from, say,
i to i + 1. We then observe a per{cent change Vi � 1, i.e., the stock changes
value from S�� before the jump to S�� � Vi.
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So, the two parts can be interpreted as follows: (Gt)t models the \typical"
evolution of the stock under the \normal" arrival of information, whereas
(Jt)t models jumps in the stock prices, due to some rare strong information
shock. Since the Poisson process is \memoryless," the expected time until
the next shock occurs is equal to 1=�, independent of current time. Merton
(1976) studied this model under the assumptions that the (Vi)i are lognormally
distributed random variables and � and (Nt)t are speci�c for the �rm under
consideration.

The Black{Scholes setup is a so{called complete market, i.e., any contingent
claim on the stock can be hedged (see Du�e (1992)). The no{arbitrage prin-
ciple is su�cient to price any claim. In the language of Harrison and Kreps
(1979) this means that there is a probability measure Q, equivalent to P ,
and under which (Gt=Bt)t is a martingale. Such a measure gives rise to a
linear pricing operator; it is completely speci�ed for the (B;G) market by
�G = r � �2=2.

In our setup, however, we are in an incomplete market; the unforeseeable jump
can not hedged. Under the assumption of no{arbitrage there is a multiplicity
of equivalent martingale measure (EMM) under which agents do evaluate this
risk. The mathematical �nance literature suggests the use speci�c EMM, de-
rived from hedging criteria (see F�ollmer and Sondermann (1986) and F�ollmer
and Schweizer (1991)). When our setup is used to model \market crashes,"
i.e., (Jt)t represents jumps in the aggregate or market portfolio, the proce-
dure taken in the mathematical �nance literature seems appropriate. If the
asset (Jt)t would be traded in the market, the three assets (B; S; J) would
constitute a complete market. As it is, however, not traded, under the EMM
Q chosen by the market for valuation, only (St)t has to be a martingale, but
(Jt)t not; the description of (Jt)t (under P ) and the choice of Q together with
the Girsanov{Theorem are equivalent. Our view on this is that of specifying
under an appropriate measure the process (Jt)t by

Jt = J0e
(���E[Vi�1])t

NtY
i=1

Vi ; (4)

for some � 2 IR, which will be explained below. Using the description of the
stochastic exponential we derive E[Jt=J0] = e�t (see Protter (1990) or Jacod
and Shiryaev (1987)). Using the Girsanov{Theorem as in the Black{Scholes
setup gives then the EMM for the (B; S; J) market as a change in the Wiener
measure for which �S = r � �2=2 � �. For a detailed discussion, we refer to
Wiesenberg (1998).

Then ~� = lnE[Jt=J0]=t� r = � � r can be interpreted as the excess return on
the risky process (Jt)t over the riskless rate. With exogenously �xed param-
eters � and (Vi), � speci�es the risk{premium. As this is a \free" parameter,
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we can treat the choice problem of an EMM as the speci�cation problem of
an appropriate risk{premium in the market. Hamilton (1995), Bates (1996),
and Trautmann and Beinert (1995) discussed the implementation, i.e., how to
infer the properties of the jump component (Jt)t in the stock process (St)t.

Similar to Merton (1976) we are interested in the case where jumps are �rm
speci�c, and therefore uncorrelated with the market as a whole. In the sense
of the CAPM this is non systematic risk, has a � of zero and therefore the
premium is zero. Bates (1996) gives statistical evidence that the risk premium
� is non{zero, i.e., the jump{risk is correlated to the market as a whole, and
\crashes" need to be taken into account. However we use the Merton (1976)
model as a starting point for our presentation; our approach is general and can
easily be generalized to a non{zero �. Section 6 studies numerical simulations
in the case of a �rm allowing for ruin (Vi � 0).

Barrier options are a type of exotic options where the payo� depends on the
crossing of predetermined levels, which may be either discretely or continu-
ously monitored. In the event of a crossing, depending on the speci�cation, a
lump{sum (called \rebate") might be payed, another asset might be activated
(called \knock{in") or deactivated (\knock{out"). Typical examples are those
where the secondary asset is a plain vanilla option, e.g., a down (up) and in
(out) barrier option pays this o�, if some barrier H < S0 (H > S0) is (not)
crossed and nothing otherwise.

We are interested here in continuously monitored constant barrier options,
where the �nal payo� is that of a plain vanilla European option. We explicitly
allow for multiple barrier options. The barrier option payo� depends on a
\choice variable" as follows: The set � contains all those paths !, where the
terminal payo� will be activated. Then the terminal payo� is 1!2�f(ST ), where

f is the payo� function at maturity, and its price is E
h
e�rT1!2�f(ST )

i
.

3 Binomial Pitfalls

This section studies the numerical de�ciencies with barrier option pricing in
the Black{Scholes setup, i.e., the model St = S0 �Gt, using binomial models.
Starting with CRR many authors presented so called binomial models for the
asset evolution. We recall here brie
y the CRR model to present the main
di�culties. The speci�cation of a re�nement n of the time axis [0; T ] yields a
discretization set T n = f0 = tn;0 < tn;1 : : : < tn;n = Tg of equidistant trading
dates, i.e., tn;i+1� tn;i = �tn =

T
n
. The logarithmic asset price evolves in some

�xed grid, with grid points at distance �xn. More speci�cally it is supposed
that from one date to the next the asset can jump only to the next adjacent
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node, i.e., we model the (per{period) return by

Rn;i �
8><
>:
+�xn ; qn

��xn ; 1� qn
; (5)

and the stock process by

G
(n)
t :=

N
(n)
tY
i=1

Rn;i ; (6)

with N
(n)
t :=

�
t

�tn

�
: (7)

Let us denote by Xt = lnGt (X
(n)
t = lnG

(n)
t ) the (discrete) logarithmic pro-

cess. To match the continuous per{period variance, we set

�xn = �
q
�tn : (8)

For pricing, only the evolution of the processes under the risk{neutral probabil-
ity measures Q(n) matters. It corresponds here to the risk{neutral probability
Q(n) of the continuous process, and is represented by the probability qn for an
up{move, such that E[Rn;1] = expfr�tng.

Theorem 1 If E
h
lnRn;1

i
=
�
r � �2

2

�
�tn, then E

h
Rn;1

i
= expfr�tng +

O(�tn). On the other hand, if the martingale measure condition E[Rn;1] =

expfr�tng holds, then E
h
lnRn;1

i
=
�
r � �2

2

�
�tn +O(�t3=2n ).

In both cases we have S
(n) d

=) S.

PROOF. The condition expfr�tng = E[Rn;1] is equivalent to

1 + r�tn +O(�t2n)
= expfr�tng = qn exp�xn + (1� qn) exp��xn
= qn

�
1 + �xn +�x2n=2

�
+ (1� qn)

�
1��xn +�x2n=2

�
+O(�t3=2n )

= 1 + �xn(2qn � 1) + �x2n=2 +O(�t3=2n )

which is equivalent to
�
r � �2

2

�
�tn = (2qn�1)�

p
�tn+O(�t3=2n ) = E[lnRn;1]+

O(�t3=2n ). This and the converse | which follows similarly | prove the �rst

two assertions. Then Donsker's theorem proves X
(n) d

=) X and the proof
concludes, observing that the exponential function is continuous.
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According to theorem 1 there are two alternative ways of specifying qn. First,

looking at the processes G and G
(n)

we can match their risk{neutral drift
E[Rn;i] = expfr�tng. Second, we can take E

h
lnRn;1

i
=
�
r � �2

2

�
�tn, to

match the drift of the logarithmic processes X and X
(n)
. In the limit the same

processes and thus the same prices will result. We will use the second one
to specify the risk{neutral probability, and require E

h
Rn;1

i
= ��tn, where

� = r � �2

2
. Easy calculations reveal that

qn=
1

2
+
��tn � �n
2�xm

(9)

=
1

2
+
r � �2

2

2�

q
�tn : (10)

Figure 1 presents a pricing example for a down{and{out call with strike
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Fig. 1. price picture for the barrier option, depicting the convergence structure

X = 110 and a barrier at H = 90 written on a stock when today's stock price
S0 is 100, the volatility is � = 0:2 and the interest rate is r = 0:1. We observe a
unregular convergence to the continuous time solution. The structure exhibits
the typical \saw{tooth" pattern well known in the literature. We observe also
the \odd{even ripple." Figure 2 depicts the error on a log{log scale. Since the
function 1=

p
n is an appropriate upper bounding line, the order of convergence

is 1=2. Compared to the pricing of plain vanilla options, where the order is 1 we
lose 1=2. We see that we have quite high errors in the worst case. Furthermore
we deduce that we need at least a re�nement of 1=

p
n = 0:01, n = 10000 to

ensure \penny{accuracy."

The convergence is slower than in a standard European call and put option
case, since in binomial models the whole probability mass is concentrated in
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Fig. 2. error picture for the barrier option

the tree{nodes. The di�erence in probability between two adjacent nodes is
known to be of the order O(1=pn) (see Feller (1966)). Now, if, resulting from
an increase in the re�nement by one, a node \jumps" over the barrier layer,
taking the corresponding probability mass with, we will observe a similar
numerical e�ect. To prevent this for barrier options, Ritchken (1995) pointed
out that it has to be ensured that there lies a node exactly on the barrier for
any re�nement. We characterize all (for double or even multi barrier options)
barrier lines as a \critical line." Similarly Boyle and Lau (1994) argued to take
depending on m 2 IIN only the re�nements

66664 m2�2T�
ln S0

H

�2
77775 : (11)

These re�nements are exactly the one's before an entire layer jumps over the
barrier, again. Pricing errors are reduced to a size comparable to those of call
options.

4 How to discretize properly

This section discusses the construction of a trinomial model in a �rst approach
to remove the pitfalls of the previous section. Our approach to this problem is
as follows: Discretizing time, and then studying the resultingX{grid, runs into
problems. We are discretizing the wrong thing; the X{axis by a re�nement m
needs to be discretized �rst, yielding �xm, and then the re�nement nm of the
t{axis should be set appropriately, rewriting equation (8) as
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�tn=
�
�xm
�

�2

: (12)

() nm=

$
T
�

�

�xm

�2
%
: (13)

For a down{and{out call option to place grid points on the barrier H requires
�xm = lnS0=H

m
. Interestingly, this way we recover formula (11) derived by

Boyle and Lau (1994) as the resulting re�nement nm in equation (13). In the
symmetrical case where jS0 �Xj = jS0 �Hj this improves the accuracy and
reduces the oscillations to a size comparable to European call options. To
encounter this problem in the general case we need to ensure that nodes also
lie on the strike.

We will now present a �rst approach to resolve this di�culty in full generality.
Later then, we explain it on a concrete example. We call critical layer all
barrier lines (possibly many), the strike and the current asset price. Let us
denote by L the ordered set l1 < : : : < lL of critical layers, and by L0 =
L n fl1; lLg the inner points. First we de�ne variables for 0 < i < L � 1,
�xm;i =

li+1�li
m

, and then �xm;L = �xm;L�1 and �xm;0 = �xm;1, and for x 2
[li�1; li[: �x

u
m(x) = �m;i�1 and for x 2]li�1; li]: �xdm(x) = �m;i. This de�nes a

discrete time{homogeneous grid for the stock values over time. Moreover we
de�ne the minimum�xm = mini�xm;i of all. We model the return, depending
on some x 2 IR, by a trinomial random variable Rm;i of the form:

Rm;i(x) �

8>>>>><
>>>>>:

�xum(x) ; pm(x)

0 ; 1� pm(x)� qm(x)

��xdm(x) ; qm(x)
: (14)

For �tn; nm de�ned by equation (12),(13), we call the processes

X
(m)
t =

N
(m)
tX
i=1

Rm;i

�
X

(n)
t�

�
(15)

G
(m)
t =expX

(n)
t (16)

N
(m)
t =

�
t

�tm

�
(17)

the Trinomial Adjusted (TA) model.

The choice of �xum(x);�x
d
m(x) will give us su�cient degrees of freedom to

place nodes on critical \lines," like the barrier and the strike price. Here, we
deal with a trinomial model in order to get the variance right despite the
complication that discretizations are not constant and change at critical lines.
The process seems to be path{dependent; however this is only conditionally
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on the actual state. It remains recombining and therefore computationally
simple, as it can be handled as any standard trinomial model for calculations.
The dependence on x is easy to resolve. We will drop it in the sequel to present
the main ideas.

Let us explain our approach in detail for a down{and{out call option in �gure
3 where a strike price is at X = 120 and a barrier is at H = 90. We see that

��
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��*
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��
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��*
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strike

current stock
price

barrier

t2;0 t2;1 t2;2

6

�xm;3

�xm;2

�xm;1

?

�xm;0

Fig. 3. Example dynamics

we can distinguish L = 3 critical layers and four di�erent ranges: one below
the barrier, one between the barrier and the current asset price, one between
the strike and the current asset price and one above the strike. In each of the
two inner ranges we need a di�erent �xm. To place nodes on critical layers,
we take between the barrier and the current asset price �xm;1 = j lnH=S0j=m
and between the strike and the current asset price �xm;2 = j lnK=S0j=m.
This de�nes our grid for the asset evolution. As there is no clear choice for
�xm;3 (�xm;0), our approach takes �xm;2 (�xm;1) for simplicity. Please note
that although we focus here on a down{and{out call for ease of exposition,
our approach is general and can easily be generalized, e.g. to double barrier
options.

A consistency requirement is G
(m) d

=) G. Since the exponential function is

continuous, this is equivalent to X
(m) d

=) X. So, setting � = r� �2

2
, according

to Donsker's theorem the following two conditions are su�cient:

E
h
Rm;i

i
�tn

n�!� ; (18)

and
Var

h
Rm;i

i
�tn

n�!�2 : (19)

We require them to hold with equality:
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�xumpm ��xdmqm=��tn ; (20)

(�xum)
2pm + (�xdm)

2qm=�2�tn ; (21)

which can be resolved easily

pm=

�
��xdm + �2

�
�tn

�xum(�x
u
m +�xdm)

; (22)

and qm=
(���xum + �2)�tn
�xdm(�x

u
m +�xdm)

: (23)

Theorem 2 For su�ciently high re�nements, all probabilities pm; qm; 1�pm�
qm are positive and X

(m) d
=) X and G

(m) d
=) G.

PROOF. Positivity of the probabilities follows from �tn = (�xn=�)
2, and

equations (22), (23) since

0 <
�x2m

�xum(�x
u
m +�xdm)

�
�
�xm
�

�2

< 1 ;

and
��xdm

�xum(�x
u
m +�xdm)

�
�
�xm
�

�2
m�! 0 :

The observation that the barrier option with a put as payo�{function is contin-
uous and bounded, the above theorem and put{call parity ensure convergence
of approximate values calculated to their continuous time counterpart. Please
note, that this price consistency holds whenever we know that processes are
consistent in the limit.

Table 1 gives a pricing example for a barrier option using CRR, TA, and the
modi�ed Richardson extrapolation rule (see Leisen (1998a))

�em = (nm+1�m+1 � nm�m)=(nm+1 � nm) ; (24)

iterating m = 1; : : : ; 8. The RT model will be introduced in the following
section. Figure 4 contains the error picture for the same parameter constel-
lation as in table 1. Here we take only speci�c re�nements; we see that the
convergence structure is much smoother than in �gure 2. However it is not suf-
�ciently smooth to apply extrapolation, which do therefore not depict. For TA,
in comparison to CRR, errors are drastically reduced and extrapolation gives
quickly \penny{accuracy." We do also observe that the convergence structure
is fairly smooth.
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m nm �CRR �TA �
e
TA �RT �

e
RT

1 8 8.44693 7.89878 7.93419 6.60928 8.14613

2 34 8.17859 7.92586 7.92367 7.78452 7.97775

3 78 8.04017 7.92463 7.98542 7.89352 7.97775

4 140 7.97567 7.95155 7.98644 7.93082 7.97837

5 220 8.03844 7.96423 7.97371 7.94811 7.97904

6 316 8.02729 7.96711 7.97778 7.95751 7.97889

7 430 7.97612 7.96994 7.98570 7.96318 7.97884

8 562 8.0086 7.97364 7.97786 7.96686 7.97883

Table 1

Pricing example with S=100, X=110, H=85, T=1, r=0.1, � = 0:2. The continuous
time price is 7.97888.
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Fig. 4. error picture for the barrier option

5 Randomizing and Jump{di�usions

We will now randomize the previous model. This will be an easy and straight-
forward way to incorporate the additional jumps which characterize the jump{
di�usion model in di�erence to the Black{Scholes setup. It turns out, in ac-
cordance to Leisen (1998b), that such a randomized model yields even better
convergence results.

We start with a sequence of Poisson processes N (m) = (N
(m)
t )t�0 where N

(m)
t

has parameter (�m)m. N
(m)
t is described by interarrival times �m;i, independent

exponentially distributed random variables with parameter 1=�m and N (m)
t =

max fn jPn
i=1 �m;i � tg. In the previous section we approximated the process
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X between two trading dates tn;i; tn;i+1 2 T n by iid random variables Rm;i.
Similarly here we will now approximate it by random variables Rm;i between
two interarrival times �m;i; �m;i+1, which of the same form. All �xm;l (l =
1; : : : ; L) are de�ned as in the last section described to place nodes on critical
\lines," like the barrier and the strike price. Then study the discrete processes

X
(m)
t and G

(m)
t , de�ned similar to (15){(17) by

X
(m)
t =

N
(m)
tX
i=1

Rm;i ;

G
(m)
t =expX

(m)
t :

and we require, since 1=�m = E[�m;i+1 � �m;i],

E
h
Rm;i

i
�m

n�! r � �2

2
; (25)

and Var
h
Rm;i

i
�m

n�!�2 : (26)

Theorem 3 Under conditions (25) and (26) we haveX
(m) d

=) X and G
(m) d

=)
G.

PROOF. Let us de�ne the two sequences (depending on m) of processes�
M

(m)
t

�
t
and

�
A

(m)
t

�
t
by

M (m)
t =

N
(m)
tX
i=1

Rm;i �
 
r � �2

2

!
t ;

and A
(m)
t =�2t :

Then for each m, the processes
�
M

(m)
t

�
t
and

��
M

(m)
t

�2 � A
(m)
t

�
t
are martin-

gales. As the jump sizes are of order �xm and vanish in the limit, we deduce
from the Martingale Central Limit Theorem as stated in Ethier and Kurtz

(1986) that M
d

=) �W . This is also su�cient for G
(m) d

=) G, since the
exponential function is continuous.

We require equations (25) and (26) to be ful�lled with equality, i.e.,

13



(�xum)
2pm + (�xdm)

2qm=
�2

�m
;

�xumpm ��xdmqm=
r � �2

2

�m
;

or equivalently

pm=
�2 +

�
r � �2

2

�
�xum

�m((�xum)
2 +�xum�x

d
m)

;

and qm=
�2 �

�
r � �2

2

�
�xdm

�m((�xdm)
2 +�xum�x

d
m)

:

Similarly to Leisen (1998b) we take

�m =
�

�

�xm

�2

:

This choice is justi�ed from the assumptions and since E[�m;1] = 1=�m which
corresponds to �tn in equation (13). Then pm; qm 2 [0; 1]; pm + qm � 1 which
makes them feasible transition probabilities and the Poisson process N (m)

is stationary, which will make valuations in the next section especially easy
to perform. We call this model the Randomized Trinomial (RT) model. The
only di�erence to the process studied in the last section is the driving pro-
cess. Whereas there it was bt=�tnc, here it is the Poisson process N

(m)
t with

parameter �m.

This model can also be used easily to construct an approximation in the jump{
di�usion setup. Startin with a sequence (N (m); Rm)m of the above type, where
here � = r � �2

2
� �E[Vi � 1], we de�ne the process

N
(m)

= N +N (m) ; (27)

which is a Poisson process with intensity ��m = �+�m, the sequence of random
variables

R
0
m;i �

8><
>:
Vi ; �

�+�m

Rm;i ;
�m

�+�m

; (28)

and the processes

Y
(m)
t =

N
(m)
tX
i=1

R
0
m;i ; (29)

and S
(m)
t =expY

(m)
t : (30)

14



The counterpart to theorem 3 is:

Theorem 4 For the sequence of discrete models (Y
(m)

)m de�ned by equations

(27){(30) above we have Y
(m) d

=) Y and S
(m) d

=) S, where S is the process
de�ned in equation (1) and Y = lnS.

PROOF. Denote by h the function h : x 7! x+
PN

i=1 Ui on D. Since
N(m)X
i=1

R
(m) d

=)
 
r � �2

2

!
t+ �Wt ;

and the latter is continuous, we conclude using VI.1.23 and VI.3.8 (ii) of Jacod
and Shiryaev (1987):

Y
(m)

= h

0
@N(m)X

i=1

R
0
m;i

1
A d
=) h

  
r � �2

2

!
t+ �Wt

!
= Y :

6 Implementing barrier option valuation in the randomized models

Since the structure in the randomized models di�ers only in the speci�cation
of the return variable, we will treat pricing in those models for a general (R

00
m;i)

which is then either (Rm;i) or (R
0
m;i). The value Vm of a barrier option is given

by

Vm= e�rTE
h
1�f(ST )

i
= e�rTE

�
E[1�f(ST )jN (m)

T ]
�

= e�rT
1X
n=0

E
�
1�f(ST )jN (m)

T = n
�
� P

�
N

(m)
T = n

�
:

This splits up the valuation task by conditioning �rst on N
(m)
T and then av-

eraging over all possible values. This is feasible, due to the independence of

N
(m)

and the random variables in the sequence R
00
m. Let us now denote by

�n the \choice variable" corresponding to � in the n{step tree with return
modeled by R

00
m;i, and de�ne

�(m)
n =E

�
1�f(ST )jN (m)

T = n
�

=E
�
1�nf(ST )jN (m)

T = n
�
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Therefore
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Fig. 5. A trinomial grid

Vm = e�(r+
��m)T

1X
n=0

(��mT )
n

n!
�(m)
n (31)

We cut o� the in�nite sum in equation (31) at an appropriate 
m such that

limm!1 P [N
(m)
T 2 f0; : : : ; 
mg] = 1. Due to the Central Limit Theorem for

renewals,

N
(m)
T � ��mTq

��mT

d
=)N (0; 1) ;

setting 
m = 2b��mT c is one appropriate choice. In the sequel we adopt as our
cut{o�

Vm � e�(r+
��m)T

2b��mT cX
n=0

( ��mT )
n

n!
� �(m)

n : (32)

The value �(m)
n can be interpreted as the value calculated by backward{

induction in an n{step tree grid with return (R
00
m;i)i exactly as in the CRR

model, if we do not perform discounting (see �gure 5 for R
00
m;i = Rm;i). Please

note that for any ~n calculating �
(m)
~n gives us �

(m)
n0 for any n0 = 0; : : : ; ~n as inter-

mediate calculations. Thus we can calculate prices as intermediate calculations
in an 2b��mT c step tree and computing prices in our model is comparable to
a trinomial model (and therefore to the CRR model) in terms of the compu-
tational burden. In order to compare both approaches properly depending on
its complexity, we index calculations in the RT by 2b��mT c.

As explained on �gure 3 we adopt the discretizations �xm;0 = �xm;1 =
j lnH=S0j=m and �xm;2 = �xm;3 = j lnK=S0j=m to place all nodes on critical
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m nm �RT �
e
RT �RT �

e
RT

1 8 11.0891 13.6483 2.2053 0.3539

2 34 13.0461 13.2948 0.2483 0.0004

3 78 13.1864 13.2930 0.1080 0.0015

4 140 13.2336 13.2937 0.0608 0.0008

5 220 13.2555 13.2945 0.0390 0.0001

6 316 13.2673 13.2943 0.0271 0.0001

7 430 13.2745 13.2942 0.0200 0.0002

8 562 13.2791 13.2942 0.0153 0.0002

Table 2

Ruin pricing example with S=100, X=110, H=85, T=1, r=0.1, � = 0:2, � = 0:1

\lines." Table 1 presents prices and errors. We see that RT yields even better
price approximations than TA. By extrapolation we get extremely accurate
price approximations. This becomes even more apparent in the error picture
4. We see that prices converge with order one and extrapolated prices seem
to converge even with order two. Moreover we observe a gain in accuracy by
extrapolation in comparison to the extrapolated TA model.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

10 100

pr
ic

e 
er

ro
r

refinement n

RT
extrapolated RT

1/n
1/(n*n)

Fig. 6. error picture for the barrier option

We now discuss the accuracy in a ruin setup (Vi � 0) with � = 0:1. Table 2
and �gure 6 present values calculated for this case. We also depict errors � and
extrapolated prices (errors) �e (�e), calculated according to equation (24). We
calculated 13.2944 as the price in the CRR model with a re�nement of 100000.
This is an estimation of the continuous time price. In �gure 2 we saw that 1=

p
n

was an appropriate upper bound for the error. If we assume a similar error
bound here, then the error of our estimate is less than 0:0031. Here we see

17



very impressively the slow convergence of the CRR model. Immediately (with
m = 2) we fall below this level. We do not perform a graphical analysis of the
order, since we can not calculate su�ciently accurate values; iterating the RT
higher than m = 2 to compare the accuracy is even doubtful. It is astonishing
that the remarkable convergence properties carry over from the Black{Scholes
setup to the jump{di�usion case.

7 Conclusion

This paper constructs a randomized trinomial model. This is a natural way
to approximate jump{di�usions. The parameters are set such as to get consis-
tency with the continuous{time processes. We discuss an easy approximation
to jump{di�usions and how e�cient numerical approximations for barrier op-
tions result in the Black{Scholes and the jump{di�usion setup.
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